Abstract

A complete Mach-Zehnder interferometer monolithically integrated on silicon is presented and employed as a refractive index and bio-chemical sensor. The device consists of broad-band light sources optically coupled to photodetectors through monomodal waveguides forming arrays of Mach-Zehnder interferometers, all components being monolithically integrated on silicon through mainstream silicon technology. The interferometer is photonically engineered in a way that the phase difference of light travelling through the sensing and reference arms is approximately wavelength independent. Consequently, upon effective medium changes, it becomes feasible even with a broad-band source to induce sinusoidal-type of detector photocurrents similar to the classical monochromatic counterparts. The device is completed with its fluidic and interconnect components so that on chip interferometric measurements can be performed. Examples of refractive index and protein sensing are presented to establish the potential of the proposed device for real-time in situ monitoring applications. This is the only silicon device that has achieved complete on-chip interferometry.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst
Opt. Express 22(8) 8856-8870 (2014)

Porous silicon integrated Mach-Zehnder interferometer waveguide for biological and chemical sensing

Kyowon Kim and Thomas E. Murphy
Opt. Express 21(17) 19488-19497 (2013)

Surface plasmon-polariton Mach-Zehnder refractive index sensor

Galina Nemova, Andrey V. Kabashin, and Raman Kashyap
J. Opt. Soc. Am. B 25(10) 1673-1677 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. P. F. Turner, “Biosensors - sense and sensitivity,” Science 290(5495), 1315–1317 (2000).
    [Crossref] [PubMed]
  2. X. Fan and I. M. White, “Optofluidic microsystems for chemical andbiological analysis,” Nat. Photon. 5(10), 591–597 (2011).
    [Crossref] [PubMed]
  3. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photon. 1(2), 106–114 (2007).
    [Crossref]
  4. R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuat. B 61(1–3), 100–127 (1999).
    [Crossref]
  5. P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
    [Crossref] [PubMed]
  6. P. Preechaburana, M. C. Gonzalez, A. Suska, and D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. 51(46), 11585–11588 (2012).
    [Crossref]
  7. A. Anopchenko, A. Marconi, F. Sgrignuoli, L. Cattoni, A. Tengattini, G. Pucker, Y. Jestin, and L. Pavesi, “Electroluminescent devices based on nanosilicon multilayer structures,” Phys. Status Solidi A 210(8), 1525–1531 (2013).
    [Crossref]
  8. A. G. Nassiopoulos, S. Grigoropoulos, L. Canham, A. Halimaoui, A. Berbezier, I. Gogolides, and E. Papadimitriou, “Submicrometer luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films 255(1–2), 329–333 (1995).
    [Crossref]
  9. A. G. Nassiopoulos, S. Grigoropoulos, E. Gogolides, and E. Papadimitriou, “Visible luminescence from one-dimensional and 2-dimensional silicon structures produced by conventional lithographic and reactive ion etching techniques,” Appl. Phys. Lett. 66(9), 1114–1116 (1995).
    [Crossref]
  10. A. Chynoweth and K. Mckay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
    [Crossref]
  11. K. Misiakos, S. E. Kakabakos, P. S. Petrou, and H. H. Ruf, “A monolithic silicon optoelectronic transducer as a real-time affinity biosensor,” Anal. Chem. 76(5), 1366–1373 (2004).
    [Crossref] [PubMed]
  12. K. Misiakos, I. Raptis, A. Gerardino, H. Contopanagos, and M. Kitsara, “A monolithic photonic microcantilever device for in situ monitoring of volatile compounds,” Lab Chip 9(9), 1261–1266 (2009).
    [Crossref] [PubMed]
  13. E. Mavrogiannopoulou, P. S. Petrou, S. E. Kakabakos, and K. Misiakos, “Real-time detection of BRCA1 gene mutations using a monolithic silicon optocoupler array,” Biosens. Bioelectron. 24(5), 1341–1347 (2009).
    [Crossref] [PubMed]
  14. M. Kitsara, K. Misiakos, I. Raptis, and E. Makarona, “Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing,” Opt. Express 18(8), 8193–8206 (2010).
    [Crossref] [PubMed]
  15. K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22(8), 8856–8870 (2014).
    [Crossref] [PubMed]
  16. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]

