Abstract

Photonic analog-to-digital conversion and optical quantization are demonstrated, based on the spectral shifts of orthogonal frequency division multiplexing subcarriers and a frequency-packed arrayed waveguide grating. The system is extremely low-energy consuming since the spectral shifts are small and generated by cross-phase modulation, using a linear-slope high-speed and low-jitter pulse train generated by a mode locked laser diode. The feasibility of a 2, 3 and 4-bit optical quantization scheme is demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance of 16 QAM-OFDM With New Null Subcarrier Shifting in an Intensity-Modulated Direct Detection System

Hongxian Chen, Jing He, Jin Tang, Fan Li, Ming Chen, and Lin Chen
J. Opt. Commun. Netw. 6(2) 159-164 (2014)

No-guard-interval coherent optical OFDM with self-tuning receiver

Liang B. Du and Arthur J. Lowery
Opt. Express 19(3) 2181-2186 (2011)

References

  • View by:
  • |
  • |
  • |

  1. H. F. Haunstein, W. Sauer-Greff, A. Dittrich, K. Sticht, and R. Urbansky, “Principles for electronic equalization of polarization-mode dispersion,” J. Lightwave Technol. 22(4), 1169–1182 (2004).
    [Crossref]
  2. M. Chu, P. Jacob, J.-W. Kim, M. R. LeRoy, R. P. Kraft, and J. F. McDonald, “A 40 Gs/s time interleaved ADC using SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 45(2), 380–390 (2010).
    [Crossref]
  3. B. E. Jonsson, “A survey of A/D-converter performance evolution,” in IEEE Int. Conf. Electronics Circ. Syst. (ICECS), Athens, Greece, 768–771, Dec. 2010.
    [Crossref]
  4. R. Walden, Analog-to-digital conversion in the early twenty-first century (Wiley Encyclopedia of Computer Science and Engineering, 126–138, Wiley, 2008).
  5. T. R. Clark and M. L. Dennis, “Toward a 100-GSample/s photonic A-D converter,” IEEE Photon. Technol. Lett. 13(3), 236–238 (2001).
    [Crossref]
  6. C. Schmidt-Langhorst and H.-G. Weber, “Optical sampling techniques,” J. Opt. Fiber Commun. Rep. 2(1), 86–114 (2005).
    [Crossref]
  7. T. Konishi, K. Tanimura, K. Asano, Y. Oshita, and Y. Ichioka, “All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique,” J. Opt. Soc. Am. B 19(11), 2817–2823 (2002).
    [Crossref]
  8. C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
    [Crossref] [PubMed]
  9. T. Satoh, K. Takahashi, H. Matsui, K. Itoh, and T. Konishi, “10-GS/s 5-bit real-time optical quantization for photonic analog-to-digital cpnversion,” IEEE Photon. Technol. Lett. 24(10), 830–832 (2012).
  10. S. Oda and A. Maruta, “A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion,” IEEE Photon. Technol. Lett. 17(2), 465–467 (2005).
    [Crossref]
  11. T. Nishitani, T. Konishi, and K. Itoh, “Optical coding scheme using optical interconnection for high sampling rate and high resolution photonic analog-to-digital conversion,” Opt. Express 15(24), 15812–15817 (2007).
    [Crossref] [PubMed]
  12. K. Ikeda, J. M. Abdul, H. Tobioki, T. Inoue, S. Namiki, and K. Kitayama, “Design considerations of all-optical A/D conversion: Nonlinear fiber-optic sagnac-loop interferometer-based optical quantizing and coding,” J. Lightwave Technol. 24(7), 2618–2628 (2006).
    [Crossref]
  13. Y. Miyoshi, S. Takagi, S. Namiki, and K. Kitayama, “Multiperiod PM-NOLM with dynamic counter-propagating effects compensation for 5-bit all-optical analog-to-digital conversion and its performance evaluations,” J. Lightwave Technol. 28(4), 415–422 (2010).
    [Crossref]
  14. J.-M. Jeong and M. E. Marhic, “All-optical analog-to-digital and digital-to-analog conversion implemented by a nonlinear fiber interferometer,” Opt. Commun. 91(1–2), 115–122 (1992).
    [Crossref]
  15. M. Scaffardi, E. Lazzeri, F. Fresi, L. Poti, and A. Bogoni, “Analog-to-digital conversion based on modular blocks exploiting cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 21(8), 540–542 (2009).
    [Crossref]
  16. H. Wen, H. Wang, and Y. Ji, “All-optical quantization and coding scheme for ultrafast analog-to-digital conversion exploiting polarization switches based on nonlinear polarization rotation in semiconductor optical amplifiers,” Opt. Commun. 285(18), 3877–3885 (2012).
    [Crossref]
  17. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [Crossref] [PubMed]
  18. G. Cincotti, N. Wada, and K. Kitayama, “Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers-part I: modeling and design,” J. Lightwave Technol. 24(1), 103–112 (2006).
    [Crossref]
  19. T. Kodama, R. Matsumoto, A. Maruta, and K. Kitayama, “Energy efficient optical quantization scheme with orthogonal spectral slicing by AWG for OFDM,” in Optical Fiber communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2013), JW2A.17, Anaheim, USA, Mar. 2013.
    [Crossref]
  20. T. Kodama, N. Wada, G. Cincotti, and K. Kitayama, “Tunable optical code converter using XPM and linear-slope pulse streams generated by FBGs,” Opt. Lett. 39(2), 355–358 (2014).
    [Crossref] [PubMed]
  21. G. Cincotti, “Generalized fiber Fourier optics,” Opt. Lett. 36(12), 2321–2323 (2011).
    [Crossref] [PubMed]
  22. A. Abrardo and G. Cincotti, “Design of AWG devices for all-optical time-frequency packing,” J. Lightwave Technol. 32(10), 1951–1959 (2014).
    [Crossref]

