Abstract

In this paper we report the pulse evolution of a simultaneously mode-locked Erbium-doped fiber laser at 1556-nm-band and 1533-nm-band. We explain the dual wavelength laser operation by means of net gain cross section variations caused by the population inversion rate dependence on the pump power. At 1556-nm-band, we observed pulse duration of 370 fs with bandwidth of 8.50 nm and, for pump power higher than 150 mW, we observe the rise of a CW and mode-locked laser, sequentially, at 1533-nm-band. We show that both bands are simultaneously mode-locked and operate at different repetition rates.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanosecond soliton pulse generation by mode-locked erbium-doped fiber laser using single-walled carbon-nanotube-based saturable absorber

Mohd Afiq Ismail, Sulaiman Wadi Harun, Nurul Rozullyah Zulkepely, Roslan Md Nor, Fauzan Ahmad, and Harith Ahmad
Appl. Opt. 51(36) 8621-8624 (2012)

Dual-wavelength, mode-locked erbium-doped fiber laser employing a graphene/polymethyl-methacrylate saturable absorber

K. Y. Lau, M. H. Abu Bakar, F. D. Muhammad, A. A. Latif, M. F. Omar, Z. Yusoff, and M. A. Mahdi
Opt. Express 26(10) 12790-12800 (2018)

Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning

Xin Zhao, Zheng Zheng, Lei Liu, Ya Liu, Yaxing Jiang, Xin Yang, and Jinsong Zhu
Opt. Express 19(2) 1168-1173 (2011)

References

  • View by:
  • |
  • |
  • |

  1. L. N. Duan, X. M. Liu, L. R. Wang, D. Mao, and G. X. Wang, “Comparison of pulse evolutions in low and ultra-large anomalous dispersion mode-locked fiber lasers,” Laser Phys. 21(5), 948–953 (2011).
    [Crossref]
  2. N. H. Seong and D. Y. Kim, “Experimental observation of stable bound solitons in a figure-eight fiber laser,” Opt. Lett. 27(15), 1321–1323 (2002).
    [Crossref] [PubMed]
  3. D. Mao, X. Liu, and H. Lu, “Observation of pulse trapping in a near-zero dispersion regime,” Opt. Lett. 37(13), 2619–2621 (2012).
    [Crossref] [PubMed]
  4. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
    [Crossref] [PubMed]
  5. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
    [Crossref]
  6. B. Bakhshi and P. A. Andrekson, “Dual-wavelength 10-GHz actively mode-locked erbium fiber laser,” IEEE Photon. Technol. Lett. 11(11), 1387–1389 (1999).
    [Crossref]
  7. C. B. Santos, F. Yazdani, and E. A. Thoroh de Souza, “Active mode-locking and CW regimes operating simultaneously in an Erbium doped fiber laser,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper JTh2A.28.
  8. D. Mao and H. Lu, “Formation and evolution of passively mode-locked fiber soliton lasers operating in a dual-wavelength regime,” J. Opt. Soc. Am. B 29(10), 2819–2826 (2012).
    [Crossref]
  9. Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photon. J. 2(4), 571–577 (2010).
    [Crossref]
  10. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
    [Crossref]
  11. L. Yun and D. Han, “Evolution of dual-wavelength fiber laser fromcontinuous wave to soliton pulses,” Opt. Commun. 285(24), 5406–5409 (2012).
    [Crossref]
  12. Y. Zhao and C. Shu, “A fiber laser for effective generation of tunable single and dual-wavelength mode-locked optical pulses,” Appl. Phys. Lett. 72(13), 1556–1558 (1998).
    [Crossref]
  13. L. Yun, X. Liu, and D. Mao, “Observation of dual-wavelength dissipative solitons in a figure-eight erbium-doped fiber laser,” Opt. Express 20(19), 20992–20997 (2012).
    [Crossref] [PubMed]
  14. Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012).
    [Crossref]
  15. X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, and J. Zhu, “Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on SWCNT mode-locker and intracavity loss tuning,” Opt. Express 19(2), 1168–1173 (2011).
    [Crossref] [PubMed]
  16. D. Han and C. Zeng, “Investigations of switchable fiber soliton laser mode-locked by carbon nanotubes,” Opt. Commun. 319, 25–30 (2014).
    [Crossref]
  17. R. M. Gerosa, D. Steinberg, H. G. Rosa, C. Barros, C. J. S. de Matos, and E. A. Thoroh de Souza, “CNT film fabrication for mode-locked Er-doped fiber lasers: the droplet method,” IEEE Photon. Technol. Lett. 25(11), 1007–1010 (2013).
    [Crossref]
  18. L. Saito and E. Thoroh de Souza, “A comparison between in-field and in-laboratory 50 km ultralong Erbium-doped fiber lasers actively mode-locked,” Opt. Express 20(15), 17001–17009 (2012).
    [Crossref]
  19. M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
    [Crossref]
  20. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology, 1st Edition, Chap. 6, pp. 153–161 (Academic, 1999).
  21. P. F. Wysocki, (2001). Erbium-doped fiber amplifiers: Advanced Topics in M. J. F. Digonnet (ed.), Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed. (Taylor & Francis, 2001), Chapter 11.

