Abstract

Single point diamond turning (SPDT) currently is the leading finishing method for achieving ultra-smooth surface on brittle KH2PO4 crystal. In this work, the light intensification modulated by surface cracks introduced by SPDT cutting is numerically simulated using finite-difference time-domain algorithm. The results indicate that the light intensification caused by surface cracks is wavelength, crack geometry and position dependent. Under the irradiation of 355nm laser, lateral cracks on front surfaces and conical cracks on both front and rear surfaces can produce light intensification as high as hundreds of times, which is sufficient to trigger avalanche ionization and finally lower the laser damage resistance of crystal components. Furthermore, we experimentally tested the laser-induced damage thresholds (LIDTs) on both crack-free and flawed crystal surfaces. The results imply that brittle fracture with a series of surface cracks is the dominant source of laser damage initiation in crystal components. Due to the negative effect of surface cracks, the LIDT on KDP crystal surface could be sharply reduced from 7.85J/cm2 to 2.33J/cm2 (355nm, 6.4ns). In addition, the experiment of laser-induced damage growth is performed and the damage growth behavior agrees well with the simulation results of light intensification caused by surface cracks with increasing crack depths.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of spherical mitigation pit on KH2PO4 crystal by micro-milling and modeling of its induced light intensification

Jian Cheng, Mingjun Chen, Wei Liao, Haijun Wang, Yong Xiao, and Mingquan Li
Opt. Express 21(14) 16799-16813 (2013)

Two important mechanisms damaging KH2PO4 crystal processed by ultraprecision fly cutting and their relationships with cutting parameters

Mingquan Li, Mingjun Chen, Jian Cheng, Yong Xiao, and Wei Jiang
Appl. Opt. 52(15) 3451-3460 (2013)

Modeling of residual tool mark formation and its influence on the optical performance of KH2PO4 optics repaired by micro-milling

