Abstract

We demonstrate a generalized method for dual-comb interferometry that involves the use of two frequency combs with quasi-integer-ratio repetition rates. We use a 16.67 MHz comb to probe an 80-cm-long ring cavity and a 100 MHz comb to asynchronously sample its impulse response. The resulting signal can be seen as six time-multiplexed independent interferograms. We perform a deconvolution of the photodetector’s impulse response to prevent any crosstalk between these multiplexed data sets. The measurement is then demultiplexed and corrected with referencing signals. We obtain a measurement with a spectral point spacing of 16.67 MHz and a spectral SNR of 55 dB by averaging 15,000 interferograms, corresponding to a measurement time of 500 s. Compared to conventional dual-comb spectroscopy, this generalized technique allows to either reduce the spectral point spacing or the acquisition time by changing the repetition rate of only one of the combs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimum repetition rates for dual-comb spectroscopy

Brad C. Smith, Bachana Lomsadze, and Steven T. Cundiff
Opt. Express 26(9) 12049-12056 (2018)

Sensitivity improvement of dual-comb spectroscopy using mode-filtering technique

Akiko Nishiyama, Satoru Yoshida, Takuya Hariki, Yoshiaki Nakajima, and Kaoru Minoshima
Opt. Express 25(25) 31730-31738 (2017)

Continuous real-time correction and averaging for frequency comb interferometry

Julien Roy, Jean-Daniel Deschênes, Simon Potvin, and Jérôme Genest
Opt. Express 20(20) 21932-21939 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. C. Stowe, M. J. Thorpe, A. Pe’er, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).
    [Crossref]
  2. L. Nugent-Glandorf, T. Neely, F. Adler, A. J. Fleisher, K. C. Cossel, B. Bjork, T. Dinneen, J. Ye, and S. A. Diddams, “Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection,” Opt. Lett. 37(15), 3285–3287 (2012).
    [Crossref] [PubMed]
  3. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
    [Crossref] [PubMed]
  4. T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18(2), 1613–1617 (2010).
    [Crossref] [PubMed]
  5. S. Potvin, S. Boudreau, J.-D. Deschênes, and J. Genest, “Fully referenced single-comb interferometry using optical sampling by laser-cavity tuning,” Appl. Opt. 52(2), 248–255 (2013).
    [Crossref] [PubMed]
  6. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
    [Crossref]
  7. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
    [Crossref]
  8. S. Potvin and J. Genest, “Dual-comb spectroscopy using frequency-doubled combs around 775 nm,” Opt. Express 21(25), 30707–30715 (2013).
    [Crossref] [PubMed]
  9. E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
    [Crossref]
  10. J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20(20), 21932–21939 (2012).
    [Crossref] [PubMed]
  11. V. Michaud-Belleau, J. Roy, S. Potvin, J.-R. Carrier, L.-S. Verret, M. Charlebois, J. Genest, and C. N. Allen, “Whispering gallery mode sensing with a dual frequency comb probe,” Opt. Express 20(3), 3066–3075 (2012).
    [Crossref] [PubMed]
  12. H. Bergeron, J.-R. Carrier, V. Michaud-Belleau, J. Roy, J. Genest, and C. N. Allen, “Optical impulse response of silica microspheres: Complementary approach to whispering-gallery-mode analysis,” Phys. Rev. A 87(6), 063835 (2013).
    [Crossref]
  13. Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
    [Crossref] [PubMed]
  14. A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in CLEO: Science and Innovations (Optical Society of America, 2013), p. CTh5C–8.
  15. M. Godbout, J.-D. Deschênes, and J. Genest, “Spectrally resolved laser ranging with frequency combs,” Opt. Express 18(15), 15981–15989 (2010).
    [Crossref] [PubMed]
  16. S. Boudreau, S. Levasseur, C. Perilla, S. Roy, and J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21(6), 7411–7418 (2013).
    [Crossref] [PubMed]
  17. J.-D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18(22), 23358–23370 (2010).
    [Crossref] [PubMed]
  18. M. A. Duguay and J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett. 13(5), 178–180 (1968).
    [Crossref]
  19. J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne detection for spectral compression and downconversion of arbitrary periodic optical signals,” J. Lightwave Technol. 29(20), 3091–3098 (2011).
    [Crossref]
  20. A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
    [Crossref]
  21. L. Antonucci, X. Solinas, A. Bonvalet, and M. Joffre, “Asynchronous optical sampling with arbitrary detuning between laser repetition rates,” Opt. Express 20(16), 17928–17937 (2012).
    [Crossref] [PubMed]
  22. J.-D. Deschênes and J. Genest, “Heterodyne beats between a continuous-wave laser and a frequency comb beyond the shot-noise limit of a single comb mode,” Phys. Rev. A 87(2), 023802 (2013).
    [Crossref]

