Abstract

Specialty optical fibers, in particular microstructured and multi-material optical fibers, have complex geometry in terms of structure and/or material composition. Their fabrication, although rapidly developing, is still at a very early stage of development compared with conventional optical fibers. Structural characterization of these fibers during every step of their multi-stage fabrication process is paramount to optimize the fiber-drawing process. The complexity of these fibers restricts the use of conventional refractometry and microscopy techniques to determine their structural and material composition. Here we present, to the best of our knowledge, the first nondestructive structural and material investigation of specialty optical fibers using X-ray computed tomography (CT) methods, not achievable using other techniques. Recent advances in X-ray CT techniques allow the examination of optical fibers and their preforms with sub-micron resolution while preserving the specimen for onward processing and use. In this work, we study some of the most challenging specialty optical fibers and their preforms. We analyze a hollow core photonic band gap fiber and its preforms, and bond quality at the joint between two fusion-spliced hollow core fibers. Additionally, we studied a multi-element optical fiber and a metal incorporated dual suspended-core optical fiber. The application of X-ray CT can be extended to almost all optical fiber types, preforms and devices.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extrusion of complex preforms for microstructured optical fibers

Heike Ebendorff-Heidepriem and Tanya M. Monro
Opt. Express 15(23) 15086-15092 (2007)

Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers

Guangming Tao, Soroush Shabahang, Esmaeil-Hooman Banaei, Joshua J. Kaufman, and Ayman F. Abouraddy
Opt. Lett. 37(13) 2751-2753 (2012)

MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti
Opt. Express 23(1) 312-329 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” P. Soc. Photo-Opt. Ins. 2, 315 (2013).
  2. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
    [Crossref]
  3. S. R. Sandoghchi, T. Zhang, J. P. Wooler, N. Baddela, N. V. Wheeler, Y. Chen, G. T. Jasion, D. R. Gray, E. Numkam Fokoua, J. Hayes, M. Petrovich, F. Poletti, and D. J. Richardson, “First Investigation of Longitudinal Defects in Hollow Core Photonic Bandgap Fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), M2F.6.
    [Crossref]
  4. R. Hui and M. S. O'Sullivan, Fiber Optic Measurement Techniques (Elsevier/Academic Press, 2009).
  5. A. D. Yablon, “Multifocus tomographic algorithm for measuring optically thick specimens,” Opt. Lett. 38(21), 4393–4396 (2013).
    [Crossref] [PubMed]
  6. R. Hanke, T. Fuchs, and N. Uhlmann, “X-ray based methods for non-destructive testing and material characterization,” Nucl. Instrum. Meth. A 591(1), 14–18 (2008).
    [Crossref]
  7. A. E. Scott, M. Mavrogordato, P. Wright, I. Sinclair, and S. M. Spearing, “In situ fibre fracture measurement in carbon–epoxy laminates using high resolution computed tomography,” Compos. Sci. Technol. 71(12), 1471–1477 (2011).
    [Crossref]
  8. J. Dinley, L. Hawkins, G. Paterson, A. D. Ball, I. Sinclair, P. Sinnett-Jones, and S. Lanham, “Micro-computed X-ray tomography: a new non-destructive method of assessing sectional, fly-through and 3D imaging of a soft-bodied marine worm,” J. Microsc. 238(2), 123–133 (2010).
    [Crossref] [PubMed]
  9. P. R. Shearing, D. J. L. Brett, and N. P. Brandon, “Towards intelligent engineering of SOFC electrodes: a review of advanced microstructural characterisation techniques,” Int. Mater. Rev. 55(6), 347–363 (2010).
    [Crossref]
  10. J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances, 2nd ed. ed. (Wiley Interscience; Bellingham, Wash.: SPIE Press, Hoboken, N.J., 2009).
  11. Southampton Imaging, “microCT” (University of Sothampton, 16/07/2014, 2014), retrieved 15/08/2014, 2014, http://www.southampton.ac.uk/southamptonimaging/instruments/microct.page .
  12. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
    [Crossref]
  13. J. Wooler, D. Gray, F. Poletti, M. Petrovich, N. Wheeler, F. Parmigiani, and D. J. Richardson, “Robust Low Loss Splicing of Hollow Core Photonic Bandgap Fiber to Itself,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), OM3I.5.
    [Crossref]
  14. F. Couny, F. Benabid, and P. S. Light, “Reduction of Fresnel Back-Reflection at Splice Interface Between Hollow Core PCF and Single-Mode Fiber,” IEEE Photonic. Tech. L. 19(13), 1020–1022 (2007).
    [Crossref]
  15. F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, Light and Gas Confinement in Hollow-Core Photonic Crystal Fibre Based Photonic Microcells (Journal of the European Optical Society, 2009), Vol. 4.
  16. J. P. Wooler, S. R. Sandoghchi, D. R. Gray, F. Poletti, M. N. Petrovich, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Overcoming the Challenges of Splicing Dissimilar Diameter Solid-Core and Hollow-Core Photonic Band Gap Fibers,” in Workshop on Specialty Optical Fibers and their Applications, (Optical Society of America, 2013), W3.26.
    [Crossref]
  17. J. P. Wooler, F. R. Parmigiani, S. R. Sandoghchi, N. V. Wheeler, D. R. Gray, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Data transmission over 1km HC-PBGF arranged with microstructured fiber spliced to both itself and SMF,” in Optical Communication (ECOC 2013), 39th European Conference and Exhibition on, 2013), 1–3.
    [Crossref]
  18. S. Jain, V. J. F. Rancaño, T. C. May-Smith, P. Petropoulos, J. K. Sahu, and D. J. Richardson, “Multi-Element Fiber Technology for Space-Division Multiplexing Applications,” Opt. Express 22(4), 3787–3796 (2014).
    [Crossref] [PubMed]
  19. Z. Lian, M. Segura, N. Podoliak, X. Feng, N. White, P. Horak, and W. Loh, “Electrical current-driven dual-core optical fiber with embedded metal electrodes,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), Tu3K.3.
    [Crossref]
  20. M. Fokine, L. E. Nilsson, Ã. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach-Zehnder interferometer for electro-optic switching,” Opt. Lett. 27(18), 1643–1645 (2002).
    [Crossref] [PubMed]
  21. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
    [Crossref]
  22. H. W. Lee, M. A. Schmidt, and P. S. J. Russell, “Excitation of a nanowire “molecule” in gold-filled photonic crystal fiber,” Opt. Lett. 37(14), 2946–2948 (2012).
    [Crossref] [PubMed]
  23. N. Podoliak, Z. Lian, W. H. Loh, and P. Horak, “Design of dual-core optical fibers with NEMS functionality,” Opt. Express 22(1), 1065–1076 (2014).
    [Crossref] [PubMed]

2014 (2)

2013 (3)

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” P. Soc. Photo-Opt. Ins. 2, 315 (2013).

A. D. Yablon, “Multifocus tomographic algorithm for measuring optically thick specimens,” Opt. Lett. 38(21), 4393–4396 (2013).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

2012 (1)

2011 (2)

A. E. Scott, M. Mavrogordato, P. Wright, I. Sinclair, and S. M. Spearing, “In situ fibre fracture measurement in carbon–epoxy laminates using high resolution computed tomography,” Compos. Sci. Technol. 71(12), 1471–1477 (2011).
[Crossref]

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

2010 (2)

J. Dinley, L. Hawkins, G. Paterson, A. D. Ball, I. Sinclair, P. Sinnett-Jones, and S. Lanham, “Micro-computed X-ray tomography: a new non-destructive method of assessing sectional, fly-through and 3D imaging of a soft-bodied marine worm,” J. Microsc. 238(2), 123–133 (2010).
[Crossref] [PubMed]

P. R. Shearing, D. J. L. Brett, and N. P. Brandon, “Towards intelligent engineering of SOFC electrodes: a review of advanced microstructural characterisation techniques,” Int. Mater. Rev. 55(6), 347–363 (2010).
[Crossref]