Qi Liu, Jian Cheng, Hao Yang, Yafei Xu, Linjie Zhao, Chao Tan, and Mingjun Chen
Opt. Mater. Express 9(9) 3789-3807 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Reyné, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Laser-induced damage of KDP crystals by 1ω nanosecond pulses: influence of crystal orientation,” Opt. Express 17(24), 21652–21665 (2009).
    [Crossref] [PubMed]
  2. J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47(3), 113–152 (2002).
    [Crossref]
  3. A. Dyan, F. Enguehard, S. Lallich, H. Piombini, and G. Duchatean, “Scaling laws in laser–induced potassium phosphate crystal damage by nanosecond pulses at 3ω,” J. Opt. Soc. Am. B 25(6), 1087–1095 (2008).
    [Crossref]
  4. J. S. Taylor, K. Carlisle, J. L. Klingmann, P. Geraghty, T. T. Saito, and R. C. Montesanti,H. Spaan, ed., “Precision Engineering within the National Ignition Campaign,” in Proceedings of International Conference of the European Society for Precision Engineering and Nanotechnology, H. Spaan, ed. (Academic, 2010), pp. 143–150.
  5. R. Hawley-Fedder, P. Geraghty, S. Locke, M. McBurney, M. Runkel, T. Suratwala, S. Thompson, P. Wegner, and P. Whitman, “NIF Pockels cell and frequency conversion crystals,” Proc. SPIE 5341, 121–126 (2004).
    [Crossref]
  6. T. Fang and J. C. Lambropoulos, “Microhardness and indentation fracture of potassium dihydrogen phosphate (KDP),” J. Am. Ceram. Soc. 85(1), 174–178 (2002).
    [Crossref]
  7. S. G. Demos, R. A. Negress, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
    [Crossref]
  8. R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett. 86(17), 171107 (2005).
    [Crossref]
  9. F. Guillet, B. Bertussi, L. Lamaignere, X. Leborgne, and B. Minot, “Preliminary results on mitigation of KDP surface damage using the ball dimpling method,” Proc. SPIE 6720, 672008 (2007).
    [Crossref]
  10. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
    [Crossref] [PubMed]
  11. A. A. Manenkov, “Fundamental mechanisms of laser–induced damage in optical materials: today's state of understanding and problems,” Opt. Eng. 53(1), 010901 (2014).
    [Crossref]
  12. T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
    [Crossref] [PubMed]
  13. G. Duchateau, “Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses,” Opt. Express 17(13), 10434–10456 (2009).
    [Crossref] [PubMed]
  14. G. Duchateau, M. D. Feit, and S. G. Demos, “Transient material properties during defect–assisted laser breakdown in deuterated potassium dihydrogen phosphate crystals,” J. Appl. Phys. 115(10), 103506 (2014).
    [Crossref]
  15. C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
    [Crossref] [PubMed]
  16. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
    [Crossref] [PubMed]
  17. R. N. Raman, R. A. Negress, M. J. Matthews, and C. W. Carr, “Effect of thermal anneal on growth behavior of laser–induced damage sites on the exit surface of fused silica,” Opt. Mater. Express 3(6), 765–776 (2013).
    [Crossref]
  18. P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Multiwavelength investigation of laser-damage performance in potassium dihydrogen phosphate after laser annealing,” Opt. Lett. 30(3), 221–223 (2005).
    [Crossref] [PubMed]
  19. R. A. Negres, P. DeMange, and S. G. Demos, “Investigation of laser annealing parameters for optimal laser-damage performance in deuterated potassium dihydrogen phosphate,” Opt. Lett. 30(20), 2766–2768 (2005).
    [Crossref] [PubMed]
  20. R. A. Negres, N. P. Zaitseva, P. DeMange, and S. G. Demos, “Expedited laser damage profiling of KDxH2-xPO4 with respect to crystal growth parameters,” Opt. Lett. 31(21), 3110–3112 (2006).
    [Crossref] [PubMed]
  21. M. J. Chen, M. Q. Li, J. Cheng, W. Jiang, J. Wang, and Q. Xu, “Study on characteristic parameters influencing laser-induced damage threshold of KH2PO4 crystal surface machined by single point diamond turning,” J. Appl. Phys. 110(11), 113103 (2011).
    [Crossref] [PubMed]
  22. J. Neauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, “Effect of electric field on laser induced damage threshold of multilayer dielectric gratings,” Opt. Express 15(19), 12508–12522 (2007).
    [Crossref] [PubMed]
  23. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12(4), 661–664 (1973).
    [Crossref] [PubMed]
  24. F. O. Génin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear–surface laser damage on 355–nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39(21), 3654–3663 (2000).
    [Crossref] [PubMed]
  25. F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18(10), 2607–2616 (2001).
    [Crossref] [PubMed]
  26. M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
    [Crossref]
  27. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
    [Crossref] [PubMed]
  28. L. Zhang, W. Chen, and L. Hu, “Systematic investigation on light intensification by typical subsurface cracks on optical glass surfaces,” Appl. Opt. 52(5), 980–989 (2013).
    [Crossref] [PubMed]
  29. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub–surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
    [Crossref]
  30. B. Lawn and R. Wilshaw, “Indentation fracture: principles and applications,” J. Mater. Sci. 10(6), 1049–1081 (1975).
    [Crossref]
  31. J. Cheng, M. Chen, W. Liao, H. Wang, Y. Xiao, and M. Li, “Fabrication of spherical mitigation pit on KH2PO4 crystal by micro-milling and modeling of its induced light intensification,” Opt. Express 21(14), 16799–16813 (2013).
    [Crossref] [PubMed]
  32. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (Academic, 2000).
  33. F. R. Wagner, A. Hildenbrand, J. Y. Natoli, and M. Commandré, “Multiple pulse nanosecond laser induced damage study in LiB3O5 crystals,” Opt. Express 18(26), 26791–26798 (2010).
    [Crossref] [PubMed]
  34. S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
    [Crossref]

2014 (2)

A. A. Manenkov, “Fundamental mechanisms of laser–induced damage in optical materials: today's state of understanding and problems,” Opt. Eng. 53(1), 010901 (2014).
[Crossref]

G. Duchateau, M. D. Feit, and S. G. Demos, “Transient material properties during defect–assisted laser breakdown in deuterated potassium dihydrogen phosphate crystals,” J. Appl. Phys. 115(10), 103506 (2014).
[Crossref]

2013 (4)

2012 (1)

2011 (1)

M. J. Chen, M. Q. Li, J. Cheng, W. Jiang, J. Wang, and Q. Xu, “Study on characteristic parameters influencing laser-induced damage threshold of KH2PO4 crystal surface machined by single point diamond turning,” J. Appl. Phys. 110(11), 113103 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (2)

2008 (1)

2007 (2)

2006 (2)