2014 (2)

2013 (1)

A. Anopchenko, A. Marconi, F. Sgrignuoli, L. Cattoni, A. Tengattini, G. Pucker, Y. Jestin, and L. Pavesi, “Electroluminescent devices based on nanosilicon multilayer structures,” Phys. Status Solidi A 210(8), 1525–1531 (2013).
[Crossref]

2012 (1)

P. Preechaburana, M. C. Gonzalez, A. Suska, and D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. 51(46), 11585–11588 (2012).
[Crossref]

2011 (1)

X. Fan and I. M. White, “Optofluidic microsystems for chemical andbiological analysis,” Nat. Photon. 5(10), 591–597 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

K. Misiakos, I. Raptis, A. Gerardino, H. Contopanagos, and M. Kitsara, “A monolithic photonic microcantilever device for in situ monitoring of volatile compounds,” Lab Chip 9(9), 1261–1266 (2009).
[Crossref] [PubMed]

E. Mavrogiannopoulou, P. S. Petrou, S. E. Kakabakos, and K. Misiakos, “Real-time detection of BRCA1 gene mutations using a monolithic silicon optocoupler array,” Biosens. Bioelectron. 24(5), 1341–1347 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photon. 1(2), 106–114 (2007).
[Crossref]

2004 (1)

K. Misiakos, S. E. Kakabakos, P. S. Petrou, and H. H. Ruf, “A monolithic silicon optoelectronic transducer as a real-time affinity biosensor,” Anal. Chem. 76(5), 1366–1373 (2004).
[Crossref] [PubMed]

2000 (1)

A. P. F. Turner, “Biosensors - sense and sensitivity,” Science 290(5495), 1315–1317 (2000).
[Crossref] [PubMed]

1999 (1)

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuat. B 61(1–3), 100–127 (1999).
[Crossref]

1995 (2)

A. G. Nassiopoulos, S. Grigoropoulos, L. Canham, A. Halimaoui, A. Berbezier, I. Gogolides, and E. Papadimitriou, “Submicrometer luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films 255(1–2), 329–333 (1995).
[Crossref]

A. G. Nassiopoulos, S. Grigoropoulos, E. Gogolides, and E. Papadimitriou, “Visible luminescence from one-dimensional and 2-dimensional silicon structures produced by conventional lithographic and reactive ion etching techniques,” Appl. Phys. Lett. 66(9), 1114–1116 (1995).
[Crossref]

1956 (1)

A. Chynoweth and K. Mckay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
[Crossref]

Anopchenko, A.

A. Anopchenko, A. Marconi, F. Sgrignuoli, L. Cattoni, A. Tengattini, G. Pucker, Y. Jestin, and L. Pavesi, “Electroluminescent devices based on nanosilicon multilayer structures,” Phys. Status Solidi A 210(8), 1525–1531 (2013).
[Crossref]

Berbezier, A.

A. G. Nassiopoulos, S. Grigoropoulos, L. Canham, A. Halimaoui, A. Berbezier, I. Gogolides, and E. Papadimitriou, “Submicrometer luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films 255(1–2), 329–333 (1995).
[Crossref]

Bier, F. F.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Botsialas, A.

Canham, L.

A. G. Nassiopoulos, S. Grigoropoulos, L. Canham, A. Halimaoui, A. Berbezier, I. Gogolides, and E. Papadimitriou, “Submicrometer luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films 255(1–2), 329–333 (1995).
[Crossref]

Cattoni, L.

A. Anopchenko, A. Marconi, F. Sgrignuoli, L. Cattoni, A. Tengattini, G. Pucker, Y. Jestin, and L. Pavesi, “Electroluminescent devices based on nanosilicon multilayer structures,” Phys. Status Solidi A 210(8), 1525–1531 (2013).
[Crossref]

Chynoweth, A.

A. Chynoweth and K. Mckay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
[Crossref]

Contopanagos, H.

