Abstract

We propose and demonstrate a single-channel Mach-Zehnder interferometric (MZI) biochemical sensor consisting of two single-mode waveguides connected by a two-lateral-mode spiral sensing waveguide through two discontinuous junctions. The use of a two-lateral-mode waveguide offers the advantage of simple fabrication using single-step lithography and etching process. Meanwhile, the two-mode waveguide folded in a spiral layout can achieve high sensitivity of a long sensing waveguide while providing a compact sensing area compatible with commercial spotting machine and requiring small volume of sample. The sensor is demonstrated in silicon waveguides and the effect of the discontinuity offset distance on the interference visibility is studied. The bulk and surface sensitivity of a fabricated sensor with a 4582-μm-long two-mode spiral waveguide folded within a 185 μm diameter spot are characterized to be 461.6 π/RIU (refractive index unit) and 1.135 π/ng mm−2, respectively. The biosensing capability of the sensor is verified by the measurement of biotin–streptavidin interaction of different concentrations.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide

Xu Sun, Daoxin Dai, Lars Thylén, and Lech Wosinski
Opt. Express 23(20) 25688-25699 (2015)

Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding

D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid
Opt. Express 16(19) 15137-15148 (2008)

In-fiber Mach-Zehnder interferometer with piecewise interference spectrum based on hole-assisted dual-core fiber for refractive index sensing

J. Yang, M. Yang, C. Y. Guan, J. H. Shi, Z. Zhu, P. Li, P. F. Wang, J. Yang, and L. B. Yuan
Opt. Express 26(15) 19091-19099 (2018)

References

  • View by:
  • |
  • |
  • |

  1. X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  2. C. Themistos, M. Rajarajan, B. M. A. Rahman, and K. T. V. Grattan, “Characterization of silica nanowires for optical sensing,” J. Lightwave Technol. 27(24), 5537–5542 (2009).
    [Crossref]
  3. J. Hong, J. S. Choi, G. Han, J. K. Kang, C.-M. Kim, T. S. Kim, and D. S. Yoon, “A Mach-Zehnder interferometer based on silicon oxides for biosensor applications,” Anal. Chim. Acta 573-574, 97–103 (2006).
    [Crossref] [PubMed]
  4. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, “Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1-2), 151–158 (2003).
    [Crossref]
  5. M. Weisser, G. Tovar, S. Mittler-Neher, W. Knoll, F. Brosinger, H. Freimuth, M. Lacher, and W. Ehrfeld, “Specific bio-recognition reactions observed with an integrated Mach-Zehnder interferometer,” Biosens. Bioelectron. 14(4), 405–411 (1999).
    [Crossref] [PubMed]
  6. Y. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Y. V. Ushenin, E. F. Venger, A. V. Samoylov, and R. Merker, “A sensor based on the planar-polarization interferometer,” Sens. Actuators A Phys. 68(1-3), 384–387 (1998).
    [Crossref]
  7. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
    [Crossref]
  8. X. Tu, J. F. Song, T.-Y. Liow, M. K. Park, J. Q. Yiying, J. S. Kee, M. B. Yu, and G. Q. Lo, “Thermal independent silicon-nitride slot waveguide biosensor with high sensitivity,” Opt. Express 20(3), 2640–2648 (2012).
    [Crossref] [PubMed]
  9. Q. Liu, X. Tu, K. Kim, J. S. Kee, Y. Shin, K. Han, Y.-J. Yoon, G.-Q. Lo, and M. K. Park, “Highly sensitive integrated Mach-Zehnder interferometer label-free biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
    [Crossref]
  10. A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett. 33(6), 596–598 (2008).
    [Crossref] [PubMed]
  11. K. Kim and T. E. Murphy, “Porous silicon integrated Mach-Zehnder interferometer waveguide for biological and chemical sensing,” Opt. Express 21(17), 19488–19497 (2013).
    [Crossref] [PubMed]
  12. R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
    [Crossref] [PubMed]
  13. B. Y. Shew, Y. C. Cheng, and Y. H. Tsai, “Monolithic SU-8 micro-interferometer for bio-chemical detections,” Sens. Actuators A Phys. 141(2), 299–306 (2008).
    [Crossref]
  14. A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
    [Crossref]
  15. R. Levy and S. Ruschin, “Design of a single-channel modal interferometer waveguide sensor,” IEEE Sens. J. 9(2), 146–153 (2009).
    [Crossref]
  16. K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Lightwave Technol. 29(13), 1926–1930 (2011).
    [Crossref]
  17. H. Su and X. G. Huang, “Fresnel-reflection-based fiber sensor for on-line measurement of solute concentration in solutions,” Sens. Actuators B Chem. 126(2), 579–582 (2007).
    [Crossref]
  18. P. Bertrand, A. Jonas, A. Laschewsky, and R. Legras, “Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties,” Macromol. Rapid Commun. 21(7), 319–348 (2000).
    [Crossref]
  19. F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, “Ultrathin multilayer polyelectrolyte films on gold: construction and thickness determination,” Langmuir 13(13), 3422–3426 (1997).
    [Crossref]
  20. L. S. Jung, K. E. Nelson, P. S. Stayton, and C. T. Campbell, “Binding and dissociation kinetics of wild-type and mutant streptavidins on mixed biotin-containing alkylthiolate monolayers,” Langmuir 16(24), 9421–9432 (2000).
    [Crossref]
  21. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
    [Crossref] [PubMed]

