Abstract

A significant enhancement of blue light emission from amorphous oxidized silicon nitride (a-SiNx:O) films is achieved by introduction of ordered and size-controllable arrays of Ag nanoparticles between the silicon substrate and a-SiNx:O films. Using hexagonal arrays of Ag nanoparticles fabricated by nanosphere lithography, the localized surface plasmons (LSPs) resonance can effectively increase the internal quantum efficiency from 3.9% to 13.3%. Theoretical calculation confirms that the electromagnetic field-intensity enhancement is through the dipole surface plasma coupling with the excitons of a-SiNx:O films, which demonstrates a-SiNx:O films with enhanced blue emission are promising for silicon-based light-emitting applications by patterned Ag arrays.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced ultraviolet emission from Au/Ag-nanoparticles@MgO/ZnO heterostructure light-emitting diodes: A combined effect of exciton- and photon- localized surface plasmon couplings

C. Zhang, H. Y. Xu, W. Z. Liu, L. Yang, J. Zhang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu
Opt. Express 23(12) 15565-15574 (2015)

Bright blue photoluminescence from the amorphous carbon via surface plasmon enhancement

Zhe Li, Xiang Li, Zhaohui Ren, Qian Gao, Xiwen Zhang, and Gaorong Han
Opt. Express 19(19) 17935-17943 (2011)

Enhanced emission from BaMgAl10O17:Eu2+ by localized surface plasmon resonance of silver particles

Seong Min Lee and Kyung Cheol Choi
Opt. Express 18(12) 12144-12152 (2010)

References

  • View by:
  • |
  • |
  • |

  1. G.-R. Lin, C.-J. Lin, and H.-C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
    [Crossref]
  2. G.-R. Lin, Y.-H. Pai, C.-T. Lin, and C.-C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett. 96(26), 263514 (2010).
    [Crossref]
  3. M. Bruno, M. Palummo, A. Marini, R. Del Sole, and S. Ossicini, “From Si nanowires to porous silicon: the role of excitonic effects,” Phys. Rev. Lett. 98(3), 036807 (2007).
    [Crossref] [PubMed]
  4. D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum Confined Luminescence in Si/SiO2 Superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
    [Crossref] [PubMed]
  5. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
    [Crossref] [PubMed]
  6. G.-R. Lin, C.-J. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kao, “Anomalous microphotouminescence of high-aspect-ratio Si nanopillars formatted by dry-etching Si substrate with self-aggregated Ni nanodot mask,” Appl. Phys. Lett. 90(14), 143102 (2007).
    [Crossref]
  7. D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon nanocrystals with ensemble quantum yields exceeding 60%,” Appl. Phys. Lett. 88(23), 233116 (2006).
    [Crossref]
  8. R. Huang, K. J. Chen, B. Qian, S. Chen, W. Li, J. Xu, Z. Y. Ma, and X. F. Huang, “Oxygen induced strong green light emission from low-temperature grown amorphous silicon nitride films,” Appl. Phys. Lett. 89(22), 221120 (2006).
    [Crossref]
  9. R. Huang, K. J. Chen, H. P. Dong, D. Q. Wang, H. L. Ding, W. Li, J. Xu, Z. Y. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N,” Appl. Phys. Lett. 91(11), 111104 (2007).
    [Crossref]
  10. Z. Ma, K. Chen, X. Huang, J. Xu, W. Li, D. Zhu, J. Mei, F. Qiao, and D. Feng, “Strong blue photoluminescence from as-fabricated amorphous-Si:H/SiO2 multilayers,” Appl. Phys. Lett. 85(4), 516–518 (2004).
    [Crossref]
  11. D. Dai, Z. Dong, and J. Fan, “Giant photoluminescence enhancement in SiC nanocrystals by resonant semiconductor exciton-metal surface plasmon coupling,” Nanotechnology 24(2), 025201 (2013).
    [Crossref] [PubMed]
  12. F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett. 100(3), 031113 (2012).
    [Crossref]
  13. Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vuckovic, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
    [Crossref]
  14. Z. Y. Ma, M. Y. Yan, X. F. Jiang, H. F. Yang, G. Y. Xia, X. D. Ni, T. Ling, W. Li, L. Xu, K. J. Chen, X. F. Huang, and D. Feng, “Strong blue light emission from a-SiNx:O films via localized surface plasma enhancement,” Appl. Phys. Lett. 101(1), 013106 (2012).
    [Crossref]
  15. W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett. 101(14), 142101 (2012).
    [Crossref]
  16. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
    [Crossref]
  17. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
    [Crossref]
  18. E. R. Encina and E. A. Coronado, “Plasmon coupling in silver nanosphere pairs,” J. Phys. Chem. C 114(9), 3918–3923 (2010).
    [Crossref]
  19. J. P. Clarkson, J. Winans, and P. M. Fauchet, “On the scaling behavior of dipole and quadrupole modes in coupled plasmonic nanoparticle pairs,” Opt. Mater. Express 1(5), 970–979 (2011).
    [Crossref]
  20. C. P. Burrows and W. L. Barnes, “Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays,” Opt. Express 18(3), 3187–3198 (2010).
    [Crossref] [PubMed]
  21. P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, “Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate,” Opt. Express 19(S3Suppl 3), A303–A311 (2011).
    [Crossref] [PubMed]
  22. S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths,” Nanotechnology 17(11), 2813–2820 (2006).
    [Crossref]
  23. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [Crossref] [PubMed]
  24. S. A. Maier, Plasmonics: Fundamental and Applications (Springer, 2006).
  25. M. L. Brongersma and P. G. Kik, Surface Plasmon Nano Photonics (Springer, 2007).
  26. E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  27. L. Tong, H. Wei, S. Zhang, Z. Li, and H. Xu, “Optical properties of single coupled plasmonic nanoparticles,” Phys. Chem. Chem. Phys. 15(12), 4100–4109 (2013).
    [Crossref] [PubMed]
  28. J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80(5), 1031–1046 (1993).
    [Crossref]
  29. J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
    [Crossref]
  30. J. Henson, E. Dimakis, J. DiMaria, R. Li, S. Minissale, L. Dal Negro, T. D. Moustakas, and R. Paiella, “Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays,” Opt. Express 18(20), 21322–21329 (2010).
    [Crossref] [PubMed]
  31. A. Wokaun, H. P. Lutz, A. P. King, U. P. Wild, and R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys. 79(1), 509 (1983).
    [Crossref]
  32. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [Crossref] [PubMed]