2014 (2)

2012 (2)

H. Wen, H. Wang, and Y. Ji, “All-optical quantization and coding scheme for ultrafast analog-to-digital conversion exploiting polarization switches based on nonlinear polarization rotation in semiconductor optical amplifiers,” Opt. Commun. 285(18), 3877–3885 (2012).
[Crossref]

T. Satoh, K. Takahashi, H. Matsui, K. Itoh, and T. Konishi, “10-GS/s 5-bit real-time optical quantization for photonic analog-to-digital cpnversion,” IEEE Photon. Technol. Lett. 24(10), 830–832 (2012).

2011 (1)

2010 (2)

Y. Miyoshi, S. Takagi, S. Namiki, and K. Kitayama, “Multiperiod PM-NOLM with dynamic counter-propagating effects compensation for 5-bit all-optical analog-to-digital conversion and its performance evaluations,” J. Lightwave Technol. 28(4), 415–422 (2010).
[Crossref]

M. Chu, P. Jacob, J.-W. Kim, M. R. LeRoy, R. P. Kraft, and J. F. McDonald, “A 40 Gs/s time interleaved ADC using SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 45(2), 380–390 (2010).
[Crossref]

2009 (1)

M. Scaffardi, E. Lazzeri, F. Fresi, L. Poti, and A. Bogoni, “Analog-to-digital conversion based on modular blocks exploiting cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 21(8), 540–542 (2009).
[Crossref]

2007 (2)

2006 (2)

2005 (2)

C. Schmidt-Langhorst and H.-G. Weber, “Optical sampling techniques,” J. Opt. Fiber Commun. Rep. 2(1), 86–114 (2005).
[Crossref]

S. Oda and A. Maruta, “A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion,” IEEE Photon. Technol. Lett. 17(2), 465–467 (2005).
[Crossref]

2004 (1)

2003 (1)

2002 (1)

2001 (1)

T. R. Clark and M. L. Dennis, “Toward a 100-GSample/s photonic A-D converter,” IEEE Photon. Technol. Lett. 13(3), 236–238 (2001).
[Crossref]

1992 (1)

J.-M. Jeong and M. E. Marhic, “All-optical analog-to-digital and digital-to-analog conversion implemented by a nonlinear fiber interferometer,” Opt. Commun. 91(1–2), 115–122 (1992).
[Crossref]

Abdul, J. M.

Abrardo, A.

Asano, K.

Bogoni, A.

M. Scaffardi, E. Lazzeri, F. Fresi, L. Poti, and A. Bogoni, “Analog-to-digital conversion based on modular blocks exploiting cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 21(8), 540–542 (2009).
[Crossref]

Chu, M.