2013 (3)

Q. Liu, X. Tu, K. Kim, J. S. Kee, Y. Shin, K. Han, Y.-J. Yoon, G.-Q. Lo, and M. K. Park, “Highly sensitive integrated Mach-Zehnder interferometer label-free biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

K. Kim and T. E. Murphy, “Porous silicon integrated Mach-Zehnder interferometer waveguide for biological and chemical sensing,” Opt. Express 21(17), 19488–19497 (2013).
[Crossref] [PubMed]

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
[Crossref]

2012 (1)

2011 (2)

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref] [PubMed]

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Lightwave Technol. 29(13), 1926–1930 (2011).
[Crossref]

2009 (2)

R. Levy and S. Ruschin, “Design of a single-channel modal interferometer waveguide sensor,” IEEE Sens. J. 9(2), 146–153 (2009).
[Crossref]

C. Themistos, M. Rajarajan, B. M. A. Rahman, and K. T. V. Grattan, “Characterization of silica nanowires for optical sensing,” J. Lightwave Technol. 27(24), 5537–5542 (2009).
[Crossref]

2008 (3)

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett. 33(6), 596–598 (2008).
[Crossref] [PubMed]

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

B. Y. Shew, Y. C. Cheng, and Y. H. Tsai, “Monolithic SU-8 micro-interferometer for bio-chemical detections,” Sens. Actuators A Phys. 141(2), 299–306 (2008).
[Crossref]

2007 (1)

H. Su and X. G. Huang, “Fresnel-reflection-based fiber sensor for on-line measurement of solute concentration in solutions,” Sens. Actuators B Chem. 126(2), 579–582 (2007).
[Crossref]

2006 (1)

J. Hong, J. S. Choi, G. Han, J. K. Kang, C.-M. Kim, T. S. Kim, and D. S. Yoon, “A Mach-Zehnder interferometer based on silicon oxides for biosensor applications,” Anal. Chim. Acta 573-574, 97–103 (2006).
[Crossref] [PubMed]

2003 (2)

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, “Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1-2), 151–158 (2003).
[Crossref]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

2001 (1)

2000 (2)

L. S. Jung, K. E. Nelson, P. S. Stayton, and C. T. Campbell, “Binding and dissociation kinetics of wild-type and mutant streptavidins on mixed biotin-containing alkylthiolate monolayers,” Langmuir 16(24), 9421–9432 (2000).
[Crossref]