2014 (1)

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

2013 (6)

S. Boudreau, S. Levasseur, C. Perilla, S. Roy, and J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21(6), 7411–7418 (2013).
[Crossref] [PubMed]

H. Bergeron, J.-R. Carrier, V. Michaud-Belleau, J. Roy, J. Genest, and C. N. Allen, “Optical impulse response of silica microspheres: Complementary approach to whispering-gallery-mode analysis,” Phys. Rev. A 87(6), 063835 (2013).
[Crossref]

S. Potvin, S. Boudreau, J.-D. Deschênes, and J. Genest, “Fully referenced single-comb interferometry using optical sampling by laser-cavity tuning,” Appl. Opt. 52(2), 248–255 (2013).
[Crossref] [PubMed]

S. Potvin and J. Genest, “Dual-comb spectroscopy using frequency-doubled combs around 775 nm,” Opt. Express 21(25), 30707–30715 (2013).
[Crossref] [PubMed]

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
[Crossref]

J.-D. Deschênes and J. Genest, “Heterodyne beats between a continuous-wave laser and a frequency comb beyond the shot-noise limit of a single comb mode,” Phys. Rev. A 87(2), 023802 (2013).
[Crossref]

2012 (4)

2011 (2)

J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne detection for spectral compression and downconversion of arbitrary periodic optical signals,” J. Lightwave Technol. 29(20), 3091–3098 (2011).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

2010 (5)

2008 (1)

M. C. Stowe, M. J. Thorpe, A. Pe’er, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).
[Crossref]

2007 (1)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

1968 (1)

M. A. Duguay and J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett. 13(5), 178–180 (1968).
[Crossref]

Adler, F.

Allen, C. N.

H. Bergeron, J.-R. Carrier, V. Michaud-Belleau, J. Roy, J. Genest, and C. N. Allen, “Optical impulse response of silica microspheres: Complementary approach to whispering-gallery-mode analysis,” Phys. Rev. A 87(6), 063835 (2013).
[Crossref]

V. Michaud-Belleau, J. Roy, S. Potvin, J.-R. Carrier, L.-S. Verret, M. Charlebois, J. Genest, and C. N. Allen, “Whispering gallery mode sensing with a dual frequency comb probe,” Opt. Express 20(3), 3066–3075 (2012).
[Crossref] [PubMed]

Antonucci, L.

Araki, T.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

Bagnell, M.

Baumann, E.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

Bergeron, H.

H. Bergeron, J.-R. Carrier, V. Michaud-Belleau, J. Roy, J. Genest, and C. N. Allen, “Optical impulse response of silica microspheres: Complementary approach to whispering-gallery-mode analysis,” Phys. Rev. A 87(6), 063835 (2013).
[Crossref]

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Bjork, B.

Bonvalet, A.

Boudreau, S.

Carrier, J.-R.

H. Bergeron, J.-R. Carrier, V. Michaud-Belleau, J. Roy, J. Genest, and C. N. Allen, “Optical impulse response of silica microspheres: Complementary approach to whispering-gallery-mode analysis,” Phys. Rev. A 87(6), 063835 (2013).
[Crossref]

V. Michaud-Belleau, J. Roy, S. Potvin, J.-R. Carrier, L.-S. Verret, M. Charlebois, J. Genest, and C. N. Allen, “Whispering gallery mode sensing with a dual frequency comb probe,” Opt. Express 20(3), 3066–3075 (2012).
[Crossref] [PubMed]

Charlebois, M.

Coddington, I.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

Cossel, K. C.

Davila-Rodriguez, J.

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
[Crossref]

J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne detection for spectral compression and downconversion of arbitrary periodic optical signals,” J. Lightwave Technol. 29(20), 3091–3098 (2011).
[Crossref]

Delfyett, P. J.

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
[Crossref]

J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne detection for spectral compression and downconversion of arbitrary periodic optical signals,” J. Lightwave Technol. 29(20), 3091–3098 (2011).
[Crossref]

Deschênes, J.-D.

Diddams, S. A.

L. Nugent-Glandorf, T. Neely, F. Adler, A. J. Fleisher, K. C. Cossel, B. Bjork, T. Dinneen, J. Ye, and S. A. Diddams, “Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection,” Opt. Lett. 37(15), 3285–3287 (2012).
[Crossref] [PubMed]

M. C. Stowe, M. J. Thorpe, A. Pe’er, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).
[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Dinneen, T.

