Abstract

Causality and special relativity pose an upper limit to the amount of advance that an optical pulse can acquire during a superluminal propagation. Such a limit can be circumvented if the pulse, before entering the superluminal medium, is retarded by letting it propagate under normal dispersion. We present an experimental evidence of this fact by showing that a laser pulse propagating in an atomic vapor, quasi resonant with an inverted transition and in conditions of anomalous dispersion, moves faster if it is previously retarded in a cell containing the same medium with no population inversion. Optical transmission lines often need an amplification stage to overcome the signal attenuation and the unavoidable delay respect to propagation at c; in this paper we tailor such stage to provide also an optical controlled recover of such delay. We believe that our results can open exciting prospects for real-life optical data processing and communication.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pulse propagation through a slab with time-periodic dielectric function ε(t)

Jorge R. Zurita-Sánchez, J. H. Abundis-Patiño, and P. Halevi
Opt. Express 20(5) 5586-5600 (2012)

Fast and slow light in optical fibers through tilted fiber Bragg gratings

Marco Pisco, Armando Ricciardi, Stefania Campopiano, Christophe Caucheteur, Patrice Mégret, Antonello Cutolo, and Andrea Cusano
Opt. Express 17(26) 23502-23510 (2009)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
    [Crossref] [PubMed]
  2. Z. Dutton and L. V. Hau, “Storing and processing optical information with ultraslow light in Bose-Einstein condensates,” Phys. Rev. A 70, 053831 (2004).
    [Crossref]
  3. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [Crossref] [PubMed]
  4. R. W. Boyd and D. J. Gauthier, ““Slow” and “fast” light,” Prog. Opt. 43, 497 (2002).
    [Crossref]
  5. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [Crossref]
  6. R. M. Camacho, M. V. Pack, and J. C. Howell, “Low-distortion slow light using two absorption resonances,” Phys. Rev. A 73, 063812 (2006).
    [Crossref]
  7. V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
    [Crossref] [PubMed]
  8. B. S. Ham, “Observations of delayed all-optical routing in a slow-light regime,” Phys. Rev. A 78, 011808R (2008).
    [Crossref]
  9. R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photon. 3(2), 103–106 (2009).
    [Crossref]
  10. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
    [Crossref] [PubMed]
  11. M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ’fast-light’ optical medium,” Nature 425, 695–698 (2003).
    [Crossref] [PubMed]
  12. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photon. 2, 474–481 (2008).
    [Crossref]
  13. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
    [Crossref] [PubMed]
  14. S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett. 100, 203603 (2008).
    [Crossref] [PubMed]
  15. R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phys. Rev. Lett. 108, 173902 (2012).
    [Crossref] [PubMed]
  16. M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481, 62–65 (2012).
    [Crossref] [PubMed]
  17. J. M. Lukens, D. E. Leaird, and A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
    [Crossref] [PubMed]
  18. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [Crossref]
  19. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
    [Crossref] [PubMed]
  20. R. Buffa, S. Cavalieri, and M. V. Tognetti, “Coherent control of temporal pulse shaping by electromagnetically induced transparency,” Phys. Rev. A 69, 033815 (2004).
    [Crossref]
  21. P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909–9915 (2005).
    [Crossref] [PubMed]
  22. K. Y. Song, M. G. Herraez, M. Gonzalez, and L. Thévenaz, “Long optically controlled delays in optical fibers,” Opt. Lett. 30(14), 1782–1784 (2005).
    [Crossref] [PubMed]
  23. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
    [Crossref] [PubMed]
  24. C. Fietz and G. Shvetz, “Simultaneous fast and slow light in microring resonators,” Opt. Lett. 32(24), 3480–3482 (2007).
    [Crossref] [PubMed]
  25. F. Arrieta-Yáñez, O. G. Calderon, and S. Melle, “Slow and fast light based on coherent population oscillations in erbium-doped fibers,” J. Opt. 12(10), 104002 (2010).
    [Crossref]
  26. M. G. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
    [Crossref]
  27. L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).
  28. D. Wei, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Optical precursors with electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 103, 093602 (2009).
    [Crossref] [PubMed]
  29. S. Zhang, J. F. Chen, C. Liu, M. M. T. Loy, G. K. L. Wong, and S. Du, “Optical precursors with electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 106, 243602 (2011).
    [Crossref]
  30. M. V. Tognetti, E. Sali, S. Cavalieri, and R. Buffa, “Temporal pulse compression and retardation by incoherent all-optical control,” Phys. Rev. A 81, 023807 (2010).
    [Crossref]
  31. E. Ignesti, F. Tommasi, R. Buffa, L. Fini, E. Sali, M. V. Tognetti, and S. Cavalieri, “Incoherent optical control of pulse propagation and compression,” Phys. Rev. A 86, 063818 (2012).
    [Crossref]
  32. E. Ignesti, F. Tommasi, R. Buffa, L. Fini, E. Sali, and S. Cavalieri, “Optical control of superluminal propagation of nanosecond laser pulses,” Phys. Rev. A 87, 033828 (2013).
    [Crossref]