2014 (1)

D. Han and C. Zeng, “Investigations of switchable fiber soliton laser mode-locked by carbon nanotubes,” Opt. Commun. 319, 25–30 (2014).
[Crossref]

2013 (1)

R. M. Gerosa, D. Steinberg, H. G. Rosa, C. Barros, C. J. S. de Matos, and E. A. Thoroh de Souza, “CNT film fabrication for mode-locked Er-doped fiber lasers: the droplet method,” IEEE Photon. Technol. Lett. 25(11), 1007–1010 (2013).
[Crossref]

2012 (6)

2011 (2)

L. N. Duan, X. M. Liu, L. R. Wang, D. Mao, and G. X. Wang, “Comparison of pulse evolutions in low and ultra-large anomalous dispersion mode-locked fiber lasers,” Laser Phys. 21(5), 948–953 (2011).
[Crossref]

X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, and J. Zhu, “Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on SWCNT mode-locker and intracavity loss tuning,” Opt. Express 19(2), 1168–1173 (2011).
[Crossref] [PubMed]

2010 (1)

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photon. J. 2(4), 571–577 (2010).
[Crossref]

2009 (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

2008 (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

2002 (1)

1999 (1)

B. Bakhshi and P. A. Andrekson, “Dual-wavelength 10-GHz actively mode-locked erbium fiber laser,” IEEE Photon. Technol. Lett. 11(11), 1387–1389 (1999).
[Crossref]

1998 (1)

Y. Zhao and C. Shu, “A fiber laser for effective generation of tunable single and dual-wavelength mode-locked optical pulses,” Appl. Phys. Lett. 72(13), 1556–1558 (1998).
[Crossref]

1994 (1)

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
[Crossref]

1992 (1)

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Andrekson, P. A.

B. Bakhshi and P. A. Andrekson, “Dual-wavelength 10-GHz actively mode-locked erbium fiber laser,” IEEE Photon. Technol. Lett. 11(11), 1387–1389 (1999).
[Crossref]

Bakhshi, B.

B. Bakhshi and P. A. Andrekson, “Dual-wavelength 10-GHz actively mode-locked erbium fiber laser,” IEEE Photon. Technol. Lett. 11(11), 1387–1389 (1999).
[Crossref]

Bao, Q.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Barros, C.

R. M. Gerosa, D. Steinberg, H. G. Rosa, C. Barros, C. J. S. de Matos, and E. A. Thoroh de Souza, “CNT film fabrication for mode-locked Er-doped fiber lasers: the droplet method,” IEEE Photon. Technol. Lett. 25(11), 1007–1010 (2013).
[Crossref]

de Matos, C. J. S.

R. M. Gerosa, D. Steinberg, H. G. Rosa, C. Barros, C. J. S. de Matos, and E. A. Thoroh de Souza, “CNT film fabrication for mode-locked Er-doped fiber lasers: the droplet method,” IEEE Photon. Technol. Lett. 25(11), 1007–1010 (2013).
[Crossref]

Dennis, M. L.

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
[Crossref]

Duan, L. N.

L. N. Duan, X. M. Liu, L. R. Wang, D. Mao, and G. X. Wang, “Comparison of pulse evolutions in low and ultra-large anomalous dispersion mode-locked fiber lasers,” Laser Phys. 21(5), 948–953 (2011).
[Crossref]

Duling, I. N.

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
[Crossref]

Fang, Z. J.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photon. J. 2(4), 571–577 (2010).
[Crossref]

Ferrari, A. C.

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Gerosa, R. M.

