Abstract

Wideband-adjustable band-rejection filters based on chirped and tilted fiber Bragg gratings (CTFBG) are proposed and experimentally demonstrated. The flexible chirp-rate and wide tilt-angle provide the gratings with broadband filtering functions over a large range of bandwidths (from 10 nm to 150 nm), together with a low insertion loss (less than 1dB) and a negligible back-reflection (lower than −20 dB). The slope profile of CTFBG in transmission can be easily tailored by adjusting the tilt angle, grating irradiation time and chirp rate-grating factor, and it is insensitive to the polarization state of the input light, as well as to temperature, axial strain and surrounding refractive index. Furthermore, by coating the CTFBG with a suitable polymer (whose refractive index is close to that of the cladding glass), the cladding modes no longer form weakly discrete resonances and leave a smoothly varying attenuation spectrum for high-quality band-rejection filters, edge filters and gain equalizers.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of chirped and tilted fiber Bragg gratings on large-mode-area doubled-cladding fibers by phase-mask technique

Meng Wang, Zhixian Li, Le Liu, Zefeng Wang, Xijia Gu, and Xiaojun Xu
Appl. Opt. 57(16) 4376-4380 (2018)

Fabrication of chirped and tilted fiber Bragg gratings and suppression of stimulated Raman scattering in fiber amplifiers

Meng Wang, Yujing Zhang, Zefeng Wang, Junjie Sun, Jianqiu Cao, Jinyong Leng, Xijia Gu, and Xiaojun Xu
Opt. Express 25(2) 1529-1534 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Canning, D. C. Psaila, Z. Brodzeli, A. Higley, and M. Janos, “Characterization of apodized fiber Bragg gratings for rejection filter applications,” Appl. Opt. 36(36), 9378–9382 (1997).
    [Crossref] [PubMed]
  2. D. R. Chen, T. J. Yang, J. J. Wu, L. F. Shen, K. L. Liao, and S. L. He, “Band-rejection fiber filter and fiber sensor based on a Bragg fiber of transversal resonant structure,” Opt. Express 16(21), 16489–16495 (2008).
    [Crossref] [PubMed]
  3. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber grating as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
    [Crossref]
  4. C. Y. Lin and L. A. Wang, “A wavelength- and loss-tunable band-rejection filter based on corrugated long-period fiber grating,” IEEE Photon. Technol. Lett. 13(4), 332–334 (2001).
    [Crossref]
  5. J. Kim, U. C. Paek, B. H. Lee, J. Hu, B. Marks, and C. R. Menyuk, “Impact of interstitial air holes on a wide-bandwidth rejection filter made from a photonic crystal fiber,” Opt. Lett. 31(9), 1196–1198 (2006).
    [Crossref] [PubMed]
  6. R. I. M. Chavez, A. M. Rios, I. T. Gomez, J. A. A. Chavez, R. S. Aguilar, and J. E. Ayala, “Wavelength band-rejection filters based on optical fiber fattening by fusion splicing,” Opt. Laser Technol. 40(4), 671–675 (2008).
    [Crossref]
  7. J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J. M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters,” IEEE Photon. Technol. Lett. 15(3), 407–409 (2003).
    [Crossref]
  8. K. R. Sohn and K. T. Kim, “Thermo-optically tunable band-rejection filters using mechanically formed long-period fiber gratings,” Opt. Lett. 30(20), 2688–2690 (2005).
    [Crossref] [PubMed]
  9. Z. Y. Zhao, M. Tang, H. Q. Liao, G. B. Ren, S. N. Fu, F. Yang, P. P. Shum, and D. M. Liu, “Programmable multi-wavelength filter with Mach-Zehnder interferometer embedded in ethanol filled photonic crystal fiber,” Opt. Lett. 39(7), 2194–2197 (2014).
    [Crossref] [PubMed]
  10. F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
    [Crossref]
  11. P. Zu, C. C. Chan, T. X. Gong, Y. X. Jin, W. C. Wong, and X. Y. Dong, “Magneto-optical fiber sensor based on bandgap effect of photonic crystal fiber infiltrated with magnetic fluid,” Appl. Phys. Lett. 101(24), 241118 (2012).
    [Crossref]
  12. C. W. Haggans, H. Singh, W. F. Varner, Y. W. Li, and M. Zippin, “Narrow-band rejection filters with negligible backreflection using tilted photoinduced grating in single-mode fibers,” IEEE Photon. Technol. Lett. 10(5), 690–692 (1998).
    [Crossref]
  13. R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29(2), 154–155 (1993).
    [Crossref]
  14. T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13(2), 296–313 (1996).
    [Crossref]
  15. J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 10, 1–26 (2012).
  16. E. Kerrinckx, A. Hidayat, P. Niay, Y. Quiquempois, M. Douay, I. Riant, and C. De Barros, “Suppression of discrete cladding mode resonances in fibre slanted Bragg gratings for gain equalisation,” Opt. Express 14(4), 1388–1394 (2006).
    [Crossref] [PubMed]
  17. Y. Liu, L. Zhang, and I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on tilted chirped grating structures,” Meas. Sci. Technol. 10(1), L1–L3 (1999).
    [Crossref]
  18. I. Riant, C. Muller, T. Lopez, V. Croz, and P. Sansonetti, “New and efficient technique for suppressing the peaks induced by discrete cladding mode coupling in fiber slanted Bragg grating spectrum,” Proc. IEEE, Optical Fiber Communication Conference, 1, 118–120 (2000).
    [Crossref]
  19. T. Guo, H. Y. Tam, and J. Albert, “Chirped and tilted fiber Bragg grating edge filter for in-fiber sensor interrogation,” Proc. SPIE 7753, International Conference on Optical Fiber Sensors, 77537V (2011).
    [Crossref]
  20. T. Osuch, T. Jurek, and K. Jedrzejewski, “Spectral transmission characteristics of weakly tilted and tilted chirped fiber grating comparative studies,” Proc. SPIE 8903, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, 89030W (2013).
  21. Q. Wu, G. Farrell, and Y. Semenova, “Simple design technique for a triangular FBG filter based on a linearly chirped gratings,” Opt. Commun. 283(6), 985–992 (2010).
    [Crossref]