Duguay, M. A.

M. A. Duguay and J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett. 13(5), 178–180 (1968).
[Crossref]

Fleisher, A. J.

Genest, J.

S. Potvin, S. Boudreau, J.-D. Deschênes, and J. Genest, “Fully referenced single-comb interferometry using optical sampling by laser-cavity tuning,” Appl. Opt. 52(2), 248–255 (2013).
[Crossref] [PubMed]

S. Potvin and J. Genest, “Dual-comb spectroscopy using frequency-doubled combs around 775 nm,” Opt. Express 21(25), 30707–30715 (2013).
[Crossref] [PubMed]

S. Boudreau, S. Levasseur, C. Perilla, S. Roy, and J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21(6), 7411–7418 (2013).
[Crossref] [PubMed]

H. Bergeron, J.-R. Carrier, V. Michaud-Belleau, J. Roy, J. Genest, and C. N. Allen, “Optical impulse response of silica microspheres: Complementary approach to whispering-gallery-mode analysis,” Phys. Rev. A 87(6), 063835 (2013).
[Crossref]

J.-D. Deschênes and J. Genest, “Heterodyne beats between a continuous-wave laser and a frequency comb beyond the shot-noise limit of a single comb mode,” Phys. Rev. A 87(2), 023802 (2013).
[Crossref]

J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20(20), 21932–21939 (2012).
[Crossref] [PubMed]

V. Michaud-Belleau, J. Roy, S. Potvin, J.-R. Carrier, L.-S. Verret, M. Charlebois, J. Genest, and C. N. Allen, “Whispering gallery mode sensing with a dual frequency comb probe,” Opt. Express 20(3), 3066–3075 (2012).
[Crossref] [PubMed]

M. Godbout, J.-D. Deschênes, and J. Genest, “Spectrally resolved laser ranging with frequency combs,” Opt. Express 18(15), 15981–15989 (2010).
[Crossref] [PubMed]

J.-D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18(22), 23358–23370 (2010).
[Crossref] [PubMed]

Gerginov, V.

M. C. Stowe, M. J. Thorpe, A. Pe’er, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).
[Crossref]

Giaccarri, P.

Giorgetta, F. R.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

Godbout, M.

Guelachvili, G.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Hänsch, T. W.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Hansen, J. W.

M. A. Duguay and J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett. 13(5), 178–180 (1968).
[Crossref]

Hindle, F.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

Hochrein, T.

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Holzwarth, R.

T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18(2), 1613–1617 (2010).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Hsieh, Y.-D.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

Inaba, H.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

Iyonaga, Y.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Joffre, M.

Klee, A.

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
[Crossref]

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Koch, M.

Krumbholz, N.

Levasseur, S.

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Mei, M.

Michaud-Belleau, V.

H. Bergeron, J.-R. Carrier, V. Michaud-Belleau, J. Roy, J. Genest, and C. N. Allen, “Optical impulse response of silica microspheres: Complementary approach to whispering-gallery-mode analysis,” Phys. Rev. A 87(6), 063835 (2013).
[Crossref]

V. Michaud-Belleau, J. Roy, S. Potvin, J.-R. Carrier, L.-S. Verret, M. Charlebois, J. Genest, and C. N. Allen, “Whispering gallery mode sensing with a dual frequency comb probe,” Opt. Express 20(3), 3066–3075 (2012).
[Crossref] [PubMed]

Minoshima, K.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

Neely, T.

Newbury, N. R.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

Nugent-Glandorf, L.

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Pe’er, A.

M. C. Stowe, M. J. Thorpe, A. Pe’er, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).
[Crossref]

Perilla, C.

Picqué, N.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Potvin, S.

Roy, J.

Roy, S.

Sakaguchi, Y.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

Solinas, X.

Stalnaker, J. E.

M. C. Stowe, M. J. Thorpe, A. Pe’er, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).
[Crossref]

Stowe, M. C.

M. C. Stowe, M. J. Thorpe, A. Pe’er, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).
[Crossref]

Swann, W. C.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

Thorpe, M. J.

M. C. Stowe, M. J. Thorpe, A. Pe’er, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).
[Crossref]

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Verret, L.-S.

Wilk, R.

Williams, C.

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
[Crossref]

J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne detection for spectral compression and downconversion of arbitrary periodic optical signals,” J. Lightwave Technol. 29(20), 3091–3098 (2011).
[Crossref]

Yasui, T.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

Ye, J.