K. Misiakos, I. Raptis, A. Gerardino, H. Contopanagos, and M. Kitsara, “A monolithic photonic microcantilever device for in situ monitoring of volatile compounds,” Lab Chip 9(9), 1261–1266 (2009).
[Crossref] [PubMed]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photon. 1(2), 106–114 (2007).
[Crossref]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photon. 1(2), 106–114 (2007).
[Crossref]

Ehrentreich-Förster, E.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Fan, X.

X. Fan and I. M. White, “Optofluidic microsystems for chemical andbiological analysis,” Nat. Photon. 5(10), 591–597 (2011).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

Filippini, D.

P. Preechaburana, M. C. Gonzalez, A. Suska, and D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. 51(46), 11585–11588 (2012).
[Crossref]

Gerardino, A.

K. Misiakos, I. Raptis, A. Gerardino, H. Contopanagos, and M. Kitsara, “A monolithic photonic microcantilever device for in situ monitoring of volatile compounds,” Lab Chip 9(9), 1261–1266 (2009).
[Crossref] [PubMed]

Gogolides, E.

A. G. Nassiopoulos, S. Grigoropoulos, E. Gogolides, and E. Papadimitriou, “Visible luminescence from one-dimensional and 2-dimensional silicon structures produced by conventional lithographic and reactive ion etching techniques,” Appl. Phys. Lett. 66(9), 1114–1116 (1995).
[Crossref]

Gogolides, I.

A. G. Nassiopoulos, S. Grigoropoulos, L. Canham, A. Halimaoui, A. Berbezier, I. Gogolides, and E. Papadimitriou, “Submicrometer luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films 255(1–2), 329–333 (1995).
[Crossref]

Gonzalez, M. C.

P. Preechaburana, M. C. Gonzalez, A. Suska, and D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. 51(46), 11585–11588 (2012).
[Crossref]

Grigoropoulos, S.

A. G. Nassiopoulos, S. Grigoropoulos, E. Gogolides, and E. Papadimitriou, “Visible luminescence from one-dimensional and 2-dimensional silicon structures produced by conventional lithographic and reactive ion etching techniques,” Appl. Phys. Lett. 66(9), 1114–1116 (1995).
[Crossref]

A. G. Nassiopoulos, S. Grigoropoulos, L. Canham, A. Halimaoui, A. Berbezier, I. Gogolides, and E. Papadimitriou, “Submicrometer luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films 255(1–2), 329–333 (1995).
[Crossref]

Halimaoui, A.

A. G. Nassiopoulos, S. Grigoropoulos, L. Canham, A. Halimaoui, A. Berbezier, I. Gogolides, and E. Papadimitriou, “Submicrometer luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films 255(1–2), 329–333 (1995).
[Crossref]

Heideman, R. G.

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuat. B 61(1–3), 100–127 (1999).
[Crossref]

Hoekman, M.

Jestin, Y.

A. Anopchenko, A. Marconi, F. Sgrignuoli, L. Cattoni, A. Tengattini, G. Pucker, Y. Jestin, and L. Pavesi, “Electroluminescent devices based on nanosilicon multilayer structures,” Phys. Status Solidi A 210(8), 1525–1531 (2013).
[Crossref]

Jobst, G.

Kakabakos, S. E.

E. Mavrogiannopoulou, P. S. Petrou, S. E. Kakabakos, and K. Misiakos, “Real-time detection of BRCA1 gene mutations using a monolithic silicon optocoupler array,” Biosens. Bioelectron. 24(5), 1341–1347 (2009).
[Crossref] [PubMed]

K. Misiakos, S. E. Kakabakos, P. S. Petrou, and H. H. Ruf, “A monolithic silicon optoelectronic transducer as a real-time affinity biosensor,” Anal. Chem. 76(5), 1366–1373 (2004).
[Crossref] [PubMed]

Kehl, F.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Kitsara, M.