2013 (2)

D. Dai, Z. Dong, and J. Fan, “Giant photoluminescence enhancement in SiC nanocrystals by resonant semiconductor exciton-metal surface plasmon coupling,” Nanotechnology 24(2), 025201 (2013).
[Crossref] [PubMed]

L. Tong, H. Wei, S. Zhang, Z. Li, and H. Xu, “Optical properties of single coupled plasmonic nanoparticles,” Phys. Chem. Chem. Phys. 15(12), 4100–4109 (2013).
[Crossref] [PubMed]

2012 (3)

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett. 100(3), 031113 (2012).
[Crossref]

Z. Y. Ma, M. Y. Yan, X. F. Jiang, H. F. Yang, G. Y. Xia, X. D. Ni, T. Ling, W. Li, L. Xu, K. J. Chen, X. F. Huang, and D. Feng, “Strong blue light emission from a-SiNx:O films via localized surface plasma enhancement,” Appl. Phys. Lett. 101(1), 013106 (2012).
[Crossref]

W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett. 101(14), 142101 (2012).
[Crossref]

2011 (2)

2010 (4)

2009 (1)

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vuckovic, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[Crossref]

2008 (1)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

2007 (5)

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[Crossref]

M. Bruno, M. Palummo, A. Marini, R. Del Sole, and S. Ossicini, “From Si nanowires to porous silicon: the role of excitonic effects,” Phys. Rev. Lett. 98(3), 036807 (2007).
[Crossref] [PubMed]

G.-R. Lin, C.-J. Lin, and H.-C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
[Crossref]

G.-R. Lin, C.-J. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kao, “Anomalous microphotouminescence of high-aspect-ratio Si nanopillars formatted by dry-etching Si substrate with self-aggregated Ni nanodot mask,” Appl. Phys. Lett. 90(14), 143102 (2007).
[Crossref]

R. Huang, K. J. Chen, H. P. Dong, D. Q. Wang, H. L. Ding, W. Li, J. Xu, Z. Y. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N,” Appl. Phys. Lett. 91(11), 111104 (2007).
[Crossref]

2006 (3)

D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon nanocrystals with ensemble quantum yields exceeding 60%,” Appl. Phys. Lett. 88(23), 233116 (2006).
[Crossref]

R. Huang, K. J. Chen, B. Qian, S. Chen, W. Li, J. Xu, Z. Y. Ma, and X. F. Huang, “Oxygen induced strong green light emission from low-temperature grown amorphous silicon nitride films,” Appl. Phys. Lett. 89(22), 221120 (2006).
[Crossref]

S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths,” Nanotechnology 17(11), 2813–2820 (2006).
[Crossref]

2004 (2)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Z. Ma, K. Chen, X. Huang, J. Xu, W. Li, D. Zhu, J. Mei, F. Qiao, and D. Feng, “Strong blue photoluminescence from as-fabricated amorphous-Si:H/SiO2 multilayers,” Appl. Phys. Lett. 85(4), 516–518 (2004).
[Crossref]

2000 (2)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

1999 (1)

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

1996 (1)

D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum Confined Luminescence in Si/SiO2 Superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
[Crossref] [PubMed]

1993 (1)

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80(5), 1031–1046 (1993).
[Crossref]

1983 (1)

A. Wokaun, H. P. Lutz, A. P. King, U. P. Wild, and R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys. 79(1), 509 (1983).
[Crossref]

Atwater, H. A.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[Crossref]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Aussenegg, F. R.