Yokoyama, S.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

Zolot, A. M.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

Adv. At. Mol. Opt. Phys. (1)

M. C. Stowe, M. J. Thorpe, A. Pe’er, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. A. Duguay and J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett. 13(5), 178–180 (1968).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (1)

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Nature (1)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Opt. Express (8)

V. Michaud-Belleau, J. Roy, S. Potvin, J.-R. Carrier, L.-S. Verret, M. Charlebois, J. Genest, and C. N. Allen, “Whispering gallery mode sensing with a dual frequency comb probe,” Opt. Express 20(3), 3066–3075 (2012).
[Crossref] [PubMed]

L. Antonucci, X. Solinas, A. Bonvalet, and M. Joffre, “Asynchronous optical sampling with arbitrary detuning between laser repetition rates,” Opt. Express 20(16), 17928–17937 (2012).
[Crossref] [PubMed]

S. Boudreau, S. Levasseur, C. Perilla, S. Roy, and J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21(6), 7411–7418 (2013).
[Crossref] [PubMed]

S. Potvin and J. Genest, “Dual-comb spectroscopy using frequency-doubled combs around 775 nm,” Opt. Express 21(25), 30707–30715 (2013).
[Crossref] [PubMed]

T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18(2), 1613–1617 (2010).
[Crossref] [PubMed]

M. Godbout, J.-D. Deschênes, and J. Genest, “Spectrally resolved laser ranging with frequency combs,” Opt. Express 18(15), 15981–15989 (2010).
[Crossref] [PubMed]

J.-D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18(22), 23358–23370 (2010).
[Crossref] [PubMed]

J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20(20), 21932–21939 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (4)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

J.-D. Deschênes and J. Genest, “Heterodyne beats between a continuous-wave laser and a frequency comb beyond the shot-noise limit of a single comb mode,” Phys. Rev. A 87(2), 023802 (2013).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

H. Bergeron, J.-R. Carrier, V. Michaud-Belleau, J. Roy, J. Genest, and C. N. Allen, “Optical impulse response of silica microspheres: Complementary approach to whispering-gallery-mode analysis,” Phys. Rev. A 87(6), 063835 (2013).
[Crossref]

Sci. Rep. (1)

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

Other (1)

A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in CLEO: Science and Innovations (Optical Society of America, 2013), p. CTh5C–8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup. The slow probe comb is sent through the DUT, which is a fiber ring cavity in that case, while the faster sampling comb goes through a fiber spool to chirp its pulses to maximize SNR. Both signals are aligned in polarization with a polarization controller (PC), combined in a 50/50 coupler, sent to a balanced photodetector and acquired by an ADC. A referencing stage keeps track of the combs’ fluctuations. Solid lines represent optical fibers and dashed lines are electrical links.
Fig. 2
Fig. 2 Schematic representation of dual-comb spectroscopy with integer-ratio repetition rates. (a) A slow comb (black) responsible for generating the DUT’s impulse response and a faster sampling comb (multicolored). The fast comb can be seen as 6 slow combs. (b) Asynchronous sampling of the impulse response. The signal is composed of 6 time-multiplexed measurements of the impulse response. (c) Zoom out on the demultiplexed signal.
Fig. 3
Fig. 3 (a) Photodetector’s response to the 16.67 MHz comb being sampled by the 100 MHz comb. The first burst is an actual light pulse arriving on the detector. The subsequent bursts result from the leakage of the detected light on each of the 10 ns measurement increments. (b) Cross-correlation of the ZPD peak with the complete set of data from (a). The noise floor is reduced by a factor exceeding 10. Note that the impulse response is null at a 50 ns delay.
Fig. 4
Fig. 4 Simulated transmission spectrum (blue) obtained with a 16.67 MHz comb and a 100 MHz comb with its beat signals generated for referencing purposes. A beat signal between a CW laser and the slow comb (solid green) is found below the corresponding Nyquist frequency fN,1 (dashed green). A beat signal between the same CW laser and the fast comb (solid red) is found below the Nyquist frequency fN,2 (dashed red). A 6-fold downsampled and aliased version of the latter beat is also shown.
Fig. 5
Fig. 5 (a) Impulse response of the ring cavity after correction, averaging and dispersion compensation. The full delay range covered by the probe comb is displayed. The weakest bursts correspond to residual crosstalk. (b) Enlarged view of the second burst. A carrier frequency of 5 THz is added to the signal.
Fig. 6
Fig. 6 (a) Power spectrum of the measured impulse response. (b) Enlarged view of a few cavity modes caused by the lossy ring cavity.

Metrics