2014 (1)

2012 (2)

P. Zu, C. C. Chan, T. X. Gong, Y. X. Jin, W. C. Wong, and X. Y. Dong, “Magneto-optical fiber sensor based on bandgap effect of photonic crystal fiber infiltrated with magnetic fluid,” Appl. Phys. Lett. 101(24), 241118 (2012).
[Crossref]

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 10, 1–26 (2012).

2010 (1)

Q. Wu, G. Farrell, and Y. Semenova, “Simple design technique for a triangular FBG filter based on a linearly chirped gratings,” Opt. Commun. 283(6), 985–992 (2010).
[Crossref]

2008 (2)

D. R. Chen, T. J. Yang, J. J. Wu, L. F. Shen, K. L. Liao, and S. L. He, “Band-rejection fiber filter and fiber sensor based on a Bragg fiber of transversal resonant structure,” Opt. Express 16(21), 16489–16495 (2008).
[Crossref] [PubMed]

R. I. M. Chavez, A. M. Rios, I. T. Gomez, J. A. A. Chavez, R. S. Aguilar, and J. E. Ayala, “Wavelength band-rejection filters based on optical fiber fattening by fusion splicing,” Opt. Laser Technol. 40(4), 671–675 (2008).
[Crossref]

2006 (2)

2005 (1)

2004 (1)

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

2003 (1)

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J. M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters,” IEEE Photon. Technol. Lett. 15(3), 407–409 (2003).
[Crossref]

2001 (1)

C. Y. Lin and L. A. Wang, “A wavelength- and loss-tunable band-rejection filter based on corrugated long-period fiber grating,” IEEE Photon. Technol. Lett. 13(4), 332–334 (2001).
[Crossref]

1999 (1)

Y. Liu, L. Zhang, and I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on tilted chirped grating structures,” Meas. Sci. Technol. 10(1), L1–L3 (1999).
[Crossref]

1998 (1)

C. W. Haggans, H. Singh, W. F. Varner, Y. W. Li, and M. Zippin, “Narrow-band rejection filters with negligible backreflection using tilted photoinduced grating in single-mode fibers,” IEEE Photon. Technol. Lett. 10(5), 690–692 (1998).
[Crossref]

1997 (1)

1996 (2)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber grating as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13(2), 296–313 (1996).
[Crossref]

1993 (1)

R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29(2), 154–155 (1993).
[Crossref]

Aguilar, R. S.

R. I. M. Chavez, A. M. Rios, I. T. Gomez, J. A. A. Chavez, R. S. Aguilar, and J. E. Ayala, “Wavelength band-rejection filters based on optical fiber fattening by fusion splicing,” Opt. Laser Technol. 40(4), 671–675 (2008).
[Crossref]

Albert, J.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 10, 1–26 (2012).

Ayala, J. E.