P. Bertrand, A. Jonas, A. Laschewsky, and R. Legras, “Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties,” Macromol. Rapid Commun. 21(7), 319–348 (2000).
[Crossref]

1999 (1)

M. Weisser, G. Tovar, S. Mittler-Neher, W. Knoll, F. Brosinger, H. Freimuth, M. Lacher, and W. Ehrfeld, “Specific bio-recognition reactions observed with an integrated Mach-Zehnder interferometer,” Biosens. Bioelectron. 14(4), 405–411 (1999).
[Crossref] [PubMed]

1998 (1)

Y. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Y. V. Ushenin, E. F. Venger, A. V. Samoylov, and R. Merker, “A sensor based on the planar-polarization interferometer,” Sens. Actuators A Phys. 68(1-3), 384–387 (1998).
[Crossref]

1997 (1)

F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, “Ultrathin multilayer polyelectrolyte films on gold: construction and thickness determination,” Langmuir 13(13), 3422–3426 (1997).
[Crossref]

Abad, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Berini, P.

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
[Crossref]

Bertrand, P.

P. Bertrand, A. Jonas, A. Laschewsky, and R. Legras, “Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties,” Macromol. Rapid Commun. 21(7), 319–348 (2000).
[Crossref]

Brosinger, F.

M. Weisser, G. Tovar, S. Mittler-Neher, W. Knoll, F. Brosinger, H. Freimuth, M. Lacher, and W. Ehrfeld, “Specific bio-recognition reactions observed with an integrated Mach-Zehnder interferometer,” Biosens. Bioelectron. 14(4), 405–411 (1999).
[Crossref] [PubMed]

Bruck, R.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref] [PubMed]

Calle, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, “Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1-2), 151–158 (2003).
[Crossref]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Campbell, C. T.

L. S. Jung, K. E. Nelson, P. S. Stayton, and C. T. Campbell, “Binding and dissociation kinetics of wild-type and mutant streptavidins on mixed biotin-containing alkylthiolate monolayers,” Langmuir 16(24), 9421–9432 (2000).
[Crossref]

Caruso, F.

F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, “Ultrathin multilayer polyelectrolyte films on gold: construction and thickness determination,” Langmuir 13(13), 3422–3426 (1997).
[Crossref]

Cerrina, F.

Cheben, P.

Cheng, Y. C.

B. Y. Shew, Y. C. Cheng, and Y. H. Tsai, “Monolithic SU-8 micro-interferometer for bio-chemical detections,” Sens. Actuators A Phys. 141(2), 299–306 (2008).
[Crossref]

Choi, J. S.

J. Hong, J. S. Choi, G. Han, J. K. Kang, C.-M. Kim, T. S. Kim, and D. S. Yoon, “A Mach-Zehnder interferometer based on silicon oxides for biosensor applications,” Anal. Chim. Acta 573-574, 97–103 (2006).
[Crossref] [PubMed]

Delâge, A.

Densmore, A.

Domínguez, C.

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Lightwave Technol. 29(13), 1926–1930 (2011).
[Crossref]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, “Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1-2), 151–158 (2003).
[Crossref]

Ehrfeld, W.

M. Weisser, G. Tovar, S. Mittler-Neher, W. Knoll, F. Brosinger, H. Freimuth, M. Lacher, and W. Ehrfeld, “Specific bio-recognition reactions observed with an integrated Mach-Zehnder interferometer,” Biosens. Bioelectron. 14(4), 405–411 (1999).
[Crossref] [PubMed]

Fan, X. D.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Freimuth, H.

M. Weisser, G. Tovar, S. Mittler-Neher, W. Knoll, F. Brosinger, H. Freimuth, M. Lacher, and W. Ehrfeld, “Specific bio-recognition reactions observed with an integrated Mach-Zehnder interferometer,” Biosens. Bioelectron. 14(4), 405–411 (1999).
[Crossref] [PubMed]

Furlong, D. N.