2008 (2)

R. Hanke, T. Fuchs, and N. Uhlmann, “X-ray based methods for non-destructive testing and material characterization,” Nucl. Instrum. Meth. A 591(1), 14–18 (2008).
[Crossref]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[Crossref]

2007 (1)

F. Couny, F. Benabid, and P. S. Light, “Reduction of Fresnel Back-Reflection at Splice Interface Between Hollow Core PCF and Single-Mode Fiber,” IEEE Photonic. Tech. L. 19(13), 1020–1022 (2007).
[Crossref]

2002 (1)

Baddela, N. K.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Ball, A. D.

J. Dinley, L. Hawkins, G. Paterson, A. D. Ball, I. Sinclair, P. Sinnett-Jones, and S. Lanham, “Micro-computed X-ray tomography: a new non-destructive method of assessing sectional, fly-through and 3D imaging of a soft-bodied marine worm,” J. Microsc. 238(2), 123–133 (2010).
[Crossref] [PubMed]

Benabid, F.

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Reduction of Fresnel Back-Reflection at Splice Interface Between Hollow Core PCF and Single-Mode Fiber,” IEEE Photonic. Tech. L. 19(13), 1020–1022 (2007).
[Crossref]

Berlemont, D.

Brandon, N. P.

P. R. Shearing, D. J. L. Brett, and N. P. Brandon, “Towards intelligent engineering of SOFC electrodes: a review of advanced microstructural characterisation techniques,” Int. Mater. Rev. 55(6), 347–363 (2010).
[Crossref]

Brett, D. J. L.

P. R. Shearing, D. J. L. Brett, and N. P. Brandon, “Towards intelligent engineering of SOFC electrodes: a review of advanced microstructural characterisation techniques,” Int. Mater. Rev. 55(6), 347–363 (2010).
[Crossref]

Claesson, Ã.

Couny, F.

F. Couny, F. Benabid, and P. S. Light, “Reduction of Fresnel Back-Reflection at Splice Interface Between Hollow Core PCF and Single-Mode Fiber,” IEEE Photonic. Tech. L. 19(13), 1020–1022 (2007).
[Crossref]

Dinley, J.

J. Dinley, L. Hawkins, G. Paterson, A. D. Ball, I. Sinclair, P. Sinnett-Jones, and S. Lanham, “Micro-computed X-ray tomography: a new non-destructive method of assessing sectional, fly-through and 3D imaging of a soft-bodied marine worm,” J. Microsc. 238(2), 123–133 (2010).
[Crossref] [PubMed]

Fokine, M.

Fuchs, T.

R. Hanke, T. Fuchs, and N. Uhlmann, “X-ray based methods for non-destructive testing and material characterization,” Nucl. Instrum. Meth. A 591(1), 14–18 (2008).
[Crossref]

Gray, D. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Hanke, R.

R. Hanke, T. Fuchs, and N. Uhlmann, “X-ray based methods for non-destructive testing and material characterization,” Nucl. Instrum. Meth. A 591(1), 14–18 (2008).
[Crossref]

Hawkins, L.

J. Dinley, L. Hawkins, G. Paterson, A. D. Ball, I. Sinclair, P. Sinnett-Jones, and S. Lanham, “Micro-computed X-ray tomography: a new non-destructive method of assessing sectional, fly-through and 3D imaging of a soft-bodied marine worm,” J. Microsc. 238(2), 123–133 (2010).
[Crossref] [PubMed]

Hayes, J. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Horak, P.

Jain, S.

Kjellberg, L.

Krummenacher, L.

Lanham, S.

J. Dinley, L. Hawkins, G. Paterson, A. D. Ball, I. Sinclair, P. Sinnett-Jones, and S. Lanham, “Micro-computed X-ray tomography: a new non-destructive method of assessing sectional, fly-through and 3D imaging of a soft-bodied marine worm,” J. Microsc. 238(2), 123–133 (2010).
[Crossref] [PubMed]

Lee, H. W.