R. I. M. Chavez, A. M. Rios, I. T. Gomez, J. A. A. Chavez, R. S. Aguilar, and J. E. Ayala, “Wavelength band-rejection filters based on optical fiber fattening by fusion splicing,” Opt. Laser Technol. 40(4), 671–675 (2008).
[Crossref]

Bae, J.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J. M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters,” IEEE Photon. Technol. Lett. 15(3), 407–409 (2003).
[Crossref]

Bae, J. K.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J. M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters,” IEEE Photon. Technol. Lett. 15(3), 407–409 (2003).
[Crossref]

Bennion, I.

Y. Liu, L. Zhang, and I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on tilted chirped grating structures,” Meas. Sci. Technol. 10(1), L1–L3 (1999).
[Crossref]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber grating as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Brodzeli, Z.

Campbell, R. J.

R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29(2), 154–155 (1993).
[Crossref]

Canning, J.

Caucheteur, C.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 10, 1–26 (2012).

Chan, C. C.

P. Zu, C. C. Chan, T. X. Gong, Y. X. Jin, W. C. Wong, and X. Y. Dong, “Magneto-optical fiber sensor based on bandgap effect of photonic crystal fiber infiltrated with magnetic fluid,” Appl. Phys. Lett. 101(24), 241118 (2012).
[Crossref]

Chavez, J. A. A.

R. I. M. Chavez, A. M. Rios, I. T. Gomez, J. A. A. Chavez, R. S. Aguilar, and J. E. Ayala, “Wavelength band-rejection filters based on optical fiber fattening by fusion splicing,” Opt. Laser Technol. 40(4), 671–675 (2008).
[Crossref]

Chavez, R. I. M.

R. I. M. Chavez, A. M. Rios, I. T. Gomez, J. A. A. Chavez, R. S. Aguilar, and J. E. Ayala, “Wavelength band-rejection filters based on optical fiber fattening by fusion splicing,” Opt. Laser Technol. 40(4), 671–675 (2008).
[Crossref]

Chen, D. R.

Croz, V.

I. Riant, C. Muller, T. Lopez, V. Croz, and P. Sansonetti, “New and efficient technique for suppressing the peaks induced by discrete cladding mode coupling in fiber slanted Bragg grating spectrum,” Proc. IEEE, Optical Fiber Communication Conference, 1, 118–120 (2000).
[Crossref]

De Barros, C.

Dong, X. Y.

P. Zu, C. C. Chan, T. X. Gong, Y. X. Jin, W. C. Wong, and X. Y. Dong, “Magneto-optical fiber sensor based on bandgap effect of photonic crystal fiber infiltrated with magnetic fluid,” Appl. Phys. Lett. 101(24), 241118 (2012).
[Crossref]

Douay, M.

Du, F.

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

Erdogan, T.

T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13(2), 296–313 (1996).
[Crossref]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber grating as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Farrell, G.

Q. Wu, G. Farrell, and Y. Semenova, “Simple design technique for a triangular FBG filter based on a linearly chirped gratings,” Opt. Commun. 283(6), 985–992 (2010).
[Crossref]

Fu, S. N.

Gomez, I. T.

R. I. M. Chavez, A. M. Rios, I. T. Gomez, J. A. A. Chavez, R. S. Aguilar, and J. E. Ayala, “Wavelength band-rejection filters based on optical fiber fattening by fusion splicing,” Opt. Laser Technol. 40(4), 671–675 (2008).
[Crossref]

Gong, T. X.

P. Zu, C. C. Chan, T. X. Gong, Y. X. Jin, W. C. Wong, and X. Y. Dong, “Magneto-optical fiber sensor based on bandgap effect of photonic crystal fiber infiltrated with magnetic fluid,” Appl. Phys. Lett. 101(24), 241118 (2012).
[Crossref]

Haggans, C. W.

C. W. Haggans, H. Singh, W. F. Varner, Y. W. Li, and M. Zippin, “Narrow-band rejection filters with negligible backreflection using tilted photoinduced grating in single-mode fibers,” IEEE Photon. Technol. Lett. 10(5), 690–692 (1998).
[Crossref]

He, S. L.

Hidayat, A.

Higley, A.

Hu, J.

Janos, M.

Jeong, J. M.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J. M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters,” IEEE Photon. Technol. Lett. 15(3), 407–409 (2003).
[Crossref]

Jin, Y. X.

P. Zu, C. C. Chan, T. X. Gong, Y. X. Jin, W. C. Wong, and X. Y. Dong, “Magneto-optical fiber sensor based on bandgap effect of photonic crystal fiber infiltrated with magnetic fluid,” Appl. Phys. Lett. 101(24), 241118 (2012).
[Crossref]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber grating as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Kashyap, R.

R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29(2), 154–155 (1993).
[Crossref]

Kerrinckx, E.