F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, “Ultrathin multilayer polyelectrolyte films on gold: construction and thickness determination,” Langmuir 13(13), 3422–3426 (1997).
[Crossref]

González-Guerrero, A. B.

Grattan, K. T. V.

Hainberger, R.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref] [PubMed]

Han, G.

J. Hong, J. S. Choi, G. Han, J. K. Kang, C.-M. Kim, T. S. Kim, and D. S. Yoon, “A Mach-Zehnder interferometer based on silicon oxides for biosensor applications,” Anal. Chim. Acta 573-574, 97–103 (2006).
[Crossref] [PubMed]

Han, K.

Q. Liu, X. Tu, K. Kim, J. S. Kee, Y. Shin, K. Han, Y.-J. Yoon, G.-Q. Lo, and M. K. Park, “Highly sensitive integrated Mach-Zehnder interferometer label-free biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Hong, J.

J. Hong, J. S. Choi, G. Han, J. K. Kang, C.-M. Kim, T. S. Kim, and D. S. Yoon, “A Mach-Zehnder interferometer based on silicon oxides for biosensor applications,” Anal. Chim. Acta 573-574, 97–103 (2006).
[Crossref] [PubMed]

Huang, X. G.

H. Su and X. G. Huang, “Fresnel-reflection-based fiber sensor for on-line measurement of solute concentration in solutions,” Sens. Actuators B Chem. 126(2), 579–582 (2007).
[Crossref]

Janz, S.

Jonas, A.

P. Bertrand, A. Jonas, A. Laschewsky, and R. Legras, “Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties,” Macromol. Rapid Commun. 21(7), 319–348 (2000).
[Crossref]

Jung, L. S.

L. S. Jung, K. E. Nelson, P. S. Stayton, and C. T. Campbell, “Binding and dissociation kinetics of wild-type and mutant streptavidins on mixed biotin-containing alkylthiolate monolayers,” Langmuir 16(24), 9421–9432 (2000).
[Crossref]

Kang, J. K.

J. Hong, J. S. Choi, G. Han, J. K. Kang, C.-M. Kim, T. S. Kim, and D. S. Yoon, “A Mach-Zehnder interferometer based on silicon oxides for biosensor applications,” Anal. Chim. Acta 573-574, 97–103 (2006).
[Crossref] [PubMed]

Kee, J. S.

Q. Liu, X. Tu, K. Kim, J. S. Kee, Y. Shin, K. Han, Y.-J. Yoon, G.-Q. Lo, and M. K. Park, “Highly sensitive integrated Mach-Zehnder interferometer label-free biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

X. Tu, J. F. Song, T.-Y. Liow, M. K. Park, J. Q. Yiying, J. S. Kee, M. B. Yu, and G. Q. Lo, “Thermal independent silicon-nitride slot waveguide biosensor with high sensitivity,” Opt. Express 20(3), 2640–2648 (2012).
[Crossref] [PubMed]

Khan, A.

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
[Crossref]

Kim, C.-M.

J. Hong, J. S. Choi, G. Han, J. K. Kang, C.-M. Kim, T. S. Kim, and D. S. Yoon, “A Mach-Zehnder interferometer based on silicon oxides for biosensor applications,” Anal. Chim. Acta 573-574, 97–103 (2006).
[Crossref] [PubMed]

Kim, K.

Q. Liu, X. Tu, K. Kim, J. S. Kee, Y. Shin, K. Han, Y.-J. Yoon, G.-Q. Lo, and M. K. Park, “Highly sensitive integrated Mach-Zehnder interferometer label-free biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

K. Kim and T. E. Murphy, “Porous silicon integrated Mach-Zehnder interferometer waveguide for biological and chemical sensing,” Opt. Express 21(17), 19488–19497 (2013).
[Crossref] [PubMed]

Kim, T. S.