2013 (2)

J. M. Lukens, D. E. Leaird, and A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
[Crossref] [PubMed]

E. Ignesti, F. Tommasi, R. Buffa, L. Fini, E. Sali, and S. Cavalieri, “Optical control of superluminal propagation of nanosecond laser pulses,” Phys. Rev. A 87, 033828 (2013).
[Crossref]

2012 (3)

E. Ignesti, F. Tommasi, R. Buffa, L. Fini, E. Sali, M. V. Tognetti, and S. Cavalieri, “Incoherent optical control of pulse propagation and compression,” Phys. Rev. A 86, 063818 (2012).
[Crossref]

R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phys. Rev. Lett. 108, 173902 (2012).
[Crossref] [PubMed]

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481, 62–65 (2012).
[Crossref] [PubMed]

2011 (1)

S. Zhang, J. F. Chen, C. Liu, M. M. T. Loy, G. K. L. Wong, and S. Du, “Optical precursors with electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 106, 243602 (2011).
[Crossref]

2010 (2)

M. V. Tognetti, E. Sali, S. Cavalieri, and R. Buffa, “Temporal pulse compression and retardation by incoherent all-optical control,” Phys. Rev. A 81, 023807 (2010).
[Crossref]

F. Arrieta-Yáñez, O. G. Calderon, and S. Melle, “Slow and fast light based on coherent population oscillations in erbium-doped fibers,” J. Opt. 12(10), 104002 (2010).
[Crossref]

2009 (3)

D. Wei, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Optical precursors with electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 103, 093602 (2009).
[Crossref] [PubMed]

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
[Crossref] [PubMed]

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photon. 3(2), 103–106 (2009).
[Crossref]

2008 (3)

B. S. Ham, “Observations of delayed all-optical routing in a slow-light regime,” Phys. Rev. A 78, 011808R (2008).
[Crossref]

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photon. 2, 474–481 (2008).
[Crossref]

S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett. 100, 203603 (2008).
[Crossref] [PubMed]

2007 (2)

C. Fietz and G. Shvetz, “Simultaneous fast and slow light in microring resonators,” Opt. Lett. 32(24), 3480–3482 (2007).
[Crossref] [PubMed]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[Crossref] [PubMed]

2006 (1)

R. M. Camacho, M. V. Pack, and J. C. Howell, “Low-distortion slow light using two absorption resonances,” Phys. Rev. A 73, 063812 (2006).
[Crossref]

2005 (6)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

M. G. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[Crossref]

P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909–9915 (2005).
[Crossref] [PubMed]

K. Y. Song, M. G. Herraez, M. Gonzalez, and L. Thévenaz, “Long optically controlled delays in optical fibers,” Opt. Lett. 30(14), 1782–1784 (2005).
[Crossref] [PubMed]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[Crossref] [PubMed]

2004 (2)

R. Buffa, S. Cavalieri, and M. V. Tognetti, “Coherent control of temporal pulse shaping by electromagnetically induced transparency,” Phys. Rev. A 69, 033815 (2004).
[Crossref]

Z. Dutton and L. V. Hau, “Storing and processing optical information with ultraslow light in Bose-Einstein condensates,” Phys. Rev. A 70, 053831 (2004).
[Crossref]

2003 (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ’fast-light’ optical medium,” Nature 425, 695–698 (2003).
[Crossref] [PubMed]

2002 (1)

R. W. Boyd and D. J. Gauthier, ““Slow” and “fast” light,” Prog. Opt. 43, 497 (2002).
[Crossref]

2000 (1)

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref] [PubMed]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

1995 (1)

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[Crossref] [PubMed]

Arimondo, E.

