Abstract

We proposed a novel biased optical Kerr gated imaging (BOKGI) method for ultrafast imaging. The imaging performance of the BOKGI system has been investigated. Experimental results showed that by using the BOKGI, the high spatial frequency components of the detected object could be effectively retrieved, which are often filtered by the photo-induced soft aperture in a conventional OKGI system. Comparing with the conventional OKGI method, the BOKGI method could enhance the sharpness of images and provide a higher spatial resolution of the imaging system. In addition, the influence of the biased angle on the BOKGI performance has been also investigated.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimum heterodyning angle for heterodyned optical Kerr gated ballistic imaging

Shichao Xu, Wenjiang Tan, Jinhai Si, Pingping Zhan, Junyi Tong, and Xun Hou
Opt. Express 23(2) 1800-1805 (2015)

Three-dimensional shape measurement of a diffusing surface by use of a femtosecond amplifying optical Kerr gate

Takeshi Yasui, Kaoru Minoshima, and Hirokazu Matsumoto
Appl. Opt. 39(1) 65-71 (2000)

Microscopic time-resolved two-dimensional imaging with a femtosecond amplifying optical Kerr gate

Takeshi Yasui, Kaoru Minoshima, Emmanuel Abraham, and Hirokazu Matsumoto
Appl. Opt. 41(24) 5191-5194 (2002)

References

  • View by:
  • |
  • |
  • |

  1. S. Z. Islam, T. Gayen, B. B. Das, L. Shi, M. Seredych, A. Moussawi, T. J. Bandosz, and R. R. Alfano, “Time-resolved photoluminescence of Zn(OH)2 and its composites with graphite oxides,” Opt. Lett. 38(13), 2227–2229 (2013).
    [Crossref] [PubMed]
  2. C. Calba, L. Méès, C. Rozé, and T. Girasole, “Ultrashort pulse propagation through a strongly scattering medium: simulation and experiments,” J. Opt. Soc. Am. A 25(7), 1541–1550 (2008).
    [Crossref] [PubMed]
  3. S. Idlahcen, C. Rozé, L. Méès, T. Girasole, and J. Blaisot, “Sub-picsecond ballistic imaging of a liquid jet,” Exp. Fluids 52(2), 289–298 (2012).
    [Crossref]
  4. M. Bashkansky, C. L. Adler, and J. Reintjes, “Coherently amplified Raman polarization gate for imaging through scattering media,” Opt. Lett. 19(5), 350–352 (1994).
    [Crossref] [PubMed]
  5. H. Purwar, S. Idlahcen, C. Rozé, D. Sedarsky, and J. B. Blaisot, “Collinear, two-color optical Kerr effect shutter for ultrafast time-resolved imaging,” Opt. Express 22(13), 15778–15790 (2014).
    [Crossref] [PubMed]
  6. T. Fujino, T. Fujima, and T. Tahara, “Picosecond time-resolved imaging by nonscanning fluorescence Kerr gate microscope,” Appl. Phys. Lett. 87(13), 131105 (2005).
    [Crossref]
  7. L. Gundlach and P. Piotrowiak, “Femtosecond Kerr-gated wide-field fluorescence microscopy,” Opt. Lett. 33(9), 992–994 (2008).
    [Crossref] [PubMed]
  8. D. R. Symes, U. Wegner, H. C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett. 96(1), 011109 (2010).
    [Crossref]
  9. K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultanous 3-D Imaging Using Chirped Ultrashort Optical pulse,” Jpn. J. Appl. Phys. 33(9B), L1348–L1351 (1994).
    [Crossref]
  10. T. Yasui, K. Minoshima, and H. Matsumoto, “Three-dimensional shape measurement of a diffusing surface by use of a femtosecond amplifying optical Kerr gate,” Appl. Opt. 39(1), 65–71 (2000).
    [Crossref] [PubMed]
  11. W. Tan, Y. Yang, J. Si, J. Tong, W. Yi, F. Chen, and X. Hou, “Shape measurement of objects using an ultrafast optical Kerr gate of bismuth glass,” J. Appl. Phys. 107(4), 043104 (2010).
    [Crossref]
  12. A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35(16), 2732–2734 (2010).
    [Crossref] [PubMed]
  13. L. Zevallos, E. Manuel, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86(1), 011115 (2005).
    [Crossref]
  14. D. Sedarsky, J. Gord, C. Carter, T. Meyer, and M. Linne, “Fast-framing ballistic imaging of velocity in an aerated spray,” Opt. Lett. 34(18), 2748–2750 (2009).
    [Crossref] [PubMed]
  15. J. B. Schmidt, Z. D. Schaefer, T. R. Meyer, S. Roy, S. A. Danczyk, and J. R. Gord, “Ultrafast time-gated ballistic-photon imaging and shadowgraphy in optically dense rocket sprays,” Appl. Opt. 48(4), B137–B144 (2009).
    [Crossref] [PubMed]
  16. F. X. d’Abzac, M. Kervella, L. Hespel, and T. Dartigalongue, “Experimental and numerical analysis of ballistic and scattered light using femtosecond optical Kerr gating: a way for the characterization of strongly scattering media,” Opt. Express 20(9), 9604–9615 (2012).
    [Crossref] [PubMed]
  17. W. Tan, Z. Zhou, A. Lin, J. Si, P. Zhan, B. Wu, and X. Hou, “High contrast ballistic imaging using femtosecond optical Kerr gate of tellurite glass,” Opt. Express 21(6), 7740–7747 (2013).
    [Crossref] [PubMed]
  18. Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20(13), 1498–1500 (1995).
    [Crossref] [PubMed]
  19. L. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr - Fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18(3), 241–243 (1993).
    [Crossref] [PubMed]
  20. A. D. Slepkov, F. A. Hegmann, Y. Zhao, R. R. Tykwinski, and K. Kamada, “Ultrafast optical Kerr effect measurements of third-order nonlinearities in cross-conjugated iso-polydiacetylene oligomers,” J. Chem. Phys. 116(9), 3834–3840 (2002).
    [Crossref]
  21. P. Yang, L. Liu, and L. Xu, “Dynamic evolution of light-induced orientation of dye-doped liquid crystals in liquid phase studied by time-resolved optically heterodyned optical Kerr effect technique,” J. Chem. Phys. 128(8), 084710 (2008).
    [Crossref] [PubMed]
  22. H. M. Fan, G. J. You, Y. Li, Z. Zheng, H. R. Tan, Z. X. Shen, S. H. Tang, and Y. P. Feng, “Shape-controlled synthesis of single-crystalline Fe2O3 hollow nanocrystals and their tunable optical properties,” J. Phys. Chem. C 113(22), 9928–9935 (2009).
    [Crossref]
  23. M. E. Orczyk, M. Samoc, J. Swiatkiewicz, and P. N. Prasad, “Dynamics of third-order nonlinearity of canthaxanthin carotenoid by the optically heterodyned phase-tuned femtosecond optical Kerr gate,” J. Chem. Phys. 98(4), 2524–2533 (1993).
    [Crossref]