H. W. Lee, M. A. Schmidt, and P. S. J. Russell, “Excitation of a nanowire “molecule” in gold-filled photonic crystal fiber,” Opt. Lett. 37(14), 2946–2948 (2012).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[Crossref]

Li, Z.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Lian, Z.

Light, P. S.

F. Couny, F. Benabid, and P. S. Light, “Reduction of Fresnel Back-Reflection at Splice Interface Between Hollow Core PCF and Single-Mode Fiber,” IEEE Photonic. Tech. L. 19(13), 1020–1022 (2007).
[Crossref]

Loh, W. H.

Margulis, W.

Mavrogordato, M.

A. E. Scott, M. Mavrogordato, P. Wright, I. Sinclair, and S. M. Spearing, “In situ fibre fracture measurement in carbon–epoxy laminates using high resolution computed tomography,” Compos. Sci. Technol. 71(12), 1471–1477 (2011).
[Crossref]

May-Smith, T. C.

Nilsson, L. E.

Numkam Fokoua, E.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Paterson, G.

J. Dinley, L. Hawkins, G. Paterson, A. D. Ball, I. Sinclair, P. Sinnett-Jones, and S. Lanham, “Micro-computed X-ray tomography: a new non-destructive method of assessing sectional, fly-through and 3D imaging of a soft-bodied marine worm,” J. Microsc. 238(2), 123–133 (2010).
[Crossref] [PubMed]

Petropoulos, P.

Petrovich, M. N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” P. Soc. Photo-Opt. Ins. 2, 315 (2013).

Podoliak, N.

Poletti, F.

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” P. Soc. Photo-Opt. Ins. 2, 315 (2013).

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Rancaño, V. J. F.

Richardson, D. J.

S. Jain, V. J. F. Rancaño, T. C. May-Smith, P. Petropoulos, J. K. Sahu, and D. J. Richardson, “Multi-Element Fiber Technology for Space-Division Multiplexing Applications,” Opt. Express 22(4), 3787–3796 (2014).
[Crossref] [PubMed]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” P. Soc. Photo-Opt. Ins. 2, 315 (2013).

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Roberts, P. J.

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

Russell, P. S. J.

H. W. Lee, M. A. Schmidt, and P. S. J. Russell, “Excitation of a nanowire “molecule” in gold-filled photonic crystal fiber,” Opt. Lett. 37(14), 2946–2948 (2012).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[Crossref]

Sahu, J. K.

Schmidt, M. A.

H. W. Lee, M. A. Schmidt, and P. S. J. Russell, “Excitation of a nanowire “molecule” in gold-filled photonic crystal fiber,” Opt. Lett. 37(14), 2946–2948 (2012).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[Crossref]

Scott, A. E.

A. E. Scott, M. Mavrogordato, P. Wright, I. Sinclair, and S. M. Spearing, “In situ fibre fracture measurement in carbon–epoxy laminates using high resolution computed tomography,” Compos. Sci. Technol. 71(12), 1471–1477 (2011).
[Crossref]

Sempere, L. P.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[Crossref]

Shearing, P. R.

P. R. Shearing, D. J. L. Brett, and N. P. Brandon, “Towards intelligent engineering of SOFC electrodes: a review of advanced microstructural characterisation techniques,” Int. Mater. Rev. 55(6), 347–363 (2010).
[Crossref]

Sinclair, I.

A. E. Scott, M. Mavrogordato, P. Wright, I. Sinclair, and S. M. Spearing, “In situ fibre fracture measurement in carbon–epoxy laminates using high resolution computed tomography,” Compos. Sci. Technol. 71(12), 1471–1477 (2011).
[Crossref]

J. Dinley, L. Hawkins, G. Paterson, A. D. Ball, I. Sinclair, P. Sinnett-Jones, and S. Lanham, “Micro-computed X-ray tomography: a new non-destructive method of assessing sectional, fly-through and 3D imaging of a soft-bodied marine worm,” J. Microsc. 238(2), 123–133 (2010).
[Crossref] [PubMed]

Sinnett-Jones, P.