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[Crossref] [PubMed]

Arrieta-Yáñez, F.

F. Arrieta-Yáñez, O. G. Calderon, and S. Melle, “Slow and fast light based on coherent population oscillations in erbium-doped fibers,” J. Opt. 12(10), 104002 (2010).
[Crossref]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

Bortolozzo, U.

S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett. 100, 203603 (2008).
[Crossref] [PubMed]

Boyd, R. W.

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

R. W. Boyd and D. J. Gauthier, ““Slow” and “fast” light,” Prog. Opt. 43, 497 (2002).
[Crossref]

Boyer, V.

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[Crossref] [PubMed]

Brillouin, L.

L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).

Buffa, R.

E. Ignesti, F. Tommasi, R. Buffa, L. Fini, E. Sali, and S. Cavalieri, “Optical control of superluminal propagation of nanosecond laser pulses,” Phys. Rev. A 87, 033828 (2013).
[Crossref]

E. Ignesti, F. Tommasi, R. Buffa, L. Fini, E. Sali, M. V. Tognetti, and S. Cavalieri, “Incoherent optical control of pulse propagation and compression,” Phys. Rev. A 86, 063818 (2012).
[Crossref]

M. V. Tognetti, E. Sali, S. Cavalieri, and R. Buffa, “Temporal pulse compression and retardation by incoherent all-optical control,” Phys. Rev. A 81, 023807 (2010).
[Crossref]

R. Buffa, S. Cavalieri, and M. V. Tognetti, “Coherent control of temporal pulse shaping by electromagnetically induced transparency,” Phys. Rev. A 69, 033815 (2004).
[Crossref]

Calderon, O. G.

F. Arrieta-Yáñez, O. G. Calderon, and S. Melle, “Slow and fast light based on coherent population oscillations in erbium-doped fibers,” J. Opt. 12(10), 104002 (2010).
[Crossref]

Camacho, R. M.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photon. 3(2), 103–106 (2009).
[Crossref]

R. M. Camacho, M. V. Pack, and J. C. Howell, “Low-distortion slow light using two absorption resonances,” Phys. Rev. A 73, 063812 (2006).
[Crossref]

Cavalieri, S.

E. Ignesti, F. Tommasi, R. Buffa, L. Fini, E. Sali, and S. Cavalieri, “Optical control of superluminal propagation of nanosecond laser pulses,” Phys. Rev. A 87, 033828 (2013).
[Crossref]

E. Ignesti, F. Tommasi, R. Buffa, L. Fini, E. Sali, M. V. Tognetti, and S. Cavalieri, “Incoherent optical control of pulse propagation and compression,” Phys. Rev. A 86, 063818 (2012).
[Crossref]

M. V. Tognetti, E. Sali, S. Cavalieri, and R. Buffa, “Temporal pulse compression and retardation by incoherent all-optical control,” Phys. Rev. A 81, 023807 (2010).
[Crossref]

R. Buffa, S. Cavalieri, and M. V. Tognetti, “Coherent control of temporal pulse shaping by electromagnetically induced transparency,” Phys. Rev. A 69, 033815 (2004).
[Crossref]

Chang-Hasnain, C. J.

Chen, J. F.

S. Zhang, J. F. Chen, C. Liu, M. M. T. Loy, G. K. L. Wong, and S. Du, “Optical precursors with electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 106, 243602 (2011).
[Crossref]

D. Wei, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Optical precursors with electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 103, 093602 (2009).
[Crossref] [PubMed]

Crankshaw, S.

Dogariu, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref] [PubMed]

Du, S.

S. Zhang, J. F. Chen, C. Liu, M. M. T. Loy, G. K. L. Wong, and S. Du, “Optical precursors with electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 106, 243602 (2011).
[Crossref]

D. Wei, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Optical precursors with electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 103, 093602 (2009).
[Crossref] [PubMed]

Dutton, Z.