2014 (1)

2013 (2)

2012 (2)

2010 (3)

D. R. Symes, U. Wegner, H. C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett. 96(1), 011109 (2010).
[Crossref]

W. Tan, Y. Yang, J. Si, J. Tong, W. Yi, F. Chen, and X. Hou, “Shape measurement of objects using an ultrafast optical Kerr gate of bismuth glass,” J. Appl. Phys. 107(4), 043104 (2010).
[Crossref]

A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35(16), 2732–2734 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (3)

2005 (2)

T. Fujino, T. Fujima, and T. Tahara, “Picosecond time-resolved imaging by nonscanning fluorescence Kerr gate microscope,” Appl. Phys. Lett. 87(13), 131105 (2005).
[Crossref]

L. Zevallos, E. Manuel, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86(1), 011115 (2005).
[Crossref]

2002 (1)

A. D. Slepkov, F. A. Hegmann, Y. Zhao, R. R. Tykwinski, and K. Kamada, “Ultrafast optical Kerr effect measurements of third-order nonlinearities in cross-conjugated iso-polydiacetylene oligomers,” J. Chem. Phys. 116(9), 3834–3840 (2002).
[Crossref]

2000 (1)

1995 (1)

1994 (2)

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultanous 3-D Imaging Using Chirped Ultrashort Optical pulse,” Jpn. J. Appl. Phys. 33(9B), L1348–L1351 (1994).
[Crossref]

M. Bashkansky, C. L. Adler, and J. Reintjes, “Coherently amplified Raman polarization gate for imaging through scattering media,” Opt. Lett. 19(5), 350–352 (1994).
[Crossref] [PubMed]

1993 (2)

L. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr - Fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18(3), 241–243 (1993).
[Crossref] [PubMed]

M. E. Orczyk, M. Samoc, J. Swiatkiewicz, and P. N. Prasad, “Dynamics of third-order nonlinearity of canthaxanthin carotenoid by the optically heterodyned phase-tuned femtosecond optical Kerr gate,” J. Chem. Phys. 98(4), 2524–2533 (1993).
[Crossref]

Adler, C. L.