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub–surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
[Crossref]

R. A. Negres, N. P. Zaitseva, P. DeMange, and S. G. Demos, “Expedited laser damage profiling of KDxH2-xPO4 with respect to crystal growth parameters,” Opt. Lett. 31(21), 3110–3112 (2006).
[Crossref] [PubMed]

2005 (3)

2004 (3)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

R. Hawley-Fedder, P. Geraghty, S. Locke, M. McBurney, M. Runkel, T. Suratwala, S. Thompson, P. Wegner, and P. Whitman, “NIF Pockels cell and frequency conversion crystals,” Proc. SPIE 5341, 121–126 (2004).
[Crossref]

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[Crossref]

2003 (1)

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[Crossref] [PubMed]

2002 (2)

T. Fang and J. C. Lambropoulos, “Microhardness and indentation fracture of potassium dihydrogen phosphate (KDP),” J. Am. Ceram. Soc. 85(1), 174–178 (2002).
[Crossref]

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47(3), 113–152 (2002).
[Crossref]

2001 (1)

2000 (1)

1995 (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

1986 (1)

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
[Crossref]

1975 (1)

B. Lawn and R. Wilshaw, “Indentation fracture: principles and applications,” J. Mater. Sci. 10(6), 1049–1081 (1975).
[Crossref]

1973 (1)

Balas, M.

Bertussi, B.

F. Guillet, B. Bertussi, L. Lamaignere, X. Leborgne, and B. Minot, “Preliminary results on mitigation of KDP surface damage using the ball dimpling method,” Proc. SPIE 6720, 672008 (2007).
[Crossref]

Bloembergen, N.

Bonod, N.

Bostedt, C.

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett. 86(17), 171107 (2005).
[Crossref]

Bude, J. D.

Burnham, A. K.

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47(3), 113–152 (2002).
[Crossref]

Carr, C. W.

R. N. Raman, R. A. Negress, M. J. Matthews, and C. W. Carr, “Effect of thermal anneal on growth behavior of laser–induced damage sites on the exit surface of fused silica,” Opt. Mater. Express 3(6), 765–776 (2013).
[Crossref]

P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Multiwavelength investigation of laser-damage performance in potassium dihydrogen phosphate after laser annealing,” Opt. Lett. 30(3), 221–223 (2005).
[Crossref] [PubMed]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[Crossref] [PubMed]

Chase, L. L.

Chen, M.

Chen, M. J.

M. J. Chen, M. Q. Li, J. Cheng, W. Jiang, J. Wang, and Q. Xu, “Study on characteristic parameters influencing laser-induced damage threshold of KH2PO4 crystal surface machined by single point diamond turning,” J. Appl. Phys. 110(11), 113103 (2011).
[Crossref] [PubMed]

Chen, W.

Cheng, J.

J. Cheng, M. Chen, W. Liao, H. Wang, Y. Xiao, and M. Li, “Fabrication of spherical mitigation pit on KH2PO4 crystal by micro-milling and modeling of its induced light intensification,” Opt. Express 21(14), 16799–16813 (2013).
[Crossref] [PubMed]

M. J. Chen, M. Q. Li, J. Cheng, W. Jiang, J. Wang, and Q. Xu, “Study on characteristic parameters influencing laser-induced damage threshold of KH2PO4 crystal surface machined by single point diamond turning,” J. Appl. Phys. 110(11), 113103 (2011).
[Crossref] [PubMed]

Commandré, M.

Davis, P.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub–surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
[Crossref]

de Villele, G.

De Yoreo, J. J.

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47(3), 113–152 (2002).
[Crossref]

DeMange, P.

Demos, S. G.

G. Duchateau, M. D. Feit, and S. G. Demos, “Transient material properties during defect–assisted laser breakdown in deuterated potassium dihydrogen phosphate crystals,” J. Appl. Phys. 115(10), 103506 (2014).
[Crossref]

S. G. Demos, R. A. Negress, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
[Crossref]

R. A. Negres, N. P. Zaitseva, P. DeMange, and S. G. Demos, “Expedited laser damage profiling of KDxH2-xPO4 with respect to crystal growth parameters,” Opt. Lett. 31(21), 3110–3112 (2006).
[Crossref] [PubMed]

R. A. Negres, P. DeMange, and S. G. Demos, “Investigation of laser annealing parameters for optimal laser-damage performance in deuterated potassium dihydrogen phosphate,” Opt. Lett. 30(20), 2766–2768 (2005).
[Crossref] [PubMed]

P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Multiwavelength investigation of laser-damage performance in potassium dihydrogen phosphate after laser annealing,” Opt. Lett. 30(3), 221–223 (2005).
[Crossref] [PubMed]

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett. 86(17), 171107 (2005).
[Crossref]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[Crossref] [PubMed]

Desserouer, F.