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80(5), 1031–1046 (1993).
[Crossref]

Baribeau, J. M.

D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum Confined Luminescence in Si/SiO2 Superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
[Crossref] [PubMed]

Barnes, W. L.

Biteen, J. S.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[Crossref]

Brunner, H.

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80(5), 1031–1046 (1993).
[Crossref]

Bruno, M.

M. Bruno, M. Palummo, A. Marini, R. Del Sole, and S. Ossicini, “From Si nanowires to porous silicon: the role of excitonic effects,” Phys. Rev. Lett. 98(3), 036807 (2007).
[Crossref] [PubMed]

Burrows, C. P.

Chen, C.-C.

G.-R. Lin, Y.-H. Pai, C.-T. Lin, and C.-C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett. 96(26), 263514 (2010).
[Crossref]

Chen, K.

Z. Ma, K. Chen, X. Huang, J. Xu, W. Li, D. Zhu, J. Mei, F. Qiao, and D. Feng, “Strong blue photoluminescence from as-fabricated amorphous-Si:H/SiO2 multilayers,” Appl. Phys. Lett. 85(4), 516–518 (2004).
[Crossref]

Chen, K. J.

Z. Y. Ma, M. Y. Yan, X. F. Jiang, H. F. Yang, G. Y. Xia, X. D. Ni, T. Ling, W. Li, L. Xu, K. J. Chen, X. F. Huang, and D. Feng, “Strong blue light emission from a-SiNx:O films via localized surface plasma enhancement,” Appl. Phys. Lett. 101(1), 013106 (2012).
[Crossref]

R. Huang, K. J. Chen, H. P. Dong, D. Q. Wang, H. L. Ding, W. Li, J. Xu, Z. Y. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N,” Appl. Phys. Lett. 91(11), 111104 (2007).
[Crossref]

R. Huang, K. J. Chen, B. Qian, S. Chen, W. Li, J. Xu, Z. Y. Ma, and X. F. Huang, “Oxygen induced strong green light emission from low-temperature grown amorphous silicon nitride films,” Appl. Phys. Lett. 89(22), 221120 (2006).
[Crossref]

Chen, S.

R. Huang, K. J. Chen, B. Qian, S. Chen, W. Li, J. Xu, Z. Y. Ma, and X. F. Huang, “Oxygen induced strong green light emission from low-temperature grown amorphous silicon nitride films,” Appl. Phys. Lett. 89(22), 221120 (2006).
[Crossref]

Cheng, S.-L.

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vuckovic, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[Crossref]

Clarkson, J. P.

Coronado, E. A.

E. R. Encina and E. A. Coronado, “Plasmon coupling in silver nanosphere pairs,” J. Phys. Chem. C 114(9), 3918–3923 (2010).
[Crossref]

Dai, D.

D. Dai, Z. Dong, and J. Fan, “Giant photoluminescence enhancement in SiC nanocrystals by resonant semiconductor exciton-metal surface plasmon coupling,” Nanotechnology 24(2), 025201 (2013).
[Crossref] [PubMed]

Dal Negro, L.

Del Sole, R.

M. Bruno, M. Palummo, A. Marini, R. Del Sole, and S. Ossicini, “From Si nanowires to porous silicon: the role of excitonic effects,” Phys. Rev. Lett. 98(3), 036807 (2007).
[Crossref] [PubMed]

Dimakis, E.

DiMaria, J.

Ding, H. L.

R. Huang, K. J. Chen, H. P. Dong, D. Q. Wang, H. L. Ding, W. Li, J. Xu, Z. Y. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N,” Appl. Phys. Lett. 91(11), 111104 (2007).
[Crossref]

Dong, H. P.

R. Huang, K. J. Chen, H. P. Dong, D. Q. Wang, H. L. Ding, W. Li, J. Xu, Z. Y. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N,” Appl. Phys. Lett. 91(11), 111104 (2007).
[Crossref]

Dong, Z.

D. Dai, Z. Dong, and J. Fan, “Giant photoluminescence enhancement in SiC nanocrystals by resonant semiconductor exciton-metal surface plasmon coupling,” Nanotechnology 24(2), 025201 (2013).
[Crossref] [PubMed]

Duval, M. L.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

Encina, E. R.

E. R. Encina and E. A. Coronado, “Plasmon coupling in silver nanosphere pairs,” J. Phys. Chem. C 114(9), 3918–3923 (2010).
[Crossref]

Ernst, R. R.

A. Wokaun, H. P. Lutz, A. P. King, U. P. Wild, and R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys. 79(1), 509 (1983).
[Crossref]

Fan, J.

D. Dai, Z. Dong, and J. Fan, “Giant photoluminescence enhancement in SiC nanocrystals by resonant semiconductor exciton-metal surface plasmon coupling,” Nanotechnology 24(2), 025201 (2013).
[Crossref] [PubMed]

Fauchet, P. M.

Feng, D.