Kim, J.

Kim, J. H.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J. M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters,” IEEE Photon. Technol. Lett. 15(3), 407–409 (2003).
[Crossref]

Kim, K. T.

Kim, S. H.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J. M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters,” IEEE Photon. Technol. Lett. 15(3), 407–409 (2003).
[Crossref]

Lee, B. H.

Lee, S. B.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J. M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters,” IEEE Photon. Technol. Lett. 15(3), 407–409 (2003).
[Crossref]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber grating as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Li, Y. W.

C. W. Haggans, H. Singh, W. F. Varner, Y. W. Li, and M. Zippin, “Narrow-band rejection filters with negligible backreflection using tilted photoinduced grating in single-mode fibers,” IEEE Photon. Technol. Lett. 10(5), 690–692 (1998).
[Crossref]

Liao, H. Q.

Liao, K. L.

Lin, C. Y.

C. Y. Lin and L. A. Wang, “A wavelength- and loss-tunable band-rejection filter based on corrugated long-period fiber grating,” IEEE Photon. Technol. Lett. 13(4), 332–334 (2001).
[Crossref]

Liu, D. M.

Liu, Y.

Y. Liu, L. Zhang, and I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on tilted chirped grating structures,” Meas. Sci. Technol. 10(1), L1–L3 (1999).
[Crossref]

Lopez, T.

I. Riant, C. Muller, T. Lopez, V. Croz, and P. Sansonetti, “New and efficient technique for suppressing the peaks induced by discrete cladding mode coupling in fiber slanted Bragg grating spectrum,” Proc. IEEE, Optical Fiber Communication Conference, 1, 118–120 (2000).
[Crossref]

Lu, Y. Q.

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

Marks, B.

Menyuk, C. R.

Muller, C.

I. Riant, C. Muller, T. Lopez, V. Croz, and P. Sansonetti, “New and efficient technique for suppressing the peaks induced by discrete cladding mode coupling in fiber slanted Bragg grating spectrum,” Proc. IEEE, Optical Fiber Communication Conference, 1, 118–120 (2000).
[Crossref]

Niay, P.

Paek, U. C.

Psaila, D. C.

Quiquempois, Y.

Ren, G. B.

Riant, I.

E. Kerrinckx, A. Hidayat, P. Niay, Y. Quiquempois, M. Douay, I. Riant, and C. De Barros, “Suppression of discrete cladding mode resonances in fibre slanted Bragg gratings for gain equalisation,” Opt. Express 14(4), 1388–1394 (2006).
[Crossref] [PubMed]

I. Riant, C. Muller, T. Lopez, V. Croz, and P. Sansonetti, “New and efficient technique for suppressing the peaks induced by discrete cladding mode coupling in fiber slanted Bragg grating spectrum,” Proc. IEEE, Optical Fiber Communication Conference, 1, 118–120 (2000).
[Crossref]

Rios, A. M.

R. I. M. Chavez, A. M. Rios, I. T. Gomez, J. A. A. Chavez, R. S. Aguilar, and J. E. Ayala, “Wavelength band-rejection filters based on optical fiber fattening by fusion splicing,” Opt. Laser Technol. 40(4), 671–675 (2008).
[Crossref]

Sansonetti, P.

I. Riant, C. Muller, T. Lopez, V. Croz, and P. Sansonetti, “New and efficient technique for suppressing the peaks induced by discrete cladding mode coupling in fiber slanted Bragg grating spectrum,” Proc. IEEE, Optical Fiber Communication Conference, 1, 118–120 (2000).
[Crossref]

Semenova, Y.

Q. Wu, G. Farrell, and Y. Semenova, “Simple design technique for a triangular FBG filter based on a linearly chirped gratings,” Opt. Commun. 283(6), 985–992 (2010).
[Crossref]

Shao, L. Y.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 10, 1–26 (2012).

Shen, L. F.

Shum, P. P.

Singh, H.

C. W. Haggans, H. Singh, W. F. Varner, Y. W. Li, and M. Zippin, “Narrow-band rejection filters with negligible backreflection using tilted photoinduced grating in single-mode fibers,” IEEE Photon. Technol. Lett. 10(5), 690–692 (1998).
[Crossref]

Sipe, J. E.

T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13(2), 296–313 (1996).
[Crossref]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber grating as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Sohn, K. R.

Tang, M.

Varner, W. F.

C. W. Haggans, H. Singh, W. F. Varner, Y. W. Li, and M. Zippin, “Narrow-band rejection filters with negligible backreflection using tilted photoinduced grating in single-mode fibers,” IEEE Photon. Technol. Lett. 10(5), 690–692 (