M. Kitsara, K. Misiakos, I. Raptis, and E. Makarona, “Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing,” Opt. Express 18(8), 8193–8206 (2010).
[Crossref] [PubMed]

K. Misiakos, I. Raptis, A. Gerardino, H. Contopanagos, and M. Kitsara, “A monolithic photonic microcantilever device for in situ monitoring of volatile compounds,” Lab Chip 9(9), 1261–1266 (2009).
[Crossref] [PubMed]

Kozma, P.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Lambeck, P. V.

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuat. B 61(1–3), 100–127 (1999).
[Crossref]

Makarona, E.

Marconi, A.

A. Anopchenko, A. Marconi, F. Sgrignuoli, L. Cattoni, A. Tengattini, G. Pucker, Y. Jestin, and L. Pavesi, “Electroluminescent devices based on nanosilicon multilayer structures,” Phys. Status Solidi A 210(8), 1525–1531 (2013).
[Crossref]

Mavrogiannopoulou, E.

E. Mavrogiannopoulou, P. S. Petrou, S. E. Kakabakos, and K. Misiakos, “Real-time detection of BRCA1 gene mutations using a monolithic silicon optocoupler array,” Biosens. Bioelectron. 24(5), 1341–1347 (2009).
[Crossref] [PubMed]

Mckay, K.

A. Chynoweth and K. Mckay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
[Crossref]

Misiakos, K.

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22(8), 8856–8870 (2014).
[Crossref] [PubMed]

M. Kitsara, K. Misiakos, I. Raptis, and E. Makarona, “Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing,” Opt. Express 18(8), 8193–8206 (2010).
[Crossref] [PubMed]

K. Misiakos, I. Raptis, A. Gerardino, H. Contopanagos, and M. Kitsara, “A monolithic photonic microcantilever device for in situ monitoring of volatile compounds,” Lab Chip 9(9), 1261–1266 (2009).
[Crossref] [PubMed]

E. Mavrogiannopoulou, P. S. Petrou, S. E. Kakabakos, and K. Misiakos, “Real-time detection of BRCA1 gene mutations using a monolithic silicon optocoupler array,” Biosens. Bioelectron. 24(5), 1341–1347 (2009).
[Crossref] [PubMed]

K. Misiakos, S. E. Kakabakos, P. S. Petrou, and H. H. Ruf, “A monolithic silicon optoelectronic transducer as a real-time affinity biosensor,” Anal. Chem. 76(5), 1366–1373 (2004).
[Crossref] [PubMed]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photon. 1(2), 106–114 (2007).
[Crossref]

Nassiopoulos, A. G.

A. G. Nassiopoulos, S. Grigoropoulos, L. Canham, A. Halimaoui, A. Berbezier, I. Gogolides, and E. Papadimitriou, “Submicrometer luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films 255(1–2), 329–333 (1995).
[Crossref]

A. G. Nassiopoulos, S. Grigoropoulos, E. Gogolides, and E. Papadimitriou, “Visible luminescence from one-dimensional and 2-dimensional silicon structures produced by conventional lithographic and reactive ion etching techniques,” Appl. Phys. Lett. 66(9), 1114–1116 (1995).
[Crossref]

Papadimitriou, E.

A. G. Nassiopoulos, S. Grigoropoulos, L. Canham, A. Halimaoui, A. Berbezier, I. Gogolides, and E. Papadimitriou, “Submicrometer luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films 255(1–2), 329–333 (1995).
[Crossref]

A. G. Nassiopoulos, S. Grigoropoulos, E. Gogolides, and E. Papadimitriou, “Visible luminescence from one-dimensional and 2-dimensional silicon structures produced by conventional lithographic and reactive ion etching techniques,” Appl. Phys. Lett. 66(9), 1114–1116 (1995).
[Crossref]

Pavesi, L.

A. Anopchenko, A. Marconi, F. Sgrignuoli, L. Cattoni, A. Tengattini, G. Pucker, Y. Jestin, and L. Pavesi, “Electroluminescent devices based on nanosilicon multilayer structures,” Phys. Status Solidi A 210(8), 1525–1531 (2013).
[Crossref]

Petrou, P. S.