Duchatean, G.

Duchateau, G.

Dupuy, G.

Dyan, A.

Enguehard, F.

Fang, T.

T. Fang and J. C. Lambropoulos, “Microhardness and indentation fracture of potassium dihydrogen phosphate (KDP),” J. Am. Ceram. Soc. 85(1), 174–178 (2002).
[Crossref]

Feit, M. D.

G. Duchateau, M. D. Feit, and S. G. Demos, “Transient material properties during defect–assisted laser breakdown in deuterated potassium dihydrogen phosphate crystals,” J. Appl. Phys. 115(10), 103506 (2014).
[Crossref]

S. G. Demos, R. A. Negress, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
[Crossref]

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[Crossref] [PubMed]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub–surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
[Crossref]

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[Crossref]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

F. O. Génin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear–surface laser damage on 355–nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39(21), 3654–3663 (2000).
[Crossref] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Flamand, J.

Génin, F. O.

Génin, F. Y.

Geraghty, P.

R. Hawley-Fedder, P. Geraghty, S. Locke, M. McBurney, M. Runkel, T. Suratwala, S. Thompson, P. Wegner, and P. Whitman, “NIF Pockels cell and frequency conversion crystals,” Proc. SPIE 5341, 121–126 (2004).
[Crossref]

Guillet, F.

F. Guillet, B. Bertussi, L. Lamaignere, X. Leborgne, and B. Minot, “Preliminary results on mitigation of KDP surface damage using the ball dimpling method,” Proc. SPIE 6720, 672008 (2007).
[Crossref]

Hawley, D.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
[Crossref]

Hawley-Fedder, R.

R. Hawley-Fedder, P. Geraghty, S. Locke, M. McBurney, M. Runkel, T. Suratwala, S. Thompson, P. Wegner, and P. Whitman, “NIF Pockels cell and frequency conversion crystals,” Proc. SPIE 5341, 121–126 (2004).
[Crossref]

Hildenbrand, A.

Hu, L.

Jiang, W.

M. J. Chen, M. Q. Li, J. Cheng, W. Jiang, J. Wang, and Q. Xu, “Study on characteristic parameters influencing laser-induced damage threshold of KH2PO4 crystal surface machined by single point diamond turning,” J. Appl. Phys. 110(11), 113103 (2011).
[Crossref] [PubMed]

Kaladgew, S.

Kozlowski, M. R.

Kucheyev, S. O.

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett. 86(17), 171107 (2005).
[Crossref]

Lallich, S.

Lamaignere, L.

F. Guillet, B. Bertussi, L. Lamaignere, X. Leborgne, and B. Minot, “Preliminary results on mitigation of KDP surface damage using the ball dimpling method,” Proc. SPIE 6720, 672008 (2007).
[Crossref]

Lamaignère, L.

Lambropoulos, J. C.

T. Fang and J. C. Lambropoulos, “Microhardness and indentation fracture of potassium dihydrogen phosphate (KDP),” J. Am. Ceram. Soc. 85(1), 174–178 (2002).
[Crossref]

Laurence, T. A.

Lavastre, E.

Lawn, B.

B. Lawn and R. Wilshaw, “Indentation fracture: principles and applications,” J. Mater. Sci. 10(6), 1049–1081 (1975).
[Crossref]

Leborgne, X.

F. Guillet, B. Bertussi, L. Lamaignere, X. Leborgne, and B. Minot, “Preliminary results on mitigation of KDP surface damage using the ball dimpling method,” Proc. SPIE 6720, 672008 (2007).
[Crossref]

Li, M.

Li, M. Q.

M. J. Chen, M. Q. Li, J. Cheng, W. Jiang, J. Wang, and Q. Xu, “Study on characteristic parameters influencing laser-induced damage threshold of KH2PO4 crystal surface machined by single point diamond turning,” J. Appl. Phys. 110(11), 113103 (2011).
[Crossref] [PubMed]

Liao, W.