J. Hong, J. S. Choi, G. Han, J. K. Kang, C.-M. Kim, T. S. Kim, and D. S. Yoon, “A Mach-Zehnder interferometer based on silicon oxides for biosensor applications,” Anal. Chim. Acta 573-574, 97–103 (2006).
[Crossref] [PubMed]

Kimerling, L. C.

Kiyanovskii, A. P.

Y. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Y. V. Ushenin, E. F. Venger, A. V. Samoylov, and R. Merker, “A sensor based on the planar-polarization interferometer,” Sens. Actuators A Phys. 68(1-3), 384–387 (1998).
[Crossref]

Knoll, W.

M. Weisser, G. Tovar, S. Mittler-Neher, W. Knoll, F. Brosinger, H. Freimuth, M. Lacher, and W. Ehrfeld, “Specific bio-recognition reactions observed with an integrated Mach-Zehnder interferometer,” Biosens. Bioelectron. 14(4), 405–411 (1999).
[Crossref] [PubMed]

Krupin, O.

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
[Crossref]

Lacher, M.

M. Weisser, G. Tovar, S. Mittler-Neher, W. Knoll, F. Brosinger, H. Freimuth, M. Lacher, and W. Ehrfeld, “Specific bio-recognition reactions observed with an integrated Mach-Zehnder interferometer,” Biosens. Bioelectron. 14(4), 405–411 (1999).
[Crossref] [PubMed]

Lämmerhofer, M.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref] [PubMed]

Lamontagne, B.

Lapointe, J.

Laschewsky, A.

P. Bertrand, A. Jonas, A. Laschewsky, and R. Legras, “Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties,” Macromol. Rapid Commun. 21(7), 319–348 (2000).
[Crossref]

Lechuga, L. M.

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Lightwave Technol. 29(13), 1926–1930 (2011).
[Crossref]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, “Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1-2), 151–158 (2003).
[Crossref]

Lee, K. K.

Legras, R.

P. Bertrand, A. Jonas, A. Laschewsky, and R. Legras, “Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties,” Macromol. Rapid Commun. 21(7), 319–348 (2000).
[Crossref]

Levy, R.

R. Levy and S. Ruschin, “Design of a single-channel modal interferometer waveguide sensor,” IEEE Sens. J. 9(2), 146–153 (2009).
[Crossref]

Lim, D. R.

Liow, T.-Y.

Lisicka-Skrzek, E.

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
[Crossref]

Liu, Q.

Q. Liu, X. Tu, K. Kim, J. S. Kee, Y. Shin, K. Han, Y.-J. Yoon, G.-Q. Lo, and M. K. Park, “Highly sensitive integrated Mach-Zehnder interferometer label-free biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Llobera, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, “Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1-2), 151–158 (2003).
[Crossref]

Lo, G. Q.

Lo, G.-Q.

Q. Liu, X. Tu, K. Kim, J. S. Kee, Y. Shin, K. Han, Y.-J. Yoon, G.-Q. Lo, and M. K. Park, “Highly sensitive integrated Mach-Zehnder interferometer label-free biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Lopinski, G.

Melnik, E.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref] [PubMed]

Merker, R.

Y. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Y. V. Ushenin, E. F. Venger, A. V. Samoylov, and R. Merker, “A sensor based on the planar-polarization interferometer,” Sens. Actuators A Phys. 68(1-3), 384–387 (1998).
[Crossref]

Mischki, T.

Mittler-Neher, S.

M. Weisser, G. Tovar, S. Mittler-Neher, W. Knoll, F. Brosinger, H. Freimuth, M. Lacher, and W. Ehrfeld, “Specific bio-recognition reactions observed with an integrated Mach-Zehnder interferometer,” Biosens. Bioelectron. 14(4), 405–411 (1999).
[Crossref] [PubMed]

Montoya, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Muellner, P.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref] [PubMed]

Murphy, T. E.

Nelson, K. E.