R. M. Gerosa, D. Steinberg, H. G. Rosa, C. Barros, C. J. S. de Matos, and E. A. Thoroh de Souza, “CNT film fabrication for mode-locked Er-doped fiber lasers: the droplet method,” IEEE Photon. Technol. Lett. 25(11), 1007–1010 (2013).
[Crossref]

Han, D.

D. Han and C. Zeng, “Investigations of switchable fiber soliton laser mode-locked by carbon nanotubes,” Opt. Commun. 319, 25–30 (2014).
[Crossref]

L. Yun and D. Han, “Evolution of dual-wavelength fiber laser fromcontinuous wave to soliton pulses,” Opt. Commun. 285(24), 5406–5409 (2012).
[Crossref]

Hasan, T.

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012).
[Crossref]

Hennrich, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Jiang, Y.

Kim, D. Y.

Liu, J. R.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photon. J. 2(4), 571–577 (2010).
[Crossref]

Liu, L.

Liu, X.

Liu, X. M.

L. N. Duan, X. M. Liu, L. R. Wang, D. Mao, and G. X. Wang, “Comparison of pulse evolutions in low and ultra-large anomalous dispersion mode-locked fiber lasers,” Laser Phys. 21(5), 948–953 (2011).
[Crossref]

Liu, Y.

Loh, K. P.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Lu, H.

Luo, A. P.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photon. J. 2(4), 571–577 (2010).
[Crossref]

Luo, Z. C.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photon. J. 2(4), 571–577 (2010).
[Crossref]

Mao, D.

Matsas, V. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Milne, W. I.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Newson, T. P.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Payne, D. N.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Richardson, D. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Rosa, H. G.

R. M. Gerosa, D. Steinberg, H. G. Rosa, C. Barros, C. J. S. de Matos, and E. A. Thoroh de Souza, “CNT film fabrication for mode-locked Er-doped fiber lasers: the droplet method,” IEEE Photon. Technol. Lett. 25(11), 1007–1010 (2013).
[Crossref]

Rozhin, A. G.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Saito, L.

Scardaci, V.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Seong, N. H.

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Shu, C.

Y. Zhao and C. Shu, “A fiber laser for effective generation of tunable single and dual-wavelength mode-locked optical pulses,” Appl. Phys. Lett. 72(13), 1556–1558 (1998).
[Crossref]

Steinberg, D.

R. M. Gerosa, D. Steinberg, H. G. Rosa, C. Barros, C. J. S. de Matos, and E. A. Thoroh de Souza, “CNT film fabrication for mode-locked Er-doped fiber lasers: the droplet method,” IEEE Photon. Technol. Lett. 25(11), 1007–1010 (2013).
[Crossref]

Sun, Z.

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Tang, D. Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Thoroh de Souza, E.

Thoroh de Souza, E. A.

R. M. Gerosa, D. Steinberg, H. G. Rosa, C. Barros, C. J. S. de Matos, and E. A. Thoroh de Souza, “CNT film fabrication for mode-locked Er-doped fiber lasers: the droplet method,” IEEE Photon. Technol. Lett. 25(11), 1007–1010 (2013).
[Crossref]

Wang, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Wang, G. X.

L. N. Duan, X. M. Liu, L. R. Wang, D. Mao, and G. X. Wang, “Comparison of pulse evolutions in low and ultra-large anomalous dispersion mode-locked fiber lasers,” Laser Phys. 21(5), 948–953 (2011).
[Crossref]

Wang, L. R.

L. N. Duan, X. M. Liu, L. R. Wang, D. Mao, and G. X. Wang, “Comparison of pulse evolutions in low and ultra-large anomalous dispersion mode-locked fiber lasers,” Laser Phys. 21(5), 948–953 (2011).
[Crossref]

Wang, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

White, I. H.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Xu, W. C.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photon. J. 2(4), 571–577 (2010).
[Crossref]

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Yang, X.

Ye, Q.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photon. J. 2(4), 571–577 (2010).
[Crossref]

Yin, H. S.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photon. J. 2(4), 571–577 (2010).
[Crossref]

Yun, L.

L. Yun, X. Liu, and D. Mao, “Observation of dual-wavelength dissipative solitons in a figure-eight erbium-doped fiber laser,” Opt. Express 20(19), 20992–20997 (2012).
[Crossref] [PubMed]

L. Yun and D. Han, “Evolution of dual-wavelength fiber laser fromcontinuous wave to soliton pulses,” Opt. Commun. 285(24), 5406–5409 (2012).
[Crossref]

Zeng, C.

