Abstract

A technique to enhance the response and performance of Brillouin distributed fiber sensors is proposed and experimentally validated. The method consists in creating a multi-frequency pump pulse interacting with a matching multi-frequency continuous-wave probe. To avoid nonlinear cross-interaction between spectral lines, the method requires that the distinct pump pulse components and temporal traces reaching the photo-detector are subject to wavelength-selective delaying. This way the total pump and probe powers launched into the fiber can be incrementally boosted beyond the thresholds imposed by nonlinear effects. As a consequence of the multiplied pump-probe Brillouin interactions occurring along the fiber, the sensor response can be enhanced in exact proportion to the number of spectral components. The method is experimentally validated in a 50 km-long distributed optical fiber sensor augmented to 3 pump-probe spectral pairs, demonstrating a signal-to-noise ratio enhancement of 4.8 dB.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cyclic coding for Brillouin optical time-domain analyzers using probe dithering

Haritz Iribas, Alayn Loayssa, Florian Sauser, Miguel Llera, and Sébastien Le Floch
Opt. Express 25(8) 8787-8800 (2017)

Brillouin optical time-domain analyzer based on orthogonally-polarized four-tone probe wave

Xiaobin Hong, Wenqiao Lin, Zhisheng Yang, Sheng Wang, and Jian Wu
Opt. Express 24(18) 21046-21058 (2016)

Tailored pump compensation for Brillouin optical time-domain analysis with distributed Brillouin amplification

Young Hoon Kim and Kwang Yong Song
Opt. Express 25(13) 14098-14105 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
    [Crossref]
  2. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref] [PubMed]
  3. S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE 7753, 77539V (2011).
    [Crossref]
  4. M. Alem, M. A. Soto, and L. Thévenaz, “Modelling the depletion length induced by modulation instability in distributed optical fibre sensors,” Proc. SPIE 9157, 91575S (2014).
  5. L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
    [Crossref] [PubMed]
  6. A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributeD Brillouin fiber sensors,” Sensors Journal, IEEE 9(6), 633–634 (2009).
    [Crossref]
  7. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
    [Crossref] [PubMed]
  8. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express 18(14), 14878–14892 (2010).
    [Crossref] [PubMed]
  9. F. Rodriguez-Barrios, S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castanon, L. Thévenaz, and M. Gonzalez-Herraez, “Distributed Brillouin Fiber Sensor Assisted by First-Order Raman Amplification,” J. Lightwave Technol. 28(15), 2162–2172 (2010).
    [Crossref]
  10. S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).
    [Crossref] [PubMed]
  11. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express 19(5), 4444–4457 (2011).
    [Crossref] [PubMed]
  12. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-Coded BOTDA Sensor Over 120 km SMF with 1 m Spatial Resolution Assisted by Optimized Bidirectional Raman Amplification,” IEEE Photon. Technol. Lett. 24(20), 1823–1826 (2012).
    [Crossref]
  13. X. H. Jia, Y. J. Rao, C. X. Yuan, J. Li, X. D. Yan, Z. N. Wang, W. L. Zhang, H. Wu, Y. Y. Zhu, and F. Peng, “Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping,” Opt. Express 21(21), 24611–24619 (2013).
    [Crossref] [PubMed]
  14. M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S.-H. Chin, J. D. Ania-Castanon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thévenaz, “Extending the real remoteness of long-range brillouin optical time-domain fiber analyzers,” J. Lightwave Technol. 32(1), 152–162 (2014).
    [Crossref]
  15. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Distributed optical fibre sensors based on spontaneous Brillouin scattering employing multimode Fabry-Pérot lasers,” Electron. Lett. 45(21), 1071–1072 (2009).
    [Crossref]
  16. C. Li, Y. Lu, X. Zhang, and F. Wang, “SNR enhancement in Brillouin optical time domain reflectrometer using multi-wavelength coherent detection,” Electron. Lett. 48(18), 1139–1141 (2012).
    [Crossref]
  17. A. Voskoboinik, J. Wang, B. Shamee, S. R. Nuccio, L. Zhang, M. Chitgarha, A. E. Willner, and M. Tur, “SBS-based fiber optical sensing using frequency-domain simultaneous tone interrogation,” J. Lightwave Technol. 29(11), 1729–1735 (2011).
    [Crossref]
  18. A. Voskoboinik, O. F. Yilmaz, A. W. Willner, and M. Tur, “Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA),” Opt. Express 19(26), B842–B847 (2011).
    [Crossref] [PubMed]
  19. P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
    [Crossref]
  20. M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [Crossref]
  21. I. Jacobs, “Dependence of optical amplifier noise figure on relative-intensity-noise,” J. Lightwave Technol. 13(7), 1461–1465 (1995).
    [Crossref]
  22. M. A. Soto and L. Thévenaz, “Towards 1’000’000 resolved points in a distributed optical fibre sensor,” Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors OFS-23, 9157C3 (2014).
  23. G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry-Pérot lasers,” IEEE Photon. Technol. Lett. 21(20), 1523–1525 (2009).
    [Crossref]