E. Mavrogiannopoulou, P. S. Petrou, S. E. Kakabakos, and K. Misiakos, “Real-time detection of BRCA1 gene mutations using a monolithic silicon optocoupler array,” Biosens. Bioelectron. 24(5), 1341–1347 (2009).
[Crossref] [PubMed]

K. Misiakos, S. E. Kakabakos, P. S. Petrou, and H. H. Ruf, “A monolithic silicon optoelectronic transducer as a real-time affinity biosensor,” Anal. Chem. 76(5), 1366–1373 (2004).
[Crossref] [PubMed]

Preechaburana, P.

P. Preechaburana, M. C. Gonzalez, A. Suska, and D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. 51(46), 11585–11588 (2012).
[Crossref]

Pucker, G.

A. Anopchenko, A. Marconi, F. Sgrignuoli, L. Cattoni, A. Tengattini, G. Pucker, Y. Jestin, and L. Pavesi, “Electroluminescent devices based on nanosilicon multilayer structures,” Phys. Status Solidi A 210(8), 1525–1531 (2013).
[Crossref]

Raptis, I.

Ruf, H. H.

K. Misiakos, S. E. Kakabakos, P. S. Petrou, and H. H. Ruf, “A monolithic silicon optoelectronic transducer as a real-time affinity biosensor,” Anal. Chem. 76(5), 1366–1373 (2004).
[Crossref] [PubMed]

Salapatas, A.

Sgrignuoli, F.

A. Anopchenko, A. Marconi, F. Sgrignuoli, L. Cattoni, A. Tengattini, G. Pucker, Y. Jestin, and L. Pavesi, “Electroluminescent devices based on nanosilicon multilayer structures,” Phys. Status Solidi A 210(8), 1525–1531 (2013).
[Crossref]

Stamm, C.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Stoffer, R.

Suska, A.

P. Preechaburana, M. C. Gonzalez, A. Suska, and D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. 51(46), 11585–11588 (2012).
[Crossref]

Tengattini, A.

A. Anopchenko, A. Marconi, F. Sgrignuoli, L. Cattoni, A. Tengattini, G. Pucker, Y. Jestin, and L. Pavesi, “Electroluminescent devices based on nanosilicon multilayer structures,” Phys. Status Solidi A 210(8), 1525–1531 (2013).
[Crossref]

Turner, A. P. F.

A. P. F. Turner, “Biosensors - sense and sensitivity,” Science 290(5495), 1315–1317 (2000).
[Crossref] [PubMed]

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical andbiological analysis,” Nat. Photon. 5(10), 591–597 (2011).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

Anal. Chem. (1)

K. Misiakos, S. E. Kakabakos, P. S. Petrou, and H. H. Ruf, “A monolithic silicon optoelectronic transducer as a real-time affinity biosensor,” Anal. Chem. 76(5), 1366–1373 (2004).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. (1)

P. Preechaburana, M. C. Gonzalez, A. Suska, and D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. 51(46), 11585–11588 (2012).
[Crossref]

Appl. Phys. Lett. (1)

A. G. Nassiopoulos, S. Grigoropoulos, E. Gogolides, and E. Papadimitriou, “Visible luminescence from one-dimensional and 2-dimensional silicon structures produced by conventional lithographic and reactive ion etching techniques,” Appl. Phys. Lett. 66(9), 1114–1116 (1995).
[Crossref]

Biosens. Bioelectron. (2)

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

E. Mavrogiannopoulou, P. S. Petrou, S. E. Kakabakos, and K. Misiakos, “Real-time detection of BRCA1 gene mutations using a monolithic silicon optocoupler array,” Biosens. Bioelectron. 24(5), 1341–1347 (2009).
[Crossref] [PubMed]

Lab Chip (1)

K. Misiakos, I. Raptis, A. Gerardino, H. Contopanagos, and M. Kitsara, “A monolithic photonic microcantilever device for in situ monitoring of volatile compounds,” Lab Chip 9(9), 1261–1266 (2009).
[Crossref] [PubMed]

Nat. Photon. (2)