Z. Dutton and L. V. Hau, “Storing and processing optical information with ultraslow light in Bose-Einstein condensates,” Phys. Rev. A 70, 053831 (2004).
[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Farsi, A.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481, 62–65 (2012).
[Crossref] [PubMed]

Fietz, C.

Fini, L.

E. Ignesti, F. Tommasi, R. Buffa, L. Fini, E. Sali, and S. Cavalieri, “Optical control of superluminal propagation of nanosecond laser pulses,” Phys. Rev. A 87, 033828 (2013).
[Crossref]

E. Ignesti, F. Tommasi, R. Buffa, L. Fini, E. Sali, M. V. Tognetti, and S. Cavalieri, “Incoherent optical control of pulse propagation and compression,” Phys. Rev. A 86, 063818 (2012).
[Crossref]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Fridman, M.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481, 62–65 (2012).
[Crossref] [PubMed]

Gaeta, A. L.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481, 62–65 (2012).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[Crossref] [PubMed]

Gauthier, D. J.

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ’fast-light’ optical medium,” Nature 425, 695–698 (2003).
[Crossref] [PubMed]

R. W. Boyd and D. J. Gauthier, ““Slow” and “fast” light,” Prog. Opt. 43, 497 (2002).
[Crossref]

Glasser, R. T.

R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phys. Rev. Lett. 108, 173902 (2012).
[Crossref] [PubMed]

Gonzalez, M.

Ham, B. S.

B. S. Ham, “Observations of delayed all-optical routing in a slow-light regime,” Phys. Rev. A 78, 011808R (2008).
[Crossref]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[Crossref] [PubMed]

Hau, L. V.

Z. Dutton and L. V. Hau, “Storing and processing optical information with ultraslow light in Bose-Einstein condensates,” Phys. Rev. A 70, 053831 (2004).
[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Herraez, M. G.

Herráez, M. G.

M. G. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[Crossref]

Howell, J. C.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photon. 3(2), 103–106 (2009).
[Crossref]

R. M. Camacho, M. V. Pack, and J. C. Howell, “Low-distortion slow light using two absorption resonances,” Phys. Rev. A 73, 063812 (2006).
[Crossref]

Huignard, J. P.

S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett. 100, 203603 (2008).
[Crossref] [PubMed]

Ignesti, E.

E. Ignesti, F. Tommasi, R. Buffa, L. Fini, E. Sali, and S. Cavalieri, “Optical control of superluminal propagation of nanosecond laser pulses,” Phys. Rev. A 87, 033828 (2013).
[Crossref]

E. Ignesti, F. Tommasi, R. Buffa, L. Fini, E. Sali, M. V. Tognetti, and S. Cavalieri, “Incoherent optical control of pulse propagation and compression,” Phys. Rev. A 86, 063818 (2012).
[Crossref]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Jain, M.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[Crossref] [PubMed]

Kasapi, A.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[Crossref] [PubMed]

Kuzmich, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref] [PubMed]

Leaird, D. E.

J. M. Lukens, D. E. Leaird, and A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
[Crossref] [PubMed]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

Lett, P. D.

R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phys. Rev. Lett. 108, 173902 (2012).
[Crossref] [PubMed]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[Crossref] [PubMed]

Liu, C.

S. Zhang, J. F. Chen, C. Liu, M. M. T. Loy, G. K. L. Wong, and S. Du, “Optical precursors with electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 106, 243602 (2011).
[Crossref]

Loy, M. M. T.

S. Zhang, J. F. Chen, C. Liu, M. M. T. Loy, G. K. L. Wong, and S. Du, “Optical precursors with electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 106, 243602 (2011).
[Crossref]

D. Wei, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Optical precursors with electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 103, 093602 (2009).
[Crossref] [PubMed]

Lukens, J. M.

J. M. Lukens, D. E. Leaird, and A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
[Crossref] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

McCormick, C. F.

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[Crossref] [PubMed]

Melle, S.

F. Arrieta-Yáñez, O. G. Calderon, and S. Melle, “Slow and fast light based on coherent population oscillations in erbium-doped fibers,” J. Opt. 12(10), 104002 (2010).
[Crossref]

Moewe, M.

Neifeld, M. A.