J. Dinley, L. Hawkins, G. Paterson, A. D. Ball, I. Sinclair, P. Sinnett-Jones, and S. Lanham, “Micro-computed X-ray tomography: a new non-destructive method of assessing sectional, fly-through and 3D imaging of a soft-bodied marine worm,” J. Microsc. 238(2), 123–133 (2010).
[Crossref] [PubMed]

Slavik, R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Spearing, S. M.

A. E. Scott, M. Mavrogordato, P. Wright, I. Sinclair, and S. M. Spearing, “In situ fibre fracture measurement in carbon–epoxy laminates using high resolution computed tomography,” Compos. Sci. Technol. 71(12), 1471–1477 (2011).
[Crossref]

Tyagi, H. K.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[Crossref]

Uhlmann, N.

R. Hanke, T. Fuchs, and N. Uhlmann, “X-ray based methods for non-destructive testing and material characterization,” Nucl. Instrum. Meth. A 591(1), 14–18 (2008).
[Crossref]

Wheeler, N. V.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Wright, P.

A. E. Scott, M. Mavrogordato, P. Wright, I. Sinclair, and S. M. Spearing, “In situ fibre fracture measurement in carbon–epoxy laminates using high resolution computed tomography,” Compos. Sci. Technol. 71(12), 1471–1477 (2011).
[Crossref]

Yablon, A. D.

Appl. Phys. Lett. (1)

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[Crossref]

Compos. Sci. Technol. (1)

A. E. Scott, M. Mavrogordato, P. Wright, I. Sinclair, and S. M. Spearing, “In situ fibre fracture measurement in carbon–epoxy laminates using high resolution computed tomography,” Compos. Sci. Technol. 71(12), 1471–1477 (2011).
[Crossref]

IEEE Photonic. Tech. L. (1)

F. Couny, F. Benabid, and P. S. Light, “Reduction of Fresnel Back-Reflection at Splice Interface Between Hollow Core PCF and Single-Mode Fiber,” IEEE Photonic. Tech. L. 19(13), 1020–1022 (2007).
[Crossref]

Int. Mater. Rev. (1)

P. R. Shearing, D. J. L. Brett, and N. P. Brandon, “Towards intelligent engineering of SOFC electrodes: a review of advanced microstructural characterisation techniques,” Int. Mater. Rev. 55(6), 347–363 (2010).
[Crossref]

J. Microsc. (1)

J. Dinley, L. Hawkins, G. Paterson, A. D. Ball, I. Sinclair, P. Sinnett-Jones, and S. Lanham, “Micro-computed X-ray tomography: a new non-destructive method of assessing sectional, fly-through and 3D imaging of a soft-bodied marine worm,” J. Microsc. 238(2), 123–133 (2010).
[Crossref] [PubMed]

J. Mod. Opt. (1)

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

Nat. Photonics (1)

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Nucl. Instrum. Meth. A (1)

R. Hanke, T. Fuchs, and N. Uhlmann, “X-ray based methods for non-destructive testing and material characterization,” Nucl. Instrum. Meth. A 591(1), 14–18 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

P. Soc. Photo-Opt. Ins. (1)

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” P. Soc. Photo-Opt. Ins. 2, 315 (2013).

Other (9)

S. R. Sandoghchi, T. Zhang, J. P. Wooler, N. Baddela, N. V. Wheeler, Y. Chen, G. T. Jasion, D. R. Gray, E. Numkam Fokoua, J. Hayes, M. Petrovich, F. Poletti, and D. J. Richardson, “First Investigation of Longitudinal Defects in Hollow Core Photonic Bandgap Fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), M2F.6.
[Crossref]

R. Hui and M. S. O'Sullivan, Fiber Optic Measurement Techniques (Elsevier/Academic Press, 2009).

J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances, 2nd ed. ed. (Wiley Interscience; Bellingham, Wash.: SPIE Press, Hoboken, N.J., 2009).