Z. Y. Ma, M. Y. Yan, X. F. Jiang, H. F. Yang, G. Y. Xia, X. D. Ni, T. Ling, W. Li, L. Xu, K. J. Chen, X. F. Huang, and D. Feng, “Strong blue light emission from a-SiNx:O films via localized surface plasma enhancement,” Appl. Phys. Lett. 101(1), 013106 (2012).
[Crossref]

Z. Ma, K. Chen, X. Huang, J. Xu, W. Li, D. Zhu, J. Mei, F. Qiao, and D. Feng, “Strong blue photoluminescence from as-fabricated amorphous-Si:H/SiO2 multilayers,” Appl. Phys. Lett. 85(4), 516–518 (2004).
[Crossref]

Franzò, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

Gong, Y.

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vuckovic, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[Crossref]

Haynes, C. L.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

Henson, J.

Huang, R.

R. Huang, K. J. Chen, H. P. Dong, D. Q. Wang, H. L. Ding, W. Li, J. Xu, Z. Y. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N,” Appl. Phys. Lett. 91(11), 111104 (2007).
[Crossref]

R. Huang, K. J. Chen, B. Qian, S. Chen, W. Li, J. Xu, Z. Y. Ma, and X. F. Huang, “Oxygen induced strong green light emission from low-temperature grown amorphous silicon nitride films,” Appl. Phys. Lett. 89(22), 221120 (2006).
[Crossref]

Huang, X.

Z. Ma, K. Chen, X. Huang, J. Xu, W. Li, D. Zhu, J. Mei, F. Qiao, and D. Feng, “Strong blue photoluminescence from as-fabricated amorphous-Si:H/SiO2 multilayers,” Appl. Phys. Lett. 85(4), 516–518 (2004).
[Crossref]

Huang, X. F.

Z. Y. Ma, M. Y. Yan, X. F. Jiang, H. F. Yang, G. Y. Xia, X. D. Ni, T. Ling, W. Li, L. Xu, K. J. Chen, X. F. Huang, and D. Feng, “Strong blue light emission from a-SiNx:O films via localized surface plasma enhancement,” Appl. Phys. Lett. 101(1), 013106 (2012).
[Crossref]

R. Huang, K. J. Chen, B. Qian, S. Chen, W. Li, J. Xu, Z. Y. Ma, and X. F. Huang, “Oxygen induced strong green light emission from low-temperature grown amorphous silicon nitride films,” Appl. Phys. Lett. 89(22), 221120 (2006).
[Crossref]

Hulteen, J. C.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

Jensen, T. R.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

Jiang, X. F.

Z. Y. Ma, M. Y. Yan, X. F. Jiang, H. F. Yang, G. Y. Xia, X. D. Ni, T. Ling, W. Li, L. Xu, K. J. Chen, X. F. Huang, and D. Feng, “Strong blue light emission from a-SiNx:O films via localized surface plasma enhancement,” Appl. Phys. Lett. 101(1), 013106 (2012).
[Crossref]

Jurbergs, D.

D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon nanocrystals with ensemble quantum yields exceeding 60%,” Appl. Phys. Lett. 88(23), 233116 (2006).
[Crossref]

Kao, C.-C.

G.-R. Lin, C.-J. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kao, “Anomalous microphotouminescence of high-aspect-ratio Si nanopillars formatted by dry-etching Si substrate with self-aggregated Ni nanodot mask,” Appl. Phys. Lett. 90(14), 143102 (2007).
[Crossref]

King, A. P.

A. Wokaun, H. P. Lutz, A. P. King, U. P. Wild, and R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys. 79(1), 509 (1983).
[Crossref]

Kortshagen, U.

D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon nanocrystals with ensemble quantum yields exceeding 60%,” Appl. Phys. Lett. 88(23), 233116 (2006).
[Crossref]

Kümmerlen, J.

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80(5), 1031–1046 (1993).
[Crossref]

Kuo, H.-C.

G.-R. Lin, C.-J. Lin, and H.-C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
[Crossref]

G.-R. Lin, C.-J. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kao, “Anomalous microphotouminescence of high-aspect-ratio Si nanopillars formatted by dry-etching Si substrate with self-aggregated Ni nanodot mask,” Appl. Phys. Lett. 90(14), 143102 (2007).
[Crossref]

Leitner, A.

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80(5), 1031–1046 (1993).
[Crossref]

Lewis, N. S.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[Crossref]

Li, D.

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett. 100(3), 031113 (2012).
[Crossref]

Li, R.

Li, W.