D. Han and C. Zeng, “Investigations of switchable fiber soliton laser mode-locked by carbon nanotubes,” Opt. Commun. 319, 25–30 (2014).
[Crossref]

Zhang, H.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Zhao, X.

Zhao, Y.

Y. Zhao and C. Shu, “A fiber laser for effective generation of tunable single and dual-wavelength mode-locked optical pulses,” Appl. Phys. Lett. 72(13), 1556–1558 (1998).
[Crossref]

Zheng, Z.

Zhu, J.

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Appl. Phys. Lett. (1)

Y. Zhao and C. Shu, “A fiber laser for effective generation of tunable single and dual-wavelength mode-locked optical pulses,” Appl. Phys. Lett. 72(13), 1556–1558 (1998).
[Crossref]

Electron. Lett. (1)

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
[Crossref]

IEEE Photon. J. (1)

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photon. J. 2(4), 571–577 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (2)

B. Bakhshi and P. A. Andrekson, “Dual-wavelength 10-GHz actively mode-locked erbium fiber laser,” IEEE Photon. Technol. Lett. 11(11), 1387–1389 (1999).
[Crossref]

R. M. Gerosa, D. Steinberg, H. G. Rosa, C. Barros, C. J. S. de Matos, and E. A. Thoroh de Souza, “CNT film fabrication for mode-locked Er-doped fiber lasers: the droplet method,” IEEE Photon. Technol. Lett. 25(11), 1007–1010 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

L. N. Duan, X. M. Liu, L. R. Wang, D. Mao, and G. X. Wang, “Comparison of pulse evolutions in low and ultra-large anomalous dispersion mode-locked fiber lasers,” Laser Phys. 21(5), 948–953 (2011).
[Crossref]

Nat. Nanotechnol. (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Opt. Commun. (2)

L. Yun and D. Han, “Evolution of dual-wavelength fiber laser fromcontinuous wave to soliton pulses,” Opt. Commun. 285(24), 5406–5409 (2012).
[Crossref]

D. Han and C. Zeng, “Investigations of switchable fiber soliton laser mode-locked by carbon nanotubes,” Opt. Commun. 319, 25–30 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Physica E (1)

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012).
[Crossref]

Other (3)

C. B. Santos, F. Yazdani, and E. A. Thoroh de Souza, “Active mode-locking and CW regimes operating simultaneously in an Erbium doped fiber laser,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper JTh2A.28.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology, 1st Edition, Chap. 6, pp. 153–161 (Academic, 1999).

P. F. Wysocki, (2001). Erbium-doped fiber amplifiers: Advanced Topics in M. J. F. Digonnet (ed.), Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed. (Taylor & Francis, 2001), Chapter 11.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Erbium-doped fiber laser setup. WDM/ISO: pump/signal combiner and signal isolator integrated component; DCF: dispersion compensating fiber; CNT: carbon nanotubes; PC: polarization controller; OC: output coupler.
Fig. 2
Fig. 2 Average dispersion map of the laser fiber components. The average dispersion of the laser cavity is 2.73 ps/(km.nm).
Fig. 3
Fig. 3 Laser bandwidth evolution as a function of pump power. The different regions show different laser evolutions, since pulse breaks from 1 to 2 and 4 pulses per round-trip in regions I, II and III, respectively.
Fig. 4
Fig. 4 a) Laser output bandwidth of 8.5 nm and b) autocorrelation trace for the shortest achieved pulse of 370 fs.
Fig. 5
Fig. 5 Dual-band laser evolution. For pump powers from 120 to 171 mW, 1556-nm-band is mode-locked, and 1533-nm-band evolves from CW to mode-locking.
Fig. 6
Fig. 6 Peak emission wavelength at 1556-nm-band as a function of pump power. From 50 to 171 mW, the blue-shift is 3.25 nm.
Fig. 7
Fig. 7 a) EDFL output spectrum, with 1.5 nm wide filtered 1533-nm and 1556-nm bands; b) output pulse trains at 1533 nm, with a single pulse per round-trip, and 1556 nm, with four pulses per round-trip.
Fig. 8
Fig. 8 Laser pulse train without bandpass filter at laser’s output. The signal is triggered by the 1533-nm pulse train, and we can observe that 1556-nm pulse train drifts due to unsynchronized repetition rates.

Metrics