M. Chu, P. Jacob, J.-W. Kim, M. R. LeRoy, R. P. Kraft, and J. F. McDonald, “A 40 Gs/s time interleaved ADC using SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 45(2), 380–390 (2010).
[Crossref]

Cincotti, G.

Clark, T. R.

T. R. Clark and M. L. Dennis, “Toward a 100-GSample/s photonic A-D converter,” IEEE Photon. Technol. Lett. 13(3), 236–238 (2001).
[Crossref]

Dennis, M. L.

T. R. Clark and M. L. Dennis, “Toward a 100-GSample/s photonic A-D converter,” IEEE Photon. Technol. Lett. 13(3), 236–238 (2001).
[Crossref]

Dittrich, A.

Fresi, F.

M. Scaffardi, E. Lazzeri, F. Fresi, L. Poti, and A. Bogoni, “Analog-to-digital conversion based on modular blocks exploiting cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 21(8), 540–542 (2009).
[Crossref]

Haunstein, H. F.

Ichioka, Y.

Ikeda, K.

Inoue, T.

Itoh, K.

T. Satoh, K. Takahashi, H. Matsui, K. Itoh, and T. Konishi, “10-GS/s 5-bit real-time optical quantization for photonic analog-to-digital cpnversion,” IEEE Photon. Technol. Lett. 24(10), 830–832 (2012).

T. Nishitani, T. Konishi, and K. Itoh, “Optical coding scheme using optical interconnection for high sampling rate and high resolution photonic analog-to-digital conversion,” Opt. Express 15(24), 15812–15817 (2007).
[Crossref] [PubMed]

Jacob, P.

M. Chu, P. Jacob, J.-W. Kim, M. R. LeRoy, R. P. Kraft, and J. F. McDonald, “A 40 Gs/s time interleaved ADC using SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 45(2), 380–390 (2010).
[Crossref]

Jeong, J.-M.

J.-M. Jeong and M. E. Marhic, “All-optical analog-to-digital and digital-to-analog conversion implemented by a nonlinear fiber interferometer,” Opt. Commun. 91(1–2), 115–122 (1992).
[Crossref]

Ji, Y.

H. Wen, H. Wang, and Y. Ji, “All-optical quantization and coding scheme for ultrafast analog-to-digital conversion exploiting polarization switches based on nonlinear polarization rotation in semiconductor optical amplifiers,” Opt. Commun. 285(18), 3877–3885 (2012).
[Crossref]

Kim, J.-W.

M. Chu, P. Jacob, J.-W. Kim, M. R. LeRoy, R. P. Kraft, and J. F. McDonald, “A 40 Gs/s time interleaved ADC using SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 45(2), 380–390 (2010).
[Crossref]

Kitayama, K.

Kodama, T.

Konishi, T.

Kraft, R. P.

M. Chu, P. Jacob, J.-W. Kim, M. R. LeRoy, R. P. Kraft, and J. F. McDonald, “A 40 Gs/s time interleaved ADC using SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 45(2), 380–390 (2010).
[Crossref]

Lazzeri, E.

M. Scaffardi, E. Lazzeri, F. Fresi, L. Poti, and A. Bogoni, “Analog-to-digital conversion based on modular blocks exploiting cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 21(8), 540–542 (2009).
[Crossref]

LeRoy, M. R.

M. Chu, P. Jacob, J.-W. Kim, M. R. LeRoy, R. P. Kraft, and J. F. McDonald, “A 40 Gs/s time interleaved ADC using SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 45(2), 380–390 (2010).
[Crossref]

Liu, X.

Marhic, M. E.

J.-M. Jeong and M. E. Marhic, “All-optical analog-to-digital and digital-to-analog conversion implemented by a nonlinear fiber interferometer,” Opt. Commun. 91(1–2), 115–122 (1992).
[Crossref]

Maruta, A.

S. Oda and A. Maruta, “A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion,” IEEE Photon. Technol. Lett. 17(2), 465–467 (2005).
[Crossref]

Matsui, H.

T. Satoh, K. Takahashi, H. Matsui, K. Itoh, and T. Konishi, “10-GS/s 5-bit real-time optical quantization for photonic analog-to-digital cpnversion,” IEEE Photon. Technol. Lett. 24(10), 830–832 (2012).

McDonald, J. F.