Z. Y. Ma, M. Y. Yan, X. F. Jiang, H. F. Yang, G. Y. Xia, X. D. Ni, T. Ling, W. Li, L. Xu, K. J. Chen, X. F. Huang, and D. Feng, “Strong blue light emission from a-SiNx:O films via localized surface plasma enhancement,” Appl. Phys. Lett. 101(1), 013106 (2012).
[Crossref]

R. Huang, K. J. Chen, H. P. Dong, D. Q. Wang, H. L. Ding, W. Li, J. Xu, Z. Y. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N,” Appl. Phys. Lett. 91(11), 111104 (2007).
[Crossref]

R. Huang, K. J. Chen, B. Qian, S. Chen, W. Li, J. Xu, Z. Y. Ma, and X. F. Huang, “Oxygen induced strong green light emission from low-temperature grown amorphous silicon nitride films,” Appl. Phys. Lett. 89(22), 221120 (2006).
[Crossref]

Z. Ma, K. Chen, X. Huang, J. Xu, W. Li, D. Zhu, J. Mei, F. Qiao, and D. Feng, “Strong blue photoluminescence from as-fabricated amorphous-Si:H/SiO2 multilayers,” Appl. Phys. Lett. 85(4), 516–518 (2004).
[Crossref]

Li, Z.

L. Tong, H. Wei, S. Zhang, Z. Li, and H. Xu, “Optical properties of single coupled plasmonic nanoparticles,” Phys. Chem. Chem. Phys. 15(12), 4100–4109 (2013).
[Crossref] [PubMed]

Lin, C.-J.

G.-R. Lin, C.-J. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kao, “Anomalous microphotouminescence of high-aspect-ratio Si nanopillars formatted by dry-etching Si substrate with self-aggregated Ni nanodot mask,” Appl. Phys. Lett. 90(14), 143102 (2007).
[Crossref]

G.-R. Lin, C.-J. Lin, and H.-C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
[Crossref]

Lin, C.-T.

G.-R. Lin, Y.-H. Pai, C.-T. Lin, and C.-C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett. 96(26), 263514 (2010).
[Crossref]

Lin, G.-R.

G.-R. Lin, Y.-H. Pai, C.-T. Lin, and C.-C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett. 96(26), 263514 (2010).
[Crossref]

G.-R. Lin, C.-J. Lin, and H.-C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
[Crossref]

G.-R. Lin, C.-J. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kao, “Anomalous microphotouminescence of high-aspect-ratio Si nanopillars formatted by dry-etching Si substrate with self-aggregated Ni nanodot mask,” Appl. Phys. Lett. 90(14), 143102 (2007).
[Crossref]

Lin, H.-S.

G.-R. Lin, C.-J. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kao, “Anomalous microphotouminescence of high-aspect-ratio Si nanopillars formatted by dry-etching Si substrate with self-aggregated Ni nanodot mask,” Appl. Phys. Lett. 90(14), 143102 (2007).
[Crossref]

Ling, T.

Z. Y. Ma, M. Y. Yan, X. F. Jiang, H. F. Yang, G. Y. Xia, X. D. Ni, T. Ling, W. Li, L. Xu, K. J. Chen, X. F. Huang, and D. Feng, “Strong blue light emission from a-SiNx:O films via localized surface plasma enhancement,” Appl. Phys. Lett. 101(1), 013106 (2012).
[Crossref]

Liu, W. Z.

W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett. 101(14), 142101 (2012).
[Crossref]

Liu, Y. C.

W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett. 101(14), 142101 (2012).
[Crossref]

Lockwood, D. J.

D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum Confined Luminescence in Si/SiO2 Superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
[Crossref] [PubMed]

Lu, J.

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vuckovic, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[Crossref]

Lu, Z. H.

D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum Confined Luminescence in Si/SiO2 Superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
[Crossref] [PubMed]

Lutz, H. P.

A. Wokaun, H. P. Lutz, A. P. King, U. P. Wild, and R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys. 79(1), 509 (1983).
[Crossref]

Ma, J. G.

W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett. 101(14), 142101 (2012).
[Crossref]

Ma, Z.

Z. Ma, K. Chen, X. Huang, J. Xu, W. Li, D. Zhu, J. Mei, F. Qiao, and D. Feng, “Strong blue photoluminescence from as-fabricated amorphous-Si:H/SiO2 multilayers,” Appl. Phys. Lett. 85(4), 516–518 (2004).
[Crossref]

Ma, Z. Y.

Z. Y. Ma, M. Y. Yan, X. F. Jiang, H. F. Yang, G. Y. Xia, X. D. Ni, T. Ling, W. Li, L. Xu, K. J. Chen, X. F. Huang, and D. Feng, “Strong blue light emission from a-SiNx:O films via localized surface plasma enhancement,” Appl. Phys. Lett. 101(1), 013106 (2012).
[Crossref]

R. Huang, K. J. Chen, H. P. Dong, D. Q. Wang, H. L. Ding, W. Li, J. Xu, Z. Y. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N,” Appl. Phys. Lett. 91(11), 111104 (2007).
[Crossref]

R. Huang, K. J. Chen, B. Qian, S. Chen, W. Li, J. Xu, Z. Y. Ma, and X. F. Huang, “Oxygen induced strong green light emission from low-temperature grown amorphous silicon nitride films,” Appl. Phys. Lett. 89(22), 221120 (2006).
[Crossref]

Malinsky, M. D.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

Mangolini, L.

D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon nanocrystals with ensemble quantum yields exceeding 60%,” Appl. Phys. Lett. 88(23), 233116 (2006).
[Crossref]

Marini, A.