L. S. Jung, K. E. Nelson, P. S. Stayton, and C. T. Campbell, “Binding and dissociation kinetics of wild-type and mutant streptavidins on mixed biotin-containing alkylthiolate monolayers,” Langmuir 16(24), 9421–9432 (2000).
[Crossref]

Niikura, K.

F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, “Ultrathin multilayer polyelectrolyte films on gold: construction and thickness determination,” Langmuir 13(13), 3422–3426 (1997).
[Crossref]

Okahata, Y.

F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, “Ultrathin multilayer polyelectrolyte films on gold: construction and thickness determination,” Langmuir 13(13), 3422–3426 (1997).
[Crossref]

Park, M. K.

Q. Liu, X. Tu, K. Kim, J. S. Kee, Y. Shin, K. Han, Y.-J. Yoon, G.-Q. Lo, and M. K. Park, “Highly sensitive integrated Mach-Zehnder interferometer label-free biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

X. Tu, J. F. Song, T.-Y. Liow, M. K. Park, J. Q. Yiying, J. S. Kee, M. B. Yu, and G. Q. Lo, “Thermal independent silicon-nitride slot waveguide biosensor with high sensitivity,” Opt. Express 20(3), 2640–2648 (2012).
[Crossref] [PubMed]

Prieto, F.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, “Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1-2), 151–158 (2003).
[Crossref]

Rahman, B. M. A.

Rajarajan, M.

Ruschin, S.

R. Levy and S. Ruschin, “Design of a single-channel modal interferometer waveguide sensor,” IEEE Sens. J. 9(2), 146–153 (2009).
[Crossref]

Samoylov, A. V.

Y. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Y. V. Ushenin, E. F. Venger, A. V. Samoylov, and R. Merker, “A sensor based on the planar-polarization interferometer,” Sens. Actuators A Phys. 68(1-3), 384–387 (1998).
[Crossref]

Schmid, J. H.

Sepúlveda, B.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, “Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1-2), 151–158 (2003).
[Crossref]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Shew, B. Y.

B. Y. Shew, Y. C. Cheng, and Y. H. Tsai, “Monolithic SU-8 micro-interferometer for bio-chemical detections,” Sens. Actuators A Phys. 141(2), 299–306 (2008).
[Crossref]

Shin, J.

Shin, Y.

Q. Liu, X. Tu, K. Kim, J. S. Kee, Y. Shin, K. Han, Y.-J. Yoon, G.-Q. Lo, and M. K. Park, “Highly sensitive integrated Mach-Zehnder interferometer label-free biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Shirshov, Y. M.

Y. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Y. V. Ushenin, E. F. Venger, A. V. Samoylov, and R. Merker, “A sensor based on the planar-polarization interferometer,” Sens. Actuators A Phys. 68(1-3), 384–387 (1998).
[Crossref]

Shopova, S. I.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Song, J. F.

Stayton, P. S.

L. S. Jung, K. E. Nelson, P. S. Stayton, and C. T. Campbell, “Binding and dissociation kinetics of wild-type and mutant streptavidins on mixed biotin-containing alkylthiolate monolayers,” Langmuir 16(24), 9421–9432 (2000).
[Crossref]

Su, H.

H. Su and X. G. Huang, “Fresnel-reflection-based fiber sensor for on-line measurement of solute concentration in solutions,” Sens. Actuators B Chem. 126(2), 579–582 (2007).
[Crossref]

Sun, Y. Z.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Suter, J. D.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Svechnikov, S. V.

Y. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Y. V. Ushenin, E. F. Venger, A. V. Samoylov, and R. Merker, “A sensor based on the planar-polarization interferometer,” Sens. Actuators A Phys. 68(1-3), 384–387 (1998).
[Crossref]

Themistos, C.

Tovar, G.

M. Weisser, G. Tovar, S. Mittler-Neher, W. Knoll, F. Brosinger, H. Freimuth, M. Lacher, and W. Ehrfeld, “Specific bio-recognition reactions observed with an integrated Mach-Zehnder interferometer,” Biosens. Bioelectron. 14(4), 405–411 (1999).
[Crossref] [PubMed]

Tsai, Y. H.