Locke, S.

R. Hawley-Fedder, P. Geraghty, S. Locke, M. McBurney, M. Runkel, T. Suratwala, S. Thompson, P. Wegner, and P. Whitman, “NIF Pockels cell and frequency conversion crystals,” Proc. SPIE 5341, 121–126 (2004).
[Crossref]

Ly, S.

Manenkov, A. A.

A. A. Manenkov, “Fundamental mechanisms of laser–induced damage in optical materials: today's state of understanding and problems,” Opt. Eng. 53(1), 010901 (2014).
[Crossref]

Matthews, M. J.

McBurney, M.

R. Hawley-Fedder, P. Geraghty, S. Locke, M. McBurney, M. Runkel, T. Suratwala, S. Thompson, P. Wegner, and P. Whitman, “NIF Pockels cell and frequency conversion crystals,” Proc. SPIE 5341, 121–126 (2004).
[Crossref]

Menapace, J.

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub–surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
[Crossref]

Miller, P.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub–surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
[Crossref]

Miller, P. E.

Minot, B.

F. Guillet, B. Bertussi, L. Lamaignere, X. Leborgne, and B. Minot, “Preliminary results on mitigation of KDP surface damage using the ball dimpling method,” Proc. SPIE 6720, 672008 (2007).
[Crossref]

Natoli, J. Y.

Neauport, J.

Negres, R. A.

Negress, R. A.

S. G. Demos, R. A. Negress, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
[Crossref]

R. N. Raman, R. A. Negress, M. J. Matthews, and C. W. Carr, “Effect of thermal anneal on growth behavior of laser–induced damage sites on the exit surface of fused silica,” Opt. Mater. Express 3(6), 765–776 (2013).
[Crossref]

Nelson, A. J.

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett. 86(17), 171107 (2005).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Piombini, H.

Pistor, T. V.

Radousky, H. B.

P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Multiwavelength investigation of laser-damage performance in potassium dihydrogen phosphate after laser annealing,” Opt. Lett. 30(3), 221–223 (2005).
[Crossref] [PubMed]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[Crossref] [PubMed]

Raman, R. N.

S. G. Demos, R. A. Negress, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
[Crossref]

R. N. Raman, R. A. Negress, M. J. Matthews, and C. W. Carr, “Effect of thermal anneal on growth behavior of laser–induced damage sites on the exit surface of fused silica,” Opt. Mater. Express 3(6), 765–776 (2013).
[Crossref]

Razé, G.

Reyné, S.

Roy, R.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
[Crossref]

Rubenchik, A. M.

S. G. Demos, R. A. Negress, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
[Crossref]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[Crossref]

F. O. Génin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear–surface laser damage on 355–nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39(21), 3654–3663 (2000).
[Crossref] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Runkel, M.

R. Hawley-Fedder, P. Geraghty, S. Locke, M. McBurney, M. Runkel, T. Suratwala, S. Thompson, P. Wegner, and P. Whitman, “NIF Pockels cell and frequency conversion crystals,” Proc. SPIE 5341, 121–126 (2004).
[Crossref]

Salleo, A.

Shen, N.

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Steele, R.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub–surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
[Crossref]

Steele, W. A.

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Suratwala, T.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub–surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
[Crossref]

R. Hawley-Fedder, P. Geraghty, S. Locke, M. McBurney, M. Runkel, T. Suratwala, S. Thompson, P. Wegner, and P. Whitman, “NIF Pockels cell and frequency conversion crystals,” Proc. SPIE 5341, 121–126 (2004).
[Crossref]

Suratwala, T. I.

Thompson, S.

R. Hawley-Fedder, P. Geraghty, S. Locke, M. McBurney, M. Runkel, T. Suratwala, S. Thompson, P. Wegner, and P. Whitman, “NIF Pockels cell and frequency conversion crystals,” Proc. SPIE 5341, 121–126 (2004).
[Crossref]

van Buuren, T.

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett. 86(17), 171107 (2005).
[Crossref]

Wagner, F. R.

Walmer, D.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub–surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
[Crossref]

Wang, H.

Wang, J.

M. J. Chen, M. Q. Li, J. Cheng, W. Jiang, J. Wang, and Q. Xu, “Study on characteristic parameters influencing laser-induced damage threshold of KH2PO4 crystal surface machined by single point diamond turning,” J. Appl. Phys. 110(11), 113103 (2011).
[Crossref] [PubMed]

Wegner, P.