M. Bruno, M. Palummo, A. Marini, R. Del Sole, and S. Ossicini, “From Si nanowires to porous silicon: the role of excitonic effects,” Phys. Rev. Lett. 98(3), 036807 (2007).
[Crossref] [PubMed]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

Mei, J.

Z. Ma, K. Chen, X. Huang, J. Xu, W. Li, D. Zhu, J. Mei, F. Qiao, and D. Feng, “Strong blue photoluminescence from as-fabricated amorphous-Si:H/SiO2 multilayers,” Appl. Phys. Lett. 85(4), 516–518 (2004).
[Crossref]

Mertens, H.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[Crossref]

Minissale, S.

Moustakas, T. D.

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Ni, X. D.

Z. Y. Ma, M. Y. Yan, X. F. Jiang, H. F. Yang, G. Y. Xia, X. D. Ni, T. Ling, W. Li, L. Xu, K. J. Chen, X. F. Huang, and D. Feng, “Strong blue light emission from a-SiNx:O films via localized surface plasma enhancement,” Appl. Phys. Lett. 101(1), 013106 (2012).
[Crossref]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Nishi, Y.

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vuckovic, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[Crossref]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Ossicini, S.

M. Bruno, M. Palummo, A. Marini, R. Del Sole, and S. Ossicini, “From Si nanowires to porous silicon: the role of excitonic effects,” Phys. Rev. Lett. 98(3), 036807 (2007).
[Crossref] [PubMed]

Pai, Y.-H.

G.-R. Lin, Y.-H. Pai, C.-T. Lin, and C.-C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett. 96(26), 263514 (2010).
[Crossref]

Paiella, R.

Palummo, M.

M. Bruno, M. Palummo, A. Marini, R. Del Sole, and S. Ossicini, “From Si nanowires to porous silicon: the role of excitonic effects,” Phys. Rev. Lett. 98(3), 036807 (2007).
[Crossref] [PubMed]

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

Polman, A.

P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, “Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate,” Opt. Express 19(S3Suppl 3), A303–A311 (2011).
[Crossref] [PubMed]

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[Crossref]

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

Qian, B.

R. Huang, K. J. Chen, B. Qian, S. Chen, W. Li, J. Xu, Z. Y. Ma, and X. F. Huang, “Oxygen induced strong green light emission from low-temperature grown amorphous silicon nitride films,” Appl. Phys. Lett. 89(22), 221120 (2006).
[Crossref]

Qiao, F.

Z. Ma, K. Chen, X. Huang, J. Xu, W. Li, D. Zhu, J. Mei, F. Qiao, and D. Feng, “Strong blue photoluminescence from as-fabricated amorphous-Si:H/SiO2 multilayers,” Appl. Phys. Lett. 85(4), 516–518 (2004).
[Crossref]

Que, D.

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett. 100(3), 031113 (2012).
[Crossref]

Rogojina, E.

D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon nanocrystals with ensemble quantum yields exceeding 60%,” Appl. Phys. Lett. 88(23), 233116 (2006).
[Crossref]

Schatz, G. C.

S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths,” Nanotechnology 17(11), 2813–2820 (2006).
[Crossref]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Smith, M. T.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

Spinelli, P.

Sweatlock, L. A.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[Crossref]

Tong, L.

L. Tong, H. Wei, S. Zhang, Z. Li, and H. Xu, “Optical properties of single coupled plasmonic nanoparticles,” Phys. Chem. Chem. Phys. 15(12), 4100–4109 (2013).
[Crossref] [PubMed]

Treichel, D. A.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

Van Duyne, R. P.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

van Lare, C.

Verhagen, E.

Vuckovic, J.

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vuckovic, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[Crossref]

Wang, D. Q.

R. Huang, K. J. Chen, H. P. Dong, D. Q. Wang, H. L. Ding, W. Li, J. Xu, Z. Y. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N,” Appl. Phys. Lett. 91(11), 111104 (2007).
[Crossref]

Wang, F.

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett. 100(3), 031113 (2012).
[Crossref]

Wang, J. N.

W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett. 101(14), 142101 (2012).
[Crossref]

Wei, H.

L. Tong, H. Wei, S. Zhang, Z. Li, and H. Xu, “Optical properties of single coupled plasmonic nanoparticles,” Phys. Chem. Chem. Phys. 15(12), 4100–4109 (2013).
[Crossref] [PubMed]

Wild, U. P.

A. Wokaun, H. P. Lutz, A. P. King, U. P. Wild, and R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys. 79(1), 509 (1983).
[Crossref]

Winans, J.

Wokaun, A.

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80(5), 1031–1046 (1993).
[Crossref]

A. Wokaun, H. P. Lutz, A. P. King, U. P. Wild, and R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys. 79(1), 509 (1983).
[Crossref]

Xia, G. Y.