M. Chu, P. Jacob, J.-W. Kim, M. R. LeRoy, R. P. Kraft, and J. F. McDonald, “A 40 Gs/s time interleaved ADC using SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 45(2), 380–390 (2010).
[Crossref]

Miyoshi, Y.

Namiki, S.

Nishitani, T.

Oda, S.

S. Oda and A. Maruta, “A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion,” IEEE Photon. Technol. Lett. 17(2), 465–467 (2005).
[Crossref]

Oshita, Y.

Poti, L.

M. Scaffardi, E. Lazzeri, F. Fresi, L. Poti, and A. Bogoni, “Analog-to-digital conversion based on modular blocks exploiting cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 21(8), 540–542 (2009).
[Crossref]

Satoh, T.

T. Satoh, K. Takahashi, H. Matsui, K. Itoh, and T. Konishi, “10-GS/s 5-bit real-time optical quantization for photonic analog-to-digital cpnversion,” IEEE Photon. Technol. Lett. 24(10), 830–832 (2012).

Sauer-Greff, W.

Scaffardi, M.

M. Scaffardi, E. Lazzeri, F. Fresi, L. Poti, and A. Bogoni, “Analog-to-digital conversion based on modular blocks exploiting cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 21(8), 540–542 (2009).
[Crossref]

Schmidt-Langhorst, C.

C. Schmidt-Langhorst and H.-G. Weber, “Optical sampling techniques,” J. Opt. Fiber Commun. Rep. 2(1), 86–114 (2005).
[Crossref]

Sticht, K.

Takagi, S.

Takahashi, K.

T. Satoh, K. Takahashi, H. Matsui, K. Itoh, and T. Konishi, “10-GS/s 5-bit real-time optical quantization for photonic analog-to-digital cpnversion,” IEEE Photon. Technol. Lett. 24(10), 830–832 (2012).

Tanimura, K.

Tobioki, H.

Urbansky, R.

Valley, G. C.

Wada, N.

Wang, H.

H. Wen, H. Wang, and Y. Ji, “All-optical quantization and coding scheme for ultrafast analog-to-digital conversion exploiting polarization switches based on nonlinear polarization rotation in semiconductor optical amplifiers,” Opt. Commun. 285(18), 3877–3885 (2012).
[Crossref]

Weber, H.-G.

C. Schmidt-Langhorst and H.-G. Weber, “Optical sampling techniques,” J. Opt. Fiber Commun. Rep. 2(1), 86–114 (2005).
[Crossref]

Wen, H.

H. Wen, H. Wang, and Y. Ji, “All-optical quantization and coding scheme for ultrafast analog-to-digital conversion exploiting polarization switches based on nonlinear polarization rotation in semiconductor optical amplifiers,” Opt. Commun. 285(18), 3877–3885 (2012).
[Crossref]

Xu, C.

IEEE J. Solid-State Circuits (1)

M. Chu, P. Jacob, J.-W. Kim, M. R. LeRoy, R. P. Kraft, and J. F. McDonald, “A 40 Gs/s time interleaved ADC using SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 45(2), 380–390 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (4)

T. R. Clark and M. L. Dennis, “Toward a 100-GSample/s photonic A-D converter,” IEEE Photon. Technol. Lett. 13(3), 236–238 (2001).
[Crossref]

T. Satoh, K. Takahashi, H. Matsui, K. Itoh, and T. Konishi, “10-GS/s 5-bit real-time optical quantization for photonic analog-to-digital cpnversion,” IEEE Photon. Technol. Lett. 24(10), 830–832 (2012).

S. Oda and A. Maruta, “A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion,” IEEE Photon. Technol. Lett. 17(2), 465–467 (2005).
[Crossref]

M. Scaffardi, E. Lazzeri, F. Fresi, L. Poti, and A. Bogoni, “Analog-to-digital conversion based on modular blocks exploiting cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 21(8), 540–542 (2009).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Fiber Commun. Rep. (1)

C. Schmidt-Langhorst and H.-G. Weber, “Optical sampling techniques,” J. Opt. Fiber Commun. Rep. 2(1), 86–114 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

H. Wen, H. Wang, and Y. Ji, “All-optical quantization and coding scheme for ultrafast analog-to-digital conversion exploiting polarization switches based on nonlinear polarization rotation in semiconductor optical amplifiers,” Opt. Commun. 285(18), 3877–3885 (2012).
[Crossref]