B. Y. Shew, Y. C. Cheng, and Y. H. Tsai, “Monolithic SU-8 micro-interferometer for bio-chemical detections,” Sens. Actuators A Phys. 141(2), 299–306 (2008).
[Crossref]

Tu, X.

Q. Liu, X. Tu, K. Kim, J. S. Kee, Y. Shin, K. Han, Y.-J. Yoon, G.-Q. Lo, and M. K. Park, “Highly sensitive integrated Mach-Zehnder interferometer label-free biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

X. Tu, J. F. Song, T.-Y. Liow, M. K. Park, J. Q. Yiying, J. S. Kee, M. B. Yu, and G. Q. Lo, “Thermal independent silicon-nitride slot waveguide biosensor with high sensitivity,” Opt. Express 20(3), 2640–2648 (2012).
[Crossref] [PubMed]

Ushenin, Y. V.

Y. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Y. V. Ushenin, E. F. Venger, A. V. Samoylov, and R. Merker, “A sensor based on the planar-polarization interferometer,” Sens. Actuators A Phys. 68(1-3), 384–387 (1998).
[Crossref]

Venger, E. F.

Y. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Y. V. Ushenin, E. F. Venger, A. V. Samoylov, and R. Merker, “A sensor based on the planar-polarization interferometer,” Sens. Actuators A Phys. 68(1-3), 384–387 (1998).
[Crossref]

Waldron, P.

Weisser, M.

M. Weisser, G. Tovar, S. Mittler-Neher, W. Knoll, F. Brosinger, H. Freimuth, M. Lacher, and W. Ehrfeld, “Specific bio-recognition reactions observed with an integrated Mach-Zehnder interferometer,” Biosens. Bioelectron. 14(4), 405–411 (1999).
[Crossref] [PubMed]

White, I. M.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Xu, D.-X.

Yiying, J. Q.

Yoon, D. S.

J. Hong, J. S. Choi, G. Han, J. K. Kang, C.-M. Kim, T. S. Kim, and D. S. Yoon, “A Mach-Zehnder interferometer based on silicon oxides for biosensor applications,” Anal. Chim. Acta 573-574, 97–103 (2006).
[Crossref] [PubMed]

Yoon, Y.-J.

Q. Liu, X. Tu, K. Kim, J. S. Kee, Y. Shin, K. Han, Y.-J. Yoon, G.-Q. Lo, and M. K. Park, “Highly sensitive integrated Mach-Zehnder interferometer label-free biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Yu, M. B.

Zhu, H. Y.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Zinoviev, K. E.

Anal. Chim. Acta (2)

J. Hong, J. S. Choi, G. Han, J. K. Kang, C.-M. Kim, T. S. Kim, and D. S. Yoon, “A Mach-Zehnder interferometer based on silicon oxides for biosensor applications,” Anal. Chim. Acta 573-574, 97–103 (2006).
[Crossref] [PubMed]

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
[Crossref]

Biosens. Bioelectron. (2)

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref] [PubMed]

M. Weisser, G. Tovar, S. Mittler-Neher, W. Knoll, F. Brosinger, H. Freimuth, M. Lacher, and W. Ehrfeld, “Specific bio-recognition reactions observed with an integrated Mach-Zehnder interferometer,” Biosens. Bioelectron. 14(4), 405–411 (1999).
[Crossref] [PubMed]

IEEE Sens. J. (1)

R. Levy and S. Ruschin, “Design of a single-channel modal interferometer waveguide sensor,” IEEE Sens. J. 9(2), 146–153 (2009).
[Crossref]

J. Lightwave Technol. (2)

Langmuir (2)

F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, “Ultrathin multilayer polyelectrolyte films on gold: construction and thickness determination,” Langmuir 13(13), 3422–3426 (1997).
[Crossref]