Ahlswede, H. C.

D. R. Symes, U. Wegner, H. C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett. 96(1), 011109 (2010).
[Crossref]

Alfano, R. R.

Alrubaiee, M.

L. Zevallos, E. Manuel, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86(1), 011115 (2005).
[Crossref]

Bandosz, T. J.

Bashkansky, M.

Bassi, A.

Blaisot, J.

S. Idlahcen, C. Rozé, L. Méès, T. Girasole, and J. Blaisot, “Sub-picsecond ballistic imaging of a liquid jet,” Exp. Fluids 52(2), 289–298 (2012).
[Crossref]

Blaisot, J. B.

Brida, D.

Calba, C.

Carter, C.

Cerullo, G.

Chen, F.

W. Tan, Y. Yang, J. Si, J. Tong, W. Yi, F. Chen, and X. Hou, “Shape measurement of objects using an ultrafast optical Kerr gate of bismuth glass,” J. Appl. Phys. 107(4), 043104 (2010).
[Crossref]

Cubeddu, R.

d’Abzac, F. X.

D’Andrea, C.

Dai, H.

Danczyk, S. A.

Dartigalongue, T.

Das, B. B.

De Silvestri, S.

Divall, E. J.

D. R. Symes, U. Wegner, H. C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett. 96(1), 011109 (2010).
[Crossref]

Fan, H. M.

H. M. Fan, G. J. You, Y. Li, Z. Zheng, H. R. Tan, Z. X. Shen, S. H. Tang, and Y. P. Feng, “Shape-controlled synthesis of single-crystalline Fe2O3 hollow nanocrystals and their tunable optical properties,” J. Phys. Chem. C 113(22), 9928–9935 (2009).
[Crossref]

Feng, Y. P.

H. M. Fan, G. J. You, Y. Li, Z. Zheng, H. R. Tan, Z. X. Shen, S. H. Tang, and Y. P. Feng, “Shape-controlled synthesis of single-crystalline Fe2O3 hollow nanocrystals and their tunable optical properties,” J. Phys. Chem. C 113(22), 9928–9935 (2009).
[Crossref]

Fujima, T.

T. Fujino, T. Fujima, and T. Tahara, “Picosecond time-resolved imaging by nonscanning fluorescence Kerr gate microscope,” Appl. Phys. Lett. 87(13), 131105 (2005).
[Crossref]

Fujino, T.

T. Fujino, T. Fujima, and T. Tahara, “Picosecond time-resolved imaging by nonscanning fluorescence Kerr gate microscope,” Appl. Phys. Lett. 87(13), 131105 (2005).
[Crossref]

Gallegos, P. L.

D. R. Symes, U. Wegner, H. C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett. 96(1), 011109 (2010).
[Crossref]

Gayen, S. K.

L. Zevallos, E. Manuel, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86(1), 011115 (2005).
[Crossref]

Gayen, T.

Girasole, T.

S. Idlahcen, C. Rozé, L. Méès, T. Girasole, and J. Blaisot, “Sub-picsecond ballistic imaging of a liquid jet,” Exp. Fluids 52(2), 289–298 (2012).
[Crossref]

C. Calba, L. Méès, C. Rozé, and T. Girasole, “Ultrashort pulse propagation through a strongly scattering medium: simulation and experiments,” J. Opt. Soc. Am. A 25(7), 1541–1550 (2008).
[Crossref] [PubMed]

Gord, J.

Gord, J. R.

Gundlach, L.

Hegmann, F. A.

A. D. Slepkov, F. A. Hegmann, Y. Zhao, R. R. Tykwinski, and K. Kamada, “Ultrafast optical Kerr effect measurements of third-order nonlinearities in cross-conjugated iso-polydiacetylene oligomers,” J. Chem. Phys. 116(9), 3834–3840 (2002).
[Crossref]

Hespel, L.

Ho, P. P.

Hou, X.