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ’fast-light’ optical medium,” Nature 425, 695–698 (2003).
[Crossref] [PubMed]

Okawachi, Y.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481, 62–65 (2012).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[Crossref] [PubMed]

Pack, M. V.

R. M. Camacho, M. V. Pack, and J. C. Howell, “Low-distortion slow light using two absorption resonances,” Phys. Rev. A 73, 063812 (2006).
[Crossref]

Palinginis, P.

Residori, S.

S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett. 100, 203603 (2008).
[Crossref] [PubMed]

Sali, E.

E. Ignesti, F. Tommasi, R. Buffa, L. Fini, E. Sali, and S. Cavalieri, “Optical control of superluminal propagation of nanosecond laser pulses,” Phys. Rev. A 87, 033828 (2013).
[Crossref]

E. Ignesti, F. Tommasi, R. Buffa, L. Fini, E. Sali, M. V. Tognetti, and S. Cavalieri, “Incoherent optical control of pulse propagation and compression,” Phys. Rev. A 86, 063818 (2012).
[Crossref]

M. V. Tognetti, E. Sali, S. Cavalieri, and R. Buffa, “Temporal pulse compression and retardation by incoherent all-optical control,” Phys. Rev. A 81, 023807 (2010).
[Crossref]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Sedgwick, F.

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[Crossref] [PubMed]

Shvetz, G.

Song, K. Y.

M. G. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[Crossref]

K. Y. Song, M. G. Herraez, M. Gonzalez, and L. Thévenaz, “Long optically controlled delays in optical fibers,” Opt. Lett. 30(14), 1782–1784 (2005).
[Crossref] [PubMed]

Stenner, M. D.

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ’fast-light’ optical medium,” Nature 425, 695–698 (2003).
[Crossref] [PubMed]

Thévenaz, L.

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photon. 2, 474–481 (2008).
[Crossref]

K. Y. Song, M. G. Herraez, M. Gonzalez, and L. Thévenaz, “Long optically controlled delays in optical fibers,” Opt. Lett. 30(14), 1782–1784 (2005).
[Crossref] [PubMed]

M. G. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[Crossref]

Tognetti, M. V.

E. Ignesti, F. Tommasi, R. Buffa, L. Fini, E. Sali, M. V. Tognetti, and S. Cavalieri, “Incoherent optical control of pulse propagation and compression,” Phys. Rev. A 86, 063818 (2012).
[Crossref]

M. V. Tognetti, E. Sali, S. Cavalieri, and R. Buffa, “Temporal pulse compression and retardation by incoherent all-optical control,” Phys. Rev. A 81, 023807 (2010).
[Crossref]

R. Buffa, S. Cavalieri, and M. V. Tognetti, “Coherent control of temporal pulse shaping by electromagnetically induced transparency,” Phys. Rev. A 69, 033815 (2004).
[Crossref]

Tommasi, F.

E. Ignesti, F. Tommasi, R. Buffa, L. Fini, E. Sali, and S. Cavalieri, “Optical control of superluminal propagation of nanosecond laser pulses,” Phys. Rev. A 87, 033828 (2013).
[Crossref]

E. Ignesti, F. Tommasi, R. Buffa, L. Fini, E. Sali, M. V. Tognetti, and S. Cavalieri, “Incoherent optical control of pulse propagation and compression,” Phys. Rev. A 86, 063818 (2012).
[Crossref]

Vogl, U.

R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phys. Rev. Lett. 108, 173902 (2012).
[Crossref] [PubMed]

Vudyasetu, P. K.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photon. 3(2), 103–106 (2009).
[Crossref]

Wang, L. J.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref] [PubMed]

Wei, D.

D. Wei, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Optical precursors with electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 103, 093602 (2009).
[Crossref] [PubMed]

Weiner, A. M.

J. M. Lukens, D. E. Leaird, and A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
[Crossref] [PubMed]

Wong, G. K. L.