R. Hawley-Fedder, P. Geraghty, S. Locke, M. McBurney, M. Runkel, T. Suratwala, S. Thompson, P. Wegner, and P. Whitman, “NIF Pockels cell and frequency conversion crystals,” Proc. SPIE 5341, 121–126 (2004).
[Crossref]

Whitman, P.

R. Hawley-Fedder, P. Geraghty, S. Locke, M. McBurney, M. Runkel, T. Suratwala, S. Thompson, P. Wegner, and P. Whitman, “NIF Pockels cell and frequency conversion crystals,” Proc. SPIE 5341, 121–126 (2004).
[Crossref]

Whitman, P. K.

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47(3), 113–152 (2002).
[Crossref]

Wilshaw, R.

B. Lawn and R. Wilshaw, “Indentation fracture: principles and applications,” J. Mater. Sci. 10(6), 1049–1081 (1975).
[Crossref]

Wong, L.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub–surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
[Crossref]

Wong, L. L.

Xiao, Y.

Xu, Q.

M. J. Chen, M. Q. Li, J. Cheng, W. Jiang, J. Wang, and Q. Xu, “Study on characteristic parameters influencing laser-induced damage threshold of KH2PO4 crystal surface machined by single point diamond turning,” J. Appl. Phys. 110(11), 113103 (2011).
[Crossref] [PubMed]

Yoshiyama, J.

Yu, A. W.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
[Crossref]

Zaitseva, N. P.

Zhang, L.

Zhu, S.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
[Crossref]

Am. J. Phys. (1)

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett. 86(17), 171107 (2005).
[Crossref]

Int. Mater. Rev. (1)

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47(3), 113–152 (2002).
[Crossref]

J. Am. Ceram. Soc. (1)

T. Fang and J. C. Lambropoulos, “Microhardness and indentation fracture of potassium dihydrogen phosphate (KDP),” J. Am. Ceram. Soc. 85(1), 174–178 (2002).
[Crossref]

J. Appl. Phys. (2)

G. Duchateau, M. D. Feit, and S. G. Demos, “Transient material properties during defect–assisted laser breakdown in deuterated potassium dihydrogen phosphate crystals,” J. Appl. Phys. 115(10), 103506 (2014).
[Crossref]

M. J. Chen, M. Q. Li, J. Cheng, W. Jiang, J. Wang, and Q. Xu, “Study on characteristic parameters influencing laser-induced damage threshold of KH2PO4 crystal surface machined by single point diamond turning,” J. Appl. Phys. 110(11), 113103 (2011).
[Crossref] [PubMed]

J. Mater. Sci. (1)

B. Lawn and R. Wilshaw, “Indentation fracture: principles and applications,” J. Mater. Sci. 10(6), 1049–1081 (1975).
[Crossref]

J. Non-Cryst. Solids (1)

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub–surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

S. G. Demos, R. A. Negress, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
[Crossref]

Opt. Eng. (1)

A. A. Manenkov, “Fundamental mechanisms of laser–induced damage in optical materials: today's state of understanding and problems,” Opt. Eng. 53(1), 010901 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Opt. Mater. Express (1)

Phys. Rev. Lett. (3)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[Crossref] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Proc. SPIE (3)

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[Crossref]

F. Guillet, B. Bertussi, L. Lamaignere, X. Leborgne, and B. Minot, “Preliminary results on mitigation of KDP surface damage using the ball dimpling method,” Proc. SPIE 6720, 672008 (2007).
[Crossref]

R. Hawley-Fedder, P. Geraghty, S. Locke, M. McBurney, M. Runkel, T. Suratwala, S. Thompson, P. Wegner, and P. Whitman, “NIF Pockels cell and frequency conversion crystals,” Proc. SPIE 5341, 121–126 (2004).
[Crossref]

Other (2)

J. S. Taylor, K. Carlisle, J. L. Klingmann, P. Geraghty, T. T. Saito, and R. C. Montesanti,H. Spaan, ed., “Precision Engineering within the National Ignition Campaign,” in Proceedings of International Conference of the European Society for Precision Engineering and Nanotechnology, H. Spaan, ed. (Academic, 2010), pp. 143–150.