W. Tan, Z. Zhou, A. Lin, J. Si, P. Zhan, B. Wu, and X. Hou, “High contrast ballistic imaging using femtosecond optical Kerr gate of tellurite glass,” Opt. Express 21(6), 7740–7747 (2013).
[Crossref] [PubMed]

W. Tan, Y. Yang, J. Si, J. Tong, W. Yi, F. Chen, and X. Hou, “Shape measurement of objects using an ultrafast optical Kerr gate of bismuth glass,” J. Appl. Phys. 107(4), 043104 (2010).
[Crossref]

Idlahcen, S.

H. Purwar, S. Idlahcen, C. Rozé, D. Sedarsky, and J. B. Blaisot, “Collinear, two-color optical Kerr effect shutter for ultrafast time-resolved imaging,” Opt. Express 22(13), 15778–15790 (2014).
[Crossref] [PubMed]

S. Idlahcen, C. Rozé, L. Méès, T. Girasole, and J. Blaisot, “Sub-picsecond ballistic imaging of a liquid jet,” Exp. Fluids 52(2), 289–298 (2012).
[Crossref]

Islam, S. Z.

Kamada, K.

A. D. Slepkov, F. A. Hegmann, Y. Zhao, R. R. Tykwinski, and K. Kamada, “Ultrafast optical Kerr effect measurements of third-order nonlinearities in cross-conjugated iso-polydiacetylene oligomers,” J. Chem. Phys. 116(9), 3834–3840 (2002).
[Crossref]

Kervella, M.

Li, Y.

H. M. Fan, G. J. You, Y. Li, Z. Zheng, H. R. Tan, Z. X. Shen, S. H. Tang, and Y. P. Feng, “Shape-controlled synthesis of single-crystalline Fe2O3 hollow nanocrystals and their tunable optical properties,” J. Phys. Chem. C 113(22), 9928–9935 (2009).
[Crossref]

Liang, X.

Lin, A.

Linne, M.

Liu, L.

P. Yang, L. Liu, and L. Xu, “Dynamic evolution of light-induced orientation of dye-doped liquid crystals in liquid phase studied by time-resolved optically heterodyned optical Kerr effect technique,” J. Chem. Phys. 128(8), 084710 (2008).
[Crossref] [PubMed]

Manuel, E.

L. Zevallos, E. Manuel, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86(1), 011115 (2005).
[Crossref]

Matsumoto, H.

T. Yasui, K. Minoshima, and H. Matsumoto, “Three-dimensional shape measurement of a diffusing surface by use of a femtosecond amplifying optical Kerr gate,” Appl. Opt. 39(1), 65–71 (2000).
[Crossref] [PubMed]

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultanous 3-D Imaging Using Chirped Ultrashort Optical pulse,” Jpn. J. Appl. Phys. 33(9B), L1348–L1351 (1994).
[Crossref]

Méès, L.

S. Idlahcen, C. Rozé, L. Méès, T. Girasole, and J. Blaisot, “Sub-picsecond ballistic imaging of a liquid jet,” Exp. Fluids 52(2), 289–298 (2012).
[Crossref]

C. Calba, L. Méès, C. Rozé, and T. Girasole, “Ultrashort pulse propagation through a strongly scattering medium: simulation and experiments,” J. Opt. Soc. Am. A 25(7), 1541–1550 (2008).
[Crossref] [PubMed]

Meyer, T.

Meyer, T. R.

Minoshima, K.

T. Yasui, K. Minoshima, and H. Matsumoto, “Three-dimensional shape measurement of a diffusing surface by use of a femtosecond amplifying optical Kerr gate,” Appl. Opt. 39(1), 65–71 (2000).
[Crossref] [PubMed]

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultanous 3-D Imaging Using Chirped Ultrashort Optical pulse,” Jpn. J. Appl. Phys. 33(9B), L1348–L1351 (1994).
[Crossref]

Moussawi, A.

Neely, D.

D. R. Symes, U. Wegner, H. C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett. 96(1), 011109 (2010).
[Crossref]

Orczyk, M. E.

M. E. Orczyk, M. Samoc, J. Swiatkiewicz, and P. N. Prasad, “Dynamics of third-order nonlinearity of canthaxanthin carotenoid by the optically heterodyned phase-tuned femtosecond optical Kerr gate,” J. Chem. Phys. 98(4), 2524–2533 (1993).
[Crossref]

Piotrowiak, P.

Prasad, P. N.