X. Fan and I. M. White, “Optofluidic microsystems for chemical andbiological analysis,” Nat. Photon. 5(10), 591–597 (2011).
[Crossref] [PubMed]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photon. 1(2), 106–114 (2007).
[Crossref]

Opt. Express (3)

Phys. Rev. (1)

A. Chynoweth and K. Mckay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
[Crossref]

Phys. Status Solidi A (1)

A. Anopchenko, A. Marconi, F. Sgrignuoli, L. Cattoni, A. Tengattini, G. Pucker, Y. Jestin, and L. Pavesi, “Electroluminescent devices based on nanosilicon multilayer structures,” Phys. Status Solidi A 210(8), 1525–1531 (2013).
[Crossref]

Science (1)

A. P. F. Turner, “Biosensors - sense and sensitivity,” Science 290(5495), 1315–1317 (2000).
[Crossref] [PubMed]

Sens. Actuat. B (1)

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuat. B 61(1–3), 100–127 (1999).
[Crossref]

Thin Solid Films (1)

A. G. Nassiopoulos, S. Grigoropoulos, L. Canham, A. Halimaoui, A. Berbezier, I. Gogolides, and E. Papadimitriou, “Submicrometer luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films 255(1–2), 329–333 (1995).
[Crossref]

Supplementary Material (2)