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (Academic, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 (a) Cutting process of KDP crystal finished by SPDT with a diamond tool. The inset is a magnified view of the tool tip. (b) The finished surface characterized with AFM. An evident crack is introduced on the KDP surface, though surface roughness Ra is about 15nm. (c) AFM section profile of KDP surface with crack. (d) Schematic of three typical kinds of cracks caused by static indentation and crack models used for the following simulations.
Fig. 2
Fig. 2 Distribution of light intensification modulated by radial surface cracks with the irradiation of 355 nm laser. The radial cracks are 6μm wide and 3μm deep, located on front (a) and rear (b) surfaces.
Fig. 3
Fig. 3 (a) Variation of LIEF as a function of depth for radial cracks located on front and rear surfaces. The wavelengths of 1064nm, 532nm and 355nm are all considered. The insets on the right are the distributions of light intensification modulated by rear-surface cracks with depths of 1.0μm (b), 3.0μm (c), 6.0μm (d) and 8.0μm (e). The crack width is constant at 6.0μm for the simulations.
Fig. 4
Fig. 4 (a) Plot of LIEFs with respect to width of radial cracks on both front and rear surfaces under the irradiation of 1064nm, 532nm and 355nm lasers. The crack depth is 4.0μm for the simulations. (b) Variation of LIEFs as a function of crack angle for oblique radial cracks on rear surface. The width and depth of the oblique crack are 1.0μm and 6.0μm, respectively.
Fig. 5
Fig. 5 Distribution of light intensification by lateral cracks. The crack dimensions are: 2al = 4μm, wl = 0.5μm and dl = 2μm. The upper pictures are the cross-sectional profiles containing the maximum light intensification in Y (a), X (b) and Z (c) directions for front-surface cracks, while the lower pictures are the sectional profiles containing the maximum light intensification in Y (d), X (e) and Z (f) directions for rear-surface cracks.
Fig. 6
Fig. 6 Variation of LIEFs caused by lateral cracks as a function of crack open width. The upper graphs are for the front-surface cracks under the irradiation of 1064nm (a), 532nm (b) and 355nm (c) lasers, while the lower graphs are for the rear-surface cracks under the irradiation of 1064nm (d), 532nm (e) and 355nm (f) lasers. In the simulations, the crack length is 2al = 4μm and the depths of 1μm, 2μm and 3μm are considered.
Fig. 7
Fig. 7 (a) Variation of LIEFs as a function of depth for lateral cracks on front and rear surfaces. The wavelengths of 1064nm, 532nm and 355nm are all considered. The insets on the right are the distribution of light intensification modulated by front-surface lateral cracks with depths of 1.0μm (b) and 3.0μm (c). The crack open width and length are wl = 0.5μm and 2al = 4μm.
Fig. 8
Fig. 8 Distribution of light intensification caused by conical surface cracks. The dimensions of the crack are: 2ac = 2μm, wc = 0.5μm and dc = 2μm. The upper pictures are the cross-sectional profiles containing the maximum light intensification in Y (a) and Z (b) directions for front-surface cracks, while the lower pictures are the cross-sectional profiles containing the maximum light intensification in Y (c), and Z (d) directions for rear-surface cracks.
Fig. 9
Fig. 9 Variation curves of LIEFs as a function of open width for conical cracks located on both front (a) and rear (b) surfaces. During the variation of crack width, the other parameters keep constant at 2ac = 2μm and dc = 2μm.
Fig. 10
Fig. 10 Variation curves of LIEFs as a function of depth for conical cracks located on both front (a) and rear (b) surfaces. During the variation of crack depth, the other parameters keep constant at 2ac = 2μm and wc = 0.5μm.
Fig. 11
Fig. 11 Schematic of laser damage setup for testing the LIDTs of KDP crystal.
Fig. 12
Fig. 12 Experimentally tested LIDTs for crack-free and flawed KDP surfaces (a) and the morphologies of mechanically produced indentations on KDP surface before (b) and after (c) 355nm laser irradiation.
Fig. 13
Fig. 13 Experimentally obtained evolution of damage size as the increase of laser pulse number (a) and numerically simulated variation of LIEFs as a function of lateral crack depth (b). The depth of a damage spot increases monotonically with the increase of pulse number.

Tables (1)

Tables Icon

Table 1 Summary of all the LIEFs caused by three typical kinds of surface cracks on KDP crystals under the irradiation of 1064nm, 532nm and 355nm lasers

Metrics