M. E. Orczyk, M. Samoc, J. Swiatkiewicz, and P. N. Prasad, “Dynamics of third-order nonlinearity of canthaxanthin carotenoid by the optically heterodyned phase-tuned femtosecond optical Kerr gate,” J. Chem. Phys. 98(4), 2524–2533 (1993).
[Crossref]

Purwar, H.

Rajeev, P. P.

D. R. Symes, U. Wegner, H. C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett. 96(1), 011109 (2010).
[Crossref]

Reintjes, J.

Roy, S.

Rozé, C.

Samoc, M.

M. E. Orczyk, M. Samoc, J. Swiatkiewicz, and P. N. Prasad, “Dynamics of third-order nonlinearity of canthaxanthin carotenoid by the optically heterodyned phase-tuned femtosecond optical Kerr gate,” J. Chem. Phys. 98(4), 2524–2533 (1993).
[Crossref]

Schaefer, Z. D.

Schmidt, J. B.

Sedarsky, D.

Seredych, M.

Shen, Z. X.

H. M. Fan, G. J. You, Y. Li, Z. Zheng, H. R. Tan, Z. X. Shen, S. H. Tang, and Y. P. Feng, “Shape-controlled synthesis of single-crystalline Fe2O3 hollow nanocrystals and their tunable optical properties,” J. Phys. Chem. C 113(22), 9928–9935 (2009).
[Crossref]

Shi, L.

Si, J.

W. Tan, Z. Zhou, A. Lin, J. Si, P. Zhan, B. Wu, and X. Hou, “High contrast ballistic imaging using femtosecond optical Kerr gate of tellurite glass,” Opt. Express 21(6), 7740–7747 (2013).
[Crossref] [PubMed]

W. Tan, Y. Yang, J. Si, J. Tong, W. Yi, F. Chen, and X. Hou, “Shape measurement of objects using an ultrafast optical Kerr gate of bismuth glass,” J. Appl. Phys. 107(4), 043104 (2010).
[Crossref]

Slepkov, A. D.

A. D. Slepkov, F. A. Hegmann, Y. Zhao, R. R. Tykwinski, and K. Kamada, “Ultrafast optical Kerr effect measurements of third-order nonlinearities in cross-conjugated iso-polydiacetylene oligomers,” J. Chem. Phys. 116(9), 3834–3840 (2002).
[Crossref]

Smith, R. A.

D. R. Symes, U. Wegner, H. C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett. 96(1), 011109 (2010).
[Crossref]

Streeter, M. J. V.

D. R. Symes, U. Wegner, H. C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett. 96(1), 011109 (2010).
[Crossref]

Swiatkiewicz, J.

M. E. Orczyk, M. Samoc, J. Swiatkiewicz, and P. N. Prasad, “Dynamics of third-order nonlinearity of canthaxanthin carotenoid by the optically heterodyned phase-tuned femtosecond optical Kerr gate,” J. Chem. Phys. 98(4), 2524–2533 (1993).
[Crossref]

Symes, D. R.

D. R. Symes, U. Wegner, H. C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett. 96(1), 011109 (2010).
[Crossref]

Tahara, T.

T. Fujino, T. Fujima, and T. Tahara, “Picosecond time-resolved imaging by nonscanning fluorescence Kerr gate microscope,” Appl. Phys. Lett. 87(13), 131105 (2005).
[Crossref]

Tan, H. R.

H. M. Fan, G. J. You, Y. Li, Z. Zheng, H. R. Tan, Z. X. Shen, S. H. Tang, and Y. P. Feng, “Shape-controlled synthesis of single-crystalline Fe2O3 hollow nanocrystals and their tunable optical properties,” J. Phys. Chem. C 113(22), 9928–9935 (2009).
[Crossref]

Tan, W.

W. Tan, Z. Zhou, A. Lin, J. Si, P. Zhan, B. Wu, and X. Hou, “High contrast ballistic imaging using femtosecond optical Kerr gate of tellurite glass,” Opt. Express 21(6), 7740–7747 (2013).
[Crossref] [PubMed]

W. Tan, Y. Yang, J. Si, J. Tong, W. Yi, F. Chen, and X. Hou, “Shape measurement of objects using an ultrafast optical Kerr gate of bismuth glass,” J. Appl. Phys. 107(4), 043104 (2010).
[Crossref]

Tang, S. H.