2014 (2)

2013 (3)

2012 (2)

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-Coded BOTDA Sensor Over 120 km SMF with 1 m Spatial Resolution Assisted by Optimized Bidirectional Raman Amplification,” IEEE Photon. Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

C. Li, Y. Lu, X. Zhang, and F. Wang, “SNR enhancement in Brillouin optical time domain reflectrometer using multi-wavelength coherent detection,” Electron. Lett. 48(18), 1139–1141 (2012).
[Crossref]

2011 (4)

2010 (4)

2009 (3)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributeD Brillouin fiber sensors,” Sensors Journal, IEEE 9(6), 633–634 (2009).
[Crossref]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Distributed optical fibre sensors based on spontaneous Brillouin scattering employing multimode Fabry-Pérot lasers,” Electron. Lett. 45(21), 1071–1072 (2009).
[Crossref]

G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry-Pérot lasers,” IEEE Photon. Technol. Lett. 21(20), 1523–1525 (2009).
[Crossref]

2008 (1)

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
[Crossref]

1997 (1)

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

1995 (2)

I. Jacobs, “Dependence of optical amplifier noise figure on relative-intensity-noise,” J. Lightwave Technol. 13(7), 1461–1465 (1995).
[Crossref]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Alcon-Camas, M.

Alem, M.

M. Alem, M. A. Soto, and L. Thévenaz, “Modelling the depletion length induced by modulation instability in distributed optical fibre sensors,” Proc. SPIE 9157, 91575S (2014).

Angulo-Vinuesa, X.

Ania-Castanon, J. D.

Ania-Castañon, J. D.

Bernini, R.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributeD Brillouin fiber sensors,” Sensors Journal, IEEE 9(6), 633–634 (2009).
[Crossref]

Bolognini, G.

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-Coded BOTDA Sensor Over 120 km SMF with 1 m Spatial Resolution Assisted by Optimized Bidirectional Raman Amplification,” IEEE Photon. Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express 19(5), 4444–4457 (2011).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express 18(14), 14878–14892 (2010).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Distributed optical fibre sensors based on spontaneous Brillouin scattering employing multimode Fabry-Pérot lasers,” Electron. Lett. 45(21), 1071–1072 (2009).
[Crossref]

G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry-Pérot lasers,” IEEE Photon. Technol. Lett. 21(20), 1523–1525 (2009).
[Crossref]

Brown, A. W.

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
[Crossref]

Carrasco-Sanz, A.

Chaube, P.

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
[Crossref]

Chin, S.-H.

Chitgarha, M.

Colpitts, B. G.

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
[Crossref]

Corredera, P.

Di Pasquale, F.

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-Coded BOTDA Sensor Over 120 km SMF with 1 m Spatial Resolution Assisted by Optimized Bidirectional Raman Amplification,” IEEE Photon. Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express 19(5), 4444–4457 (2011).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express 18(14), 14878–14892 (2010).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Distributed optical fibre sensors based on spontaneous Brillouin scattering employing multimode Fabry-Pérot lasers,” Electron. Lett. 45(21), 1071–1072 (2009).
[Crossref]

G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry-Pérot lasers,” IEEE Photon. Technol. Lett. 21(20), 1523–1525 (2009).
[Crossref]

Foaleng, S. M.

S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE 7753, 77539V (2011).
[Crossref]

Gonzalez-Herraez, M.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Jacobs, I.

I. Jacobs, “Dependence of optical amplifier noise figure on relative-intensity-noise,” J. Lightwave Technol. 13(7), 1461–1465 (1995).
[Crossref]

Jagannathan, D.

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
[Crossref]

Jia, X. H.

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Li, C.