Z. Y. Ma, M. Y. Yan, X. F. Jiang, H. F. Yang, G. Y. Xia, X. D. Ni, T. Ling, W. Li, L. Xu, K. J. Chen, X. F. Huang, and D. Feng, “Strong blue light emission from a-SiNx:O films via localized surface plasma enhancement,” Appl. Phys. Lett. 101(1), 013106 (2012).
[Crossref]

Xu, H.

L. Tong, H. Wei, S. Zhang, Z. Li, and H. Xu, “Optical properties of single coupled plasmonic nanoparticles,” Phys. Chem. Chem. Phys. 15(12), 4100–4109 (2013).
[Crossref] [PubMed]

Xu, H. Y.

W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett. 101(14), 142101 (2012).
[Crossref]

Xu, J.

R. Huang, K. J. Chen, H. P. Dong, D. Q. Wang, H. L. Ding, W. Li, J. Xu, Z. Y. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N,” Appl. Phys. Lett. 91(11), 111104 (2007).
[Crossref]

R. Huang, K. J. Chen, B. Qian, S. Chen, W. Li, J. Xu, Z. Y. Ma, and X. F. Huang, “Oxygen induced strong green light emission from low-temperature grown amorphous silicon nitride films,” Appl. Phys. Lett. 89(22), 221120 (2006).
[Crossref]

Z. Ma, K. Chen, X. Huang, J. Xu, W. Li, D. Zhu, J. Mei, F. Qiao, and D. Feng, “Strong blue photoluminescence from as-fabricated amorphous-Si:H/SiO2 multilayers,” Appl. Phys. Lett. 85(4), 516–518 (2004).
[Crossref]

Xu, L.

Z. Y. Ma, M. Y. Yan, X. F. Jiang, H. F. Yang, G. Y. Xia, X. D. Ni, T. Ling, W. Li, L. Xu, K. J. Chen, X. F. Huang, and D. Feng, “Strong blue light emission from a-SiNx:O films via localized surface plasma enhancement,” Appl. Phys. Lett. 101(1), 013106 (2012).
[Crossref]

R. Huang, K. J. Chen, H. P. Dong, D. Q. Wang, H. L. Ding, W. Li, J. Xu, Z. Y. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N,” Appl. Phys. Lett. 91(11), 111104 (2007).
[Crossref]

Yan, M. Y.

Z. Y. Ma, M. Y. Yan, X. F. Jiang, H. F. Yang, G. Y. Xia, X. D. Ni, T. Ling, W. Li, L. Xu, K. J. Chen, X. F. Huang, and D. Feng, “Strong blue light emission from a-SiNx:O films via localized surface plasma enhancement,” Appl. Phys. Lett. 101(1), 013106 (2012).
[Crossref]

Yang, D.

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett. 100(3), 031113 (2012).
[Crossref]

Yang, H. F.

Z. Y. Ma, M. Y. Yan, X. F. Jiang, H. F. Yang, G. Y. Xia, X. D. Ni, T. Ling, W. Li, L. Xu, K. J. Chen, X. F. Huang, and D. Feng, “Strong blue light emission from a-SiNx:O films via localized surface plasma enhancement,” Appl. Phys. Lett. 101(1), 013106 (2012).
[Crossref]

Zhang, C.

W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett. 101(14), 142101 (2012).
[Crossref]

Zhang, L. X.

W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett. 101(14), 142101 (2012).
[Crossref]

Zhang, S.

L. Tong, H. Wei, S. Zhang, Z. Li, and H. Xu, “Optical properties of single coupled plasmonic nanoparticles,” Phys. Chem. Chem. Phys. 15(12), 4100–4109 (2013).
[Crossref] [PubMed]

Zhu, D.

Z. Ma, K. Chen, X. Huang, J. Xu, W. Li, D. Zhu, J. Mei, F. Qiao, and D. Feng, “Strong blue photoluminescence from as-fabricated amorphous-Si:H/SiO2 multilayers,” Appl. Phys. Lett. 85(4), 516–518 (2004).
[Crossref]

Zou, S.

S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths,” Nanotechnology 17(11), 2813–2820 (2006).
[Crossref]

Appl. Phys. Lett. (11)

G.-R. Lin, C.-J. Lin, and H.-C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
[Crossref]

G.-R. Lin, Y.-H. Pai, C.-T. Lin, and C.-C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett. 96(26), 263514 (2010).
[Crossref]

G.-R. Lin, C.-J. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kao, “Anomalous microphotouminescence of high-aspect-ratio Si nanopillars formatted by dry-etching Si substrate with self-aggregated Ni nanodot mask,” Appl. Phys. Lett. 90(14), 143102 (2007).
[Crossref]

D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon nanocrystals with ensemble quantum yields exceeding 60%,” Appl. Phys. Lett. 88(23), 233116 (2006).
[Crossref]

R. Huang, K. J. Chen, B. Qian, S. Chen, W. Li, J. Xu, Z. Y. Ma, and X. F. Huang, “Oxygen induced strong green light emission from low-temperature grown amorphous silicon nitride films,” Appl. Phys. Lett. 89(22), 221120 (2006).
[Crossref]