H. M. Fan, G. J. You, Y. Li, Z. Zheng, H. R. Tan, Z. X. Shen, S. H. Tang, and Y. P. Feng, “Shape-controlled synthesis of single-crystalline Fe2O3 hollow nanocrystals and their tunable optical properties,” J. Phys. Chem. C 113(22), 9928–9935 (2009).
[Crossref]

Tong, J.

W. Tan, Y. Yang, J. Si, J. Tong, W. Yi, F. Chen, and X. Hou, “Shape measurement of objects using an ultrafast optical Kerr gate of bismuth glass,” J. Appl. Phys. 107(4), 043104 (2010).
[Crossref]

Tykwinski, R. R.

A. D. Slepkov, F. A. Hegmann, Y. Zhao, R. R. Tykwinski, and K. Kamada, “Ultrafast optical Kerr effect measurements of third-order nonlinearities in cross-conjugated iso-polydiacetylene oligomers,” J. Chem. Phys. 116(9), 3834–3840 (2002).
[Crossref]

Valentini, G.

Wang, L.

Wang, Q. Z.

Wegner, U.

D. R. Symes, U. Wegner, H. C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett. 96(1), 011109 (2010).
[Crossref]

Wu, B.

Xu, L.

P. Yang, L. Liu, and L. Xu, “Dynamic evolution of light-induced orientation of dye-doped liquid crystals in liquid phase studied by time-resolved optically heterodyned optical Kerr effect technique,” J. Chem. Phys. 128(8), 084710 (2008).
[Crossref] [PubMed]

Yagi, T.

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultanous 3-D Imaging Using Chirped Ultrashort Optical pulse,” Jpn. J. Appl. Phys. 33(9B), L1348–L1351 (1994).
[Crossref]

Yang, P.

P. Yang, L. Liu, and L. Xu, “Dynamic evolution of light-induced orientation of dye-doped liquid crystals in liquid phase studied by time-resolved optically heterodyned optical Kerr effect technique,” J. Chem. Phys. 128(8), 084710 (2008).
[Crossref] [PubMed]

Yang, Y.

W. Tan, Y. Yang, J. Si, J. Tong, W. Yi, F. Chen, and X. Hou, “Shape measurement of objects using an ultrafast optical Kerr gate of bismuth glass,” J. Appl. Phys. 107(4), 043104 (2010).
[Crossref]

Yasui, T.

Yi, W.

W. Tan, Y. Yang, J. Si, J. Tong, W. Yi, F. Chen, and X. Hou, “Shape measurement of objects using an ultrafast optical Kerr gate of bismuth glass,” J. Appl. Phys. 107(4), 043104 (2010).
[Crossref]

You, G. J.

H. M. Fan, G. J. You, Y. Li, Z. Zheng, H. R. Tan, Z. X. Shen, S. H. Tang, and Y. P. Feng, “Shape-controlled synthesis of single-crystalline Fe2O3 hollow nanocrystals and their tunable optical properties,” J. Phys. Chem. C 113(22), 9928–9935 (2009).
[Crossref]

Zevallos, L.

L. Zevallos, E. Manuel, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86(1), 011115 (2005).
[Crossref]

Zhan, P.

Zhang, Z.

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultanous 3-D Imaging Using Chirped Ultrashort Optical pulse,” Jpn. J. Appl. Phys. 33(9B), L1348–L1351 (1994).
[Crossref]

Zhao, Y.

A. D. Slepkov, F. A. Hegmann, Y. Zhao, R. R. Tykwinski, and K. Kamada, “Ultrafast optical Kerr effect measurements of third-order nonlinearities in cross-conjugated iso-polydiacetylene oligomers,” J. Chem. Phys. 116(9), 3834–3840 (2002).
[Crossref]

Zheng, Z.