C. Li, Y. Lu, X. Zhang, and F. Wang, “SNR enhancement in Brillouin optical time domain reflectrometer using multi-wavelength coherent detection,” Electron. Lett. 48(18), 1139–1141 (2012).
[Crossref]

Li, J.

Lin, J.

Lu, Y.

C. Li, Y. Lu, X. Zhang, and F. Wang, “SNR enhancement in Brillouin optical time domain reflectrometer using multi-wavelength coherent detection,” Electron. Lett. 48(18), 1139–1141 (2012).
[Crossref]

Mafang, S. F.

Martin-Lopez, S.

Minardo, A.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributeD Brillouin fiber sensors,” Sensors Journal, IEEE 9(6), 633–634 (2009).
[Crossref]

Nikles, M.

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Nuccio, S. R.

Peng, F.

Rao, Y. J.

Robert, P. A.

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Rochat, E.

Rodriguez, F.

Rodriguez-Barrios, F.

Shamee, B.

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Soto, M. A.

M. Alem, M. A. Soto, and L. Thévenaz, “Modelling the depletion length induced by modulation instability in distributed optical fibre sensors,” Proc. SPIE 9157, 91575S (2014).

M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S.-H. Chin, J. D. Ania-Castanon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thévenaz, “Extending the real remoteness of long-range brillouin optical time-domain fiber analyzers,” J. Lightwave Technol. 32(1), 152–162 (2014).
[Crossref]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-Coded BOTDA Sensor Over 120 km SMF with 1 m Spatial Resolution Assisted by Optimized Bidirectional Raman Amplification,” IEEE Photon. Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express 19(5), 4444–4457 (2011).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express 18(14), 14878–14892 (2010).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Distributed optical fibre sensors based on spontaneous Brillouin scattering employing multimode Fabry-Pérot lasers,” Electron. Lett. 45(21), 1071–1072 (2009).
[Crossref]

G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry-Pérot lasers,” IEEE Photon. Technol. Lett. 21(20), 1523–1525 (2009).
[Crossref]

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Thévenaz, L.

M. Alem, M. A. Soto, and L. Thévenaz, “Modelling the depletion length induced by modulation instability in distributed optical fibre sensors,” Proc. SPIE 9157, 91575S (2014).

M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S.-H. Chin, J. D. Ania-Castanon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thévenaz, “Extending the real remoteness of long-range brillouin optical time-domain fiber analyzers,” J. Lightwave Technol. 32(1), 152–162 (2014).
[Crossref]

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
[Crossref] [PubMed]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE 7753, 77539V (2011).
[Crossref]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref] [PubMed]

F. Rodriguez-Barrios, S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castanon, L. Thévenaz, and M. Gonzalez-Herraez, “Distributed Brillouin Fiber Sensor Assisted by First-Order Raman Amplification,” J. Lightwave Technol. 28(15), 2162–2172 (2010).
[Crossref]

S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).
[Crossref] [PubMed]

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Tur, M.

Voskoboinik, A.

Wang, F.

C. Li, Y. Lu, X. Zhang, and F. Wang, “SNR enhancement in Brillouin optical time domain reflectrometer using multi-wavelength coherent detection,” Electron. Lett. 48(18), 1139–1141 (2012).
[Crossref]

Wang, J.

Wang, Z. N.

Willner, A. E.

Willner, A. W.

Wu, H.

Yan, X. D.

Yilmaz, O. F.

Yuan, C. X.

Zeni, L.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributeD Brillouin fiber sensors,” Sensors Journal, IEEE 9(6), 633–634 (2009).
[Crossref]

Zhang, L.

Zhang, W. L.

Zhang, X.

C. Li, Y. Lu, X. Zhang, and F. Wang, “SNR enhancement in Brillouin optical time domain reflectrometer using multi-wavelength coherent detection,” Electron. Lett. 48(18), 1139–1141 (2012).
[Crossref]

Zhu, Y. Y.