S. Zhang, J. F. Chen, C. Liu, M. M. T. Loy, G. K. L. Wong, and S. Du, “Optical precursors with electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 106, 243602 (2011).
[Crossref]

D. Wei, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Optical precursors with electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 103, 093602 (2009).
[Crossref] [PubMed]

Yin, G. Y.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, J. F. Chen, C. Liu, M. M. T. Loy, G. K. L. Wong, and S. Du, “Optical precursors with electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 106, 243602 (2011).
[Crossref]

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. G. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[Crossref]

J. Opt. (1)

F. Arrieta-Yáñez, O. G. Calderon, and S. Melle, “Slow and fast light based on coherent population oscillations in erbium-doped fibers,” J. Opt. 12(10), 104002 (2010).
[Crossref]

Nat. Photon. (2)

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photon. 3(2), 103–106 (2009).
[Crossref]

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photon. 2, 474–481 (2008).
[Crossref]

Nature (5)

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481, 62–65 (2012).
[Crossref] [PubMed]

J. M. Lukens, D. E. Leaird, and A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
[Crossref] [PubMed]

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref] [PubMed]

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ’fast-light’ optical medium,” Nature 425, 695–698 (2003).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (7)

M. V. Tognetti, E. Sali, S. Cavalieri, and R. Buffa, “Temporal pulse compression and retardation by incoherent all-optical control,” Phys. Rev. A 81, 023807 (2010).
[Crossref]

E. Ignesti, F. Tommasi, R. Buffa, L. Fini, E. Sali, M. V. Tognetti, and S. Cavalieri, “Incoherent optical control of pulse propagation and compression,” Phys. Rev. A 86, 063818 (2012).
[Crossref]

E. Ignesti, F. Tommasi, R. Buffa, L. Fini, E. Sali, and S. Cavalieri, “Optical control of superluminal propagation of nanosecond laser pulses,” Phys. Rev. A 87, 033828 (2013).
[Crossref]

R. M. Camacho, M. V. Pack, and J. C. Howell, “Low-distortion slow light using two absorption resonances,” Phys. Rev. A 73, 063812 (2006).
[Crossref]

Z. Dutton and L. V. Hau, “Storing and processing optical information with ultraslow light in Bose-Einstein condensates,” Phys. Rev. A 70, 053831 (2004).
[Crossref]

B. S. Ham, “Observations of delayed all-optical routing in a slow-light regime,” Phys. Rev. A 78, 011808R (2008).
[Crossref]

R. Buffa, S. Cavalieri, and M. V. Tognetti, “Coherent control of temporal pulse shaping by electromagnetically induced transparency,” Phys. Rev. A 69, 033815 (2004).
[Crossref]

Phys. Rev. Lett. (7)

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[Crossref] [PubMed]

S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett. 100, 203603 (2008).
[Crossref] [PubMed]

R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phys. Rev. Lett. 108, 173902 (2012).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[Crossref] [PubMed]

D. Wei, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Optical precursors with electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 103, 093602 (2009).
[Crossref] [PubMed]

S. Zhang, J. F. Chen, C. Liu, M. M. T. Loy, G. K. L. Wong, and S. Du, “Optical precursors with electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 106, 243602 (2011).
[Crossref]

Prog. Opt. (1)

R. W. Boyd and D. J. Gauthier, ““Slow” and “fast” light,” Prog. Opt. 43, 497 (2002).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Science (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
[Crossref] [PubMed]

Other (1)

L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Logical diagram of the experimental procedure. The Slow (Fast) Light stage is labeled SL (FL), ON means that the stage is active for the probe field. The corresponding interaction schemes are also indicated. In case a) the probe pulse experiments only fast light propagation while in case b) the probe field experiments both slow and fast light interactions. In both cases the probe pulse is showed at the output of each single stage together with a reference pulse (dashed line) propagating at velocity c.
Fig. 2
Fig. 2 Temporal shapes of the probe pulse after propagation through the SL and the FL stages. The red and the blue curves refer respectively to case (a) and (b) of Fig. 1. The black curve is the reference for propagation at velocity c and the green is the result for the SL stage on and FL stage off. In the SL stage, in case (a) the peak value is reduced to 21% with respect to the reference, whereas in case (b) the peak value reaches 390% with the only FL stage on and 79% when both stages are on.
Fig. 3
Fig. 3 Temporal delay (advance) Δt of the probe pulse respect to vacuum propagation as a function of the FL stage pumping energy. Positive values are delays, while negative are advances. Red points are the results for FL stage on and SL stage off, while blue crosses are temporal shifts with both stages active.

Metrics