H. M. Fan, G. J. You, Y. Li, Z. Zheng, H. R. Tan, Z. X. Shen, S. H. Tang, and Y. P. Feng, “Shape-controlled synthesis of single-crystalline Fe2O3 hollow nanocrystals and their tunable optical properties,” J. Phys. Chem. C 113(22), 9928–9935 (2009).
[Crossref]

Zhou, Z.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

T. Fujino, T. Fujima, and T. Tahara, “Picosecond time-resolved imaging by nonscanning fluorescence Kerr gate microscope,” Appl. Phys. Lett. 87(13), 131105 (2005).
[Crossref]

D. R. Symes, U. Wegner, H. C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett. 96(1), 011109 (2010).
[Crossref]

L. Zevallos, E. Manuel, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86(1), 011115 (2005).
[Crossref]

Exp. Fluids (1)

S. Idlahcen, C. Rozé, L. Méès, T. Girasole, and J. Blaisot, “Sub-picsecond ballistic imaging of a liquid jet,” Exp. Fluids 52(2), 289–298 (2012).
[Crossref]

J. Appl. Phys. (1)

W. Tan, Y. Yang, J. Si, J. Tong, W. Yi, F. Chen, and X. Hou, “Shape measurement of objects using an ultrafast optical Kerr gate of bismuth glass,” J. Appl. Phys. 107(4), 043104 (2010).
[Crossref]

J. Chem. Phys. (3)

A. D. Slepkov, F. A. Hegmann, Y. Zhao, R. R. Tykwinski, and K. Kamada, “Ultrafast optical Kerr effect measurements of third-order nonlinearities in cross-conjugated iso-polydiacetylene oligomers,” J. Chem. Phys. 116(9), 3834–3840 (2002).
[Crossref]

P. Yang, L. Liu, and L. Xu, “Dynamic evolution of light-induced orientation of dye-doped liquid crystals in liquid phase studied by time-resolved optically heterodyned optical Kerr effect technique,” J. Chem. Phys. 128(8), 084710 (2008).
[Crossref] [PubMed]

M. E. Orczyk, M. Samoc, J. Swiatkiewicz, and P. N. Prasad, “Dynamics of third-order nonlinearity of canthaxanthin carotenoid by the optically heterodyned phase-tuned femtosecond optical Kerr gate,” J. Chem. Phys. 98(4), 2524–2533 (1993).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (1)

H. M. Fan, G. J. You, Y. Li, Z. Zheng, H. R. Tan, Z. X. Shen, S. H. Tang, and Y. P. Feng, “Shape-controlled synthesis of single-crystalline Fe2O3 hollow nanocrystals and their tunable optical properties,” J. Phys. Chem. C 113(22), 9928–9935 (2009).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultanous 3-D Imaging Using Chirped Ultrashort Optical pulse,” Jpn. J. Appl. Phys. 33(9B), L1348–L1351 (1994).
[Crossref]

Opt. Express (3)

Opt. Lett. (7)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagrams of the biased optical Kerr gate (OKG) and the conventional OKG. P, polarizer; K, optical Kerr medium; A, analyzer. (a) Biased OKG. (b) Conventional OKG. (c) Polarization directions of the analyzers in both of the OKGs. θ is the angle between the polarization directions of the analyzers.
Fig. 2
Fig. 2 Schematic of the biased optical Kerr gated imaging system in our experiment.
Fig. 3
Fig. 3 Angular dependence of the biased OKG signals of the imaging system.
Fig. 4
Fig. 4 Comparison of imaging results for four different imaging arrangements. (a) Direct imaging. (b) Spatial filtering imaging (SFI). (c) Optical Kerr gated imaging (OKGI). (d) Biased optical Kerr gated imaging (BOKGI). The imaging object is the resolution test patterns, partial sizes of which are shown on the right. From the row (1) to row (5), the filtering aperture sizes for SFI are about 1100 µm, 600 µm, 340 µm, 340µm, and 340 µm, respectively, and the spot diameters at the optical Kerr medium surface of the gating beam were measured to be about 1100 µm, 500 µm, 330 µm, 330µm, and 330 µm, respectively.
Fig. 5
Fig. 5 Comparison of experimental results and simulation for BOKGI at different biased angles. (a) BOKGI at different biased angles. (b) Direct imaging. (c) OKGI. (d) Simulation of BOKGI at different biased angles.
Fig. 6
Fig. 6 Comparison of the modulation transfer function (MTF) of the BOKGI and the OKGI systems.
Fig. 7
Fig. 7 Images of the resolution test patterns behind a turbid medium for different imaging methods. (a) Direct imaging. (b) OKGI. (d) BOKGI.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E E o sin θ + ( i F Re F Im ) sin θ + ( i H Re H I m ) cos θ
E E o sin θ + ( i H Re H I m ) cos θ
I H Re 2 + H I m 2 2 θ E o H Im
E E o sin θ + ( H Re + i H I m ) cos θ
I H Re 2 + H I m 2 2 θ E o H Re

Metrics