R. Huang, K. J. Chen, H. P. Dong, D. Q. Wang, H. L. Ding, W. Li, J. Xu, Z. Y. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N,” Appl. Phys. Lett. 91(11), 111104 (2007).
[Crossref]

Z. Ma, K. Chen, X. Huang, J. Xu, W. Li, D. Zhu, J. Mei, F. Qiao, and D. Feng, “Strong blue photoluminescence from as-fabricated amorphous-Si:H/SiO2 multilayers,” Appl. Phys. Lett. 85(4), 516–518 (2004).
[Crossref]

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett. 100(3), 031113 (2012).
[Crossref]

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vuckovic, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[Crossref]

Z. Y. Ma, M. Y. Yan, X. F. Jiang, H. F. Yang, G. Y. Xia, X. D. Ni, T. Ling, W. Li, L. Xu, K. J. Chen, X. F. Huang, and D. Feng, “Strong blue light emission from a-SiNx:O films via localized surface plasma enhancement,” Appl. Phys. Lett. 101(1), 013106 (2012).
[Crossref]

W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett. 101(14), 142101 (2012).
[Crossref]

J. Chem. Phys. (1)

A. Wokaun, H. P. Lutz, A. P. King, U. P. Wild, and R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys. 79(1), 509 (1983).
[Crossref]

J. Phys. Chem. B (2)

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

J. Phys. Chem. C (2)

E. R. Encina and E. A. Coronado, “Plasmon coupling in silver nanosphere pairs,” J. Phys. Chem. C 114(9), 3918–3923 (2010).
[Crossref]

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[Crossref]

Mol. Phys. (1)

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80(5), 1031–1046 (1993).
[Crossref]

Nanotechnology (2)

S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths,” Nanotechnology 17(11), 2813–2820 (2006).
[Crossref]

D. Dai, Z. Dong, and J. Fan, “Giant photoluminescence enhancement in SiC nanocrystals by resonant semiconductor exciton-metal surface plasmon coupling,” Nanotechnology 24(2), 025201 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Nature (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

L. Tong, H. Wei, S. Zhang, Z. Li, and H. Xu, “Optical properties of single coupled plasmonic nanoparticles,” Phys. Chem. Chem. Phys. 15(12), 4100–4109 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

M. Bruno, M. Palummo, A. Marini, R. Del Sole, and S. Ossicini, “From Si nanowires to porous silicon: the role of excitonic effects,” Phys. Rev. Lett. 98(3), 036807 (2007).
[Crossref] [PubMed]

D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum Confined Luminescence in Si/SiO2 Superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
[Crossref] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Other (3)

S. A. Maier, Plasmonics: Fundamental and Applications (Springer, 2006).

M. L. Brongersma and P. G. Kik, Surface Plasmon Nano Photonics (Springer, 2007).

E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagrams of the patterned Ag arrays/a-SiNx:O structures fabricated using nanosphere lithography and PECVD technology.
Fig. 2
Fig. 2 (a) AFM images of hexagonal arrays of Ag nanoparticles fabricated using a single-layer PS mask. (b) AFM images of hexagonal arrays of Ag nanoparticle containing center fabricated using a double-layer PS mask. The geometry and section analysis of Ag nanoparticles are for both single and double layer PS mask.
Fig. 3
Fig. 3 Extinction spectra of a-SiNx:O films on a bare Si substrate and the Si substrates with different hexagonal arrays of Ag nanoparticles.
Fig. 4
Fig. 4 (a) Photograph of blue PL from a-SiNx:O films on the Si substrate with hexagonal arrays of Ag nanoparticles at room temperature. (b) PL spectra of a-SiNx:O films on different substrates measured at room temperature. The inset shows PL intensity as a function of temperature from 120 to 9.3 K. (c) PL enhancement factors as a function of LSPs wavelength for a-SiNx:O films on the Si substrate with different patterned Ag arrays of nanoparticles.
Fig. 5
Fig. 5 (a) FDTD theoretical calculation of extinction spectrum from the a-SiNx:O films on the substrate with hexagonal Ag nanoparticles arrays, the inset shows the 3D diagram of Si substrate/hexagonal Ag nanoparticles arrays/a-SiNx:O system. (b) and (c) The near-field intensity enhancement of LSPs along the x-y plane for different Ag arrays/a-SiNx:O structure under 465 nm light illumination through FDTD calculation.
Fig. 6
Fig. 6 FDTD theoretical calculation of the near-field intensity enhancement of LSPs along the x-z and y-z plane (a)-(b) for the single Ag nanoparticle in hexagonal Ag nanoarrays/a-SiNx:O structure under 465 nm light illumination and (c)-(d)) for the single Ag nanoparticle in hexagonal Ag nanoarrays containing central particles/a-SiNx:O structure under 465 nm light illumination.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Γ rad ,   enh  ( W PL ) = Γ R , 0 ( W PL ) | E enh | 2 / | E 0 | 2
η i n t = rad / ( rad + Γ nr ) = 1 Γ nr / ( rad + Γ nr )

Metrics