L. S. Jung, K. E. Nelson, P. S. Stayton, and C. T. Campbell, “Binding and dissociation kinetics of wild-type and mutant streptavidins on mixed biotin-containing alkylthiolate monolayers,” Langmuir 16(24), 9421–9432 (2000).
[Crossref]

Macromol. Rapid Commun. (1)

P. Bertrand, A. Jonas, A. Laschewsky, and R. Legras, “Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties,” Macromol. Rapid Commun. 21(7), 319–348 (2000).
[Crossref]

Nanotechnology (1)

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Sens. Actuators A Phys. (2)

Y. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Y. V. Ushenin, E. F. Venger, A. V. Samoylov, and R. Merker, “A sensor based on the planar-polarization interferometer,” Sens. Actuators A Phys. 68(1-3), 384–387 (1998).
[Crossref]

B. Y. Shew, Y. C. Cheng, and Y. H. Tsai, “Monolithic SU-8 micro-interferometer for bio-chemical detections,” Sens. Actuators A Phys. 141(2), 299–306 (2008).
[Crossref]

Sens. Actuators B Chem. (3)

Q. Liu, X. Tu, K. Kim, J. S. Kee, Y. Shin, K. Han, Y.-J. Yoon, G.-Q. Lo, and M. K. Park, “Highly sensitive integrated Mach-Zehnder interferometer label-free biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, “Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1-2), 151–158 (2003).
[Crossref]

H. Su and X. G. Huang, “Fresnel-reflection-based fiber sensor for on-line measurement of solute concentration in solutions,” Sens. Actuators B Chem. 126(2), 579–582 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic diagram of the proposed sensor. (b) Cross section of the single-mode waveguide. (c) Cross section of the two-mode waveguide and electric field intensity profiles for the two lateral modes.
Fig. 2
Fig. 2 (a) Dependence of the normalized excited power in E 11 x mode, E 12 x mode, and total excited power in two modes on the offset distance s for a discontinuous junction with W1 = 450 nm and W2 = 900 nm. (b) Dependence of bending loss for E 11 x and E 12 x mode on the bending radius for two-mode waveguides with different widths W2.
Fig. 3
Fig. 3 SEM images of fabricated (a) spiral two-mode waveguide and (b) its central area. (c) Microscopic image of the sensing area with the SiO2 overcladding layer etched away.
Fig. 4
Fig. 4 SEM images of discontinuous junctions with offset distance (a) s = 400 nm, (b) s = 485 nm, and (c) s = 550 nm.
Fig. 5
Fig. 5 Transmission spectra for sensors with W1 = 450 nm and W2 = 900 nm at five different values of offset distance s.
Fig. 6
Fig. 6 (a) Real-time optical response for applying NaCl solution with different concentrations. (b) Variation of phase change with refractive index of NaCl solution. Linear fitting shows bulk sensitivity of ~461.6 π/RIU (R2 = 0.9990).
Fig. 7
Fig. 7 (a) Bulk sensitivity of sensors with different two-mode waveguide widths (solid line: theory; solid square: experiment). (b) Dependence of Sd on the two-mode waveguide width W2.
Fig. 8
Fig. 8 (a) Real-time optical response for the deposition of one bilayer of PSS/PAH. (b) Variation of the phase change with the number of bilayers (n) after the deposition of (PSS/PAH)n. Linear fitting shows sensitivity of ~2.27 π/bilayer (R2 = 0.9956).
Fig. 9
Fig. 9 (a) Real-time optical response to the adsorption of 10 μg/ml streptavidin to the biotinylated sensor surface. (b) Variation of phase change with different concentrations of streptavidin solution (plotted in log–log scale, R2 = 0.9708).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ n ex = 2 π L sensing λ ( N eff 0 N eff 1 ) n ex = 2 π L sensing λ S d ,
L b = R / S b ,
S m = Δ ϕ / σ p ,
L m = R / S m ,

Metrics