» Media 1: MP4 (6723 KB)     
» Media 2: MP4 (7949 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Monolithic silicon optocoupler-interferometer. (a). Optocoupler including the avalanche LED (1), the silicon nitride waveguide and the Mach-Zehnder interferometer (2), the silicon p/n junction detector (3) and the SiO2 bending spacers (4). The field oxide is 3 microns thick. The spacers provide for the smooth bending of the waveguides to reduce associated losses when the waveguide goes from vertical to horizontal [11]. The metallurgical p/n junction of the avalanche diode is self-aligned to the up-going segment of the waveguide by implanting the P++ emitter through the nitride core [11] to assure high coupling efficiency. On top of the chip the fluidic compartment is shown. More details on the fluidics and interconnects are provided later. (b). Optical interconnect diagram. For reasons relevant to achieving maximum self-alignment, the waveguide at the LED starts as a two micron multimode strip waveguide. The LED is in contact with the strip waveguide (dark colored) which in turn connects to the rib waveguide (light colored) through two back to back tapers. The two tapers are introduced to reduce the strip-rib conversion losses. The rib waveguide is 1.25 microns wide and a 4 nm etch depth. The core thickness is 167 nm for the reference arm, the same as the nitride slab thickness. The sensing arm is 162 nm thick. The reference-sensing arm core thickness differential was obtained by over-etching the nitride layer at the sensing window. The interferometer is placed between the second taper and the detector, where the rib waveguide is monomodal. (c). Spectra of the TE and TM mode in the single mode rib waveguide. The spectrum is recorded at the emitting edge of a semi-integrated chip obtained by cleaving off the detector. The inset shows the total emitted mode profile at the cleaved edge of a semi-integrated chip. The nitride core is also shown as a thin horizontal slab.
Fig. 2
Fig. 2 Simulated phase φ(λ), (a), and output-to-input power ratio, (b), for the TE polarization and water solutions as cover media. Here L = 600 μm. (a) The phase has a maximum in the 700-800 nm region and drops towards the green and the near IR. As the cover medium RI increases from 1.335 to 1.338 and then to 1.34 the phase curve merely moves down by δNs/λ which is more or less wavelength independent [15]. At 750 nm the simulated phase sensitivity on nc is 592 rads/RIU. (b) The intensity ratios of Eq. (1). In the middle region, 650-900 nm, the curve goes monotonically from the maximum to the minimum when nc changes from 1.335 to 1.34. The mode effective indices Nr, Ns were obtained from the FemSIM software package (SYNOPSYS). The wavelength dispersions of the nitride core and claddings were taken into account.
Fig. 3
Fig. 3 Packaged chips (a,b) and probe-fluidic head (c,d,e). (a) Interferometric chip with the fluidic cover on top. The pads on the left are the 10 LED emitter contacts and grounds. The ten interferometers converge on the same detector (bottom right contact). The two conical (45° slant to auto-align the cannula to the 300µm cylindrical via hole) holes placed diagonally on the fluidic cover are the inlet and outlet ports that hermetically seal with the spring loaded cannulas of the probe head. (b) Top view schematic of the chip in (a) showing the 10 MZIs converging on the same detector (right). The exposed arms are numbered and shown as the dark straight line segments on the waveguides. The curved green strip around the exposed arms is the sealing ring. The blue diagonal circles are the inlet-outlet holes on the fluidic cover. The yellow lines are the metal interconnects. The three exposed arm subsets (a,b,c) indicate the three regions to be spotted by different molecules when running the biosensing experiments. The chip dimensions are 4X9 mm2. (c) Probe-fluidic head. The packaged chip is sitting in a recess on a brass chuck while the protruding rods serve as indexing pins for the alignment of the probe-fluidic head coming from top. The spring loaded pins, 1, (aligned to the metal pads) and the cannulas, 2, (aligned to the conical fluidic cover holes) are visible. (d) Fluidic head close-up emphasizing the spring loaded pins and the cannula. (e). Vertical assembly of the upper (head) and the lower part (chip) shown in (c).
Fig. 4
Fig. 4 Experimental results for the flat region operation in the case of the semi-integrated (a,b,c) and integrated version (d) for the MZI described above (ts = 162nm, tr = 167nm, L = 600 μm). The cover medium RI change was 1.2x10−2 RIU: water (initial) to isopropanol solution (16,66% solution) and then back to water (final). (a). TE, only, spectra from semi-integrated chips at initial-water (0), lowest intensity (1), highest intensity (2) and propanol position (3). The full transient is shown in Media 1. (b). Spectra from semi-integrated chips of the total mode output (TE + TM) at the same points as in (a). The full transient is shown in Media 2. (c). Plot of the sum of the TE + TM counts in (b) as a function of time during the cover medium transition: water (1) - isopropanol solution (2) - water (1). A 2.16π phase oscillation is measured. (d). Integrated chip photocurrent for the same RI transition as in (c). A 2.22π phase oscillation is measured. Curves 1 and 2 in (a) and (b) correspond, respectively, to the lowest and highest points in (c) and (d). Here, one LED was biased and the ouput photocurrent was monitored through a KEITHEY 6517A femto-amperometer with a rate of 1Hz.
Fig. 5
Fig. 5 Sensitivity plot of the photocurrent phase as a function of the cover medium RI change. The volume dilution starts at 1/6 (δnc = 1.2x10−2 RIU) and ends up at 1/2000 (δnc = 3.6x10−5 RIU).
Fig. 6
Fig. 6 Demultiplexed response of the spotted chip showing the normalized photocurrent for all 10 interferometers which are numbered as in Fig. 3(b). The multiplexer interrogates all 10 waveguides every 1 second and supplies the photocurrent to a readout chain that provides amplification and signal conditioning. The values shown are normalized with respect to a unit photocurrent of 25 pA. The fluidic interface supplies the buffer and reagent sequence; assay buffer (1% BSA in PBS solution), 1 nM streptavidin solution in assay buffer (20 min), assay buffer (5 min), 10 nM anti-mouse IgG in assay buffer, (20 minutes), assay buffer. The signal noise appears higher compared to the one in Fig. 4 because here the signal integration time was 0.1 s compared to 1 s in Fig. 4.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I out I in = 1 2 [ 1+cos( φ( λ ) ) ]= 1 2 [ 1+cos( 2πΔ N rs ( λ )L λ ) ] 
[Δ N rs ( λ m )/ λ m ] λ =0
φ(λ)=2πΔ N rs ( λ )L/λφ( λ m )+cL (λ λ m ) 2
S Φ =| δΦ/δ n c |= 2πL(δ Ν s /λ) δ n c
Φ=arccos[ ( I ph I spp )/ I dpp ] 
LOD=3 Φ nrms / S Φ  =3 Φ nrms /[ 2πL(δ Ν s /λ) δ n c ]

Metrics