J.-M. Jeong and M. E. Marhic, “All-optical analog-to-digital and digital-to-analog conversion implemented by a nonlinear fiber interferometer,” Opt. Commun. 91(1–2), 115–122 (1992).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Other (3)

T. Kodama, R. Matsumoto, A. Maruta, and K. Kitayama, “Energy efficient optical quantization scheme with orthogonal spectral slicing by AWG for OFDM,” in Optical Fiber communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2013), JW2A.17, Anaheim, USA, Mar. 2013.
[Crossref]

B. E. Jonsson, “A survey of A/D-converter performance evolution,” in IEEE Int. Conf. Electronics Circ. Syst. (ICECS), Athens, Greece, 768–771, Dec. 2010.
[Crossref]

R. Walden, Analog-to-digital conversion in the early twenty-first century (Wiley Encyclopedia of Computer Science and Engineering, 126–138, Wiley, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) A/D converter scheme based on spectral shifts induced by XPM, and a FP-AWG. (b) Symbol corresponding to one of OFDM subcarrier and linear-slope pulse train. (c) XPM effect on an OFDM symbol and corresponding spectra. [FBG: fiber Bragg grating; OBPF: optical band pass filter; XPM: cross phase modulation; NDF: negative dispersion fiber; PDF: positive dispersion fiber; AWG: arrayed waveguide grating; ATT: attenuator; PD: photo detector; Ts: sampling time duration]
Fig. 2
Fig. 2 (a) Architecture of the A/D converter; the OFDM subcarriers are generated by FBG#2 and the linear-slope train by FBG#1; the XPM effect is achieved using HNLFs. (b) simulated linear-slope pulse train for different values of peak power Pp. (c) simulated OFDM symbol (d) simulated OFDM subcarrier for Pp = 0 (e) simulated shifted OFDM subcarrier for Pp = 120 mW.
Fig. 3
Fig. 3 Numerical simulations of the wavelength allocation of the OFDM subcarrier and the linear slope signal.
Fig. 4
Fig. 4 (a) Numerical simulations of the center wavelength shift vs input peak power, (b) peak spectral power transition vs input peak power.
Fig. 5
Fig. 5 (a) Experimental setup. (b) Measured linear-slope pulse train; (c) Measured OFDM symbol (d) Measured signal after the HNLF. [MLLD: mode locked laser diode; CLK: clock; ATT: attenuator; PC: polarization controller; POL: polarizer; SSFBG: super structured fiber Bragg grating]
Fig. 6
Fig. 6 Measured OFDM subcarrier spectra (a) 0dBm average power (b) 17.5dBm average power.
Fig. 7
Fig. 7 Measured spectral shifts vs input average power.
Fig. 8
Fig. 8 Simulated AWG output spectra (a) 8-port standard AWG, (b) 24-port FP-AWG, (c) 56-port FP-AWG.
Fig. 9
Fig. 9 Simulated quantization transfer functions (a) two bits (w/ and w/o compensation), (b) three bits (w/ and w/o compensation), (c) four bits (w/o compensation), (d) four bits (w/ compensation).
Fig. 10
Fig. 10 DNL and INL (a) two bits, (b) three bits, (c) four bits.

Tables (4)

Tables Icon

Table 1 Wavelength allocation, spectral shifts and power requirements

Tables Icon

Table 2 HNLFs parameters.

Tables Icon

Table 3 Code lookup table (a) 2 bit, (b) 3 and (c) 4 bit.

Tables Icon

Table 4 Performance evaluation of transfer function.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E l ( t ) = l = 0 N 1 | a l | exp [ ( t l Δ τ ) 2 2 T 0 2 ] .
E s ( t ) = l = 0 N 1 exp [ ( t l Δ τ ) 2 2 T 0 2 ] .
Δ ϕ ( l ) = l N ( 2 γ L e f f P p ) .
D N L = 2 k P S t e p j P F S P F S ,
I N L = 2 k i = 1 j P S t e p j j P F S P F S .
E N O B = 20 log ( P S P N ) 6.02 ,
P S = P F S 12 ,
P N = 1 12 ( P F S 2 N ) 2 + 1 2 N i = 1 N 1 ( Δ P S t e p i ) 2 ,

Metrics