Electron. Lett. (2)

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Distributed optical fibre sensors based on spontaneous Brillouin scattering employing multimode Fabry-Pérot lasers,” Electron. Lett. 45(21), 1071–1072 (2009).
[Crossref]

C. Li, Y. Lu, X. Zhang, and F. Wang, “SNR enhancement in Brillouin optical time domain reflectrometer using multi-wavelength coherent detection,” Electron. Lett. 48(18), 1139–1141 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (2)

G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry-Pérot lasers,” IEEE Photon. Technol. Lett. 21(20), 1523–1525 (2009).
[Crossref]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-Coded BOTDA Sensor Over 120 km SMF with 1 m Spatial Resolution Assisted by Optimized Bidirectional Raman Amplification,” IEEE Photon. Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

IEEE Sens. J. (1)

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
[Crossref]

J. Lightwave Technol. (6)

Opt. Express (7)

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express 18(14), 14878–14892 (2010).
[Crossref] [PubMed]

A. Voskoboinik, O. F. Yilmaz, A. W. Willner, and M. Tur, “Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA),” Opt. Express 19(26), B842–B847 (2011).
[Crossref] [PubMed]

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
[Crossref] [PubMed]

X. H. Jia, Y. J. Rao, C. X. Yuan, J. Li, X. D. Yan, Z. N. Wang, W. L. Zhang, H. Wu, Y. Y. Zhu, and F. Peng, “Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping,” Opt. Express 21(21), 24611–24619 (2013).
[Crossref] [PubMed]

S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express 19(5), 4444–4457 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Proc. SPIE (2)

S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE 7753, 77539V (2011).
[Crossref]

M. Alem, M. A. Soto, and L. Thévenaz, “Modelling the depletion length induced by modulation instability in distributed optical fibre sensors,” Proc. SPIE 9157, 91575S (2014).

Sensors Journal, IEEE (1)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributeD Brillouin fiber sensors,” Sensors Journal, IEEE 9(6), 633–634 (2009).
[Crossref]

Other (1)

M. A. Soto and L. Thévenaz, “Towards 1’000’000 resolved points in a distributed optical fibre sensor,” Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors OFS-23, 9157C3 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic showing the principle of the proposed method based on frequency and time multiplexing of the pump signal in Brillouin distributed optical fiber sensors.
Fig. 2
Fig. 2 Spectral allocation of the multi-frequency probe (dashed red lines) and pump (straight blue lines) signals in the proposed method. While the total pump and probe powers can be increased by a factor N (equal to the number of spectral components) to exceed the nonlinear threshold levels, the power of individual lines is still limited by the onset of nonlinear effects.
Fig. 3
Fig. 3 Temporal realignment of BOTDA traces required at the receiver stage.
Fig. 4
Fig. 4 Possible spectral allocation of pump and probe signals to implement the technique in a BOTDA sensor. The straight blue lines represent the frequency components of the pump, and the dashed red lines represent the counter-propagating probe components. (a) Δf > 2νB, (b) νB < Δf < 2νB, and (c) 2ΔνB < Δf < νB, νB ≈10-11 GHz being the Brillouin frequency in standard single-mode fibers, and ΔνB ≈30 MHz the Brillouin linewidth.
Fig. 5
Fig. 5 Experimental setup for the proposed BOTDA sensor based on multi-frequency time-shifted pump pulses. The scheme uses N = 3 frequency components, separated by Δf = 17 GHz. The first array of FBGs applies a frequency-dependent delay to the distinct pump frequency components, denoted as f1, f2 and f3. In the receiver, the distinct BOTDA trace components are temporarily rearranged by a second array of FBGs; each of them tuned, in reverse order, to the lower-frequency probe components f3B, f2B and f1B (being νB the average Brillouin frequency of the fiber).
Fig. 6
Fig. 6 Signal-to-noise ratio (SNR) measured at the peak gain frequency. (a) Comparison between the standard BOTDA (N = 1) and the proposed scheme using N = 3 spectral components and delayed pump pulses. (b) SNR and sensor response evolution along the fiber, measured with N = 3 components, with (red curve) and without (blue curve) delay between pump pulses.
Fig. 7
Fig. 7 Measured Brillouin gain spectrum versus distance obtained using N = 3 components. Inset: Calculated Brillouin frequency profile at ambient temperature (24°C).
Fig. 8
Fig. 8 Frequency uncertainty versus distance, for BOTDA schemes using N = 1 (standard) and N = 3 spectral components, along a 50 km-long standard single-mode fiber using 2 m spatial resolution and 2000 time-averaged traces. The frequency uncertainty is here calculated as one standard deviation of the Brillouin frequency measured at each fiber location.
Fig. 9
Fig. 9 Hot-spot detection near the fiber far end (~50 km distance), demonstrating 2 m spatial resolution.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S N R ( z ) = Δ I s ( z ) σ i s s p = Δ I s ( z ) 2 I A S E I s B e / B o
δ z = λ 2 n D ( N 1 ) Δ f L

Metrics