Southampton Imaging, “microCT” (University of Sothampton, 16/07/2014, 2014), retrieved 15/08/2014, 2014, http://www.southampton.ac.uk/southamptonimaging/instruments/microct.page .

Z. Lian, M. Segura, N. Podoliak, X. Feng, N. White, P. Horak, and W. Loh, “Electrical current-driven dual-core optical fiber with embedded metal electrodes,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), Tu3K.3.
[Crossref]

J. Wooler, D. Gray, F. Poletti, M. Petrovich, N. Wheeler, F. Parmigiani, and D. J. Richardson, “Robust Low Loss Splicing of Hollow Core Photonic Bandgap Fiber to Itself,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), OM3I.5.
[Crossref]

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, Light and Gas Confinement in Hollow-Core Photonic Crystal Fibre Based Photonic Microcells (Journal of the European Optical Society, 2009), Vol. 4.

J. P. Wooler, S. R. Sandoghchi, D. R. Gray, F. Poletti, M. N. Petrovich, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Overcoming the Challenges of Splicing Dissimilar Diameter Solid-Core and Hollow-Core Photonic Band Gap Fibers,” in Workshop on Specialty Optical Fibers and their Applications, (Optical Society of America, 2013), W3.26.
[Crossref]

J. P. Wooler, F. R. Parmigiani, S. R. Sandoghchi, N. V. Wheeler, D. R. Gray, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Data transmission over 1km HC-PBGF arranged with microstructured fiber spliced to both itself and SMF,” in Optical Communication (ECOC 2013), 39th European Conference and Exhibition on, 2013), 1–3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic of X-ray CT setup.
Fig. 2
Fig. 2 (a) SEM image of a 19-cell HC-PBGF. (b) Optical micrograph of a 19-cell HC-PBG cane. (c) Photo of a 37-cell HC-PBG preform.
Fig. 3
Fig. 3 X-ray CT Images: (a) 1st stage preform of a 37cell hollow core incorporating a core tube with capillary arrangement drift highlighted, (b) cane of a 19cell hollow core, (c) a 19cell hollow core photonic band gap fiber.
Fig. 4
Fig. 4 X-ray CT images: (a) Metal-like contamination in a cane. (b) Deformation induced by the contaminant on the wall of its adjacent hole.
Fig. 5
Fig. 5 (a) and (b) side image of a splice using a visible optical microscope bright field and dark field. (c) SEM image of the fiber at one side of a splice at angle to show the microstructure retract.
Fig. 6
Fig. 6 (a) CT image of the cavity formed at a splice point. (b) Detailed tomographic image of a splice.
Fig. 7
Fig. 7 (a) Core boundary deformation induced by the splice and; misalignment of fibers at the joint. (b) Angular (rotational) misalignments of the splice (The colored dot in the outer cladding (one of the holes) is to demonstrate the relative orientation of one fiber to another). (c) Cleaving features induce inconsistency in the bond. All images were obtained by X-ray CT.
Fig. 8
Fig. 8 From left to right: the CAD design, 3D CAD model and optical micrographs of two examples of multi-element fibers.
Fig. 9
Fig. 9 (a) Clear virtual cross-sectional image of MEF produced from the CT data; (b) Polymer coating region extracted from the data of the MEF full structure; and (c) A 3D view of the MEF structure.
Fig. 10
Fig. 10 (a) Desired arrangement against achieved structure. (b) Relative intensity level of different regions and the effect of phase contrast edge enhancement. (c) Histogram of the MEF’s CT data.
Fig. 11
Fig. 11 (a) Schematic diagram of stacked preform of the metal embedded fiber, (b) Actual image of the stack, (c) SEM image of the fiber.
Fig. 12
Fig. 12 (a) A virtual cross-section image of the dual-core fiber with embedded metal electrodes obtained by X-ray CT. (b) Histogram of the measurement with identified region of interests. (c) The reconstructed 3D structure based on the histogram from the CT data.
Fig. 13
Fig. 13 (a) A single tin rod reconstructed from the CT data showing surface topology. (b) A possible defect in one of the tin rods (image: A virtual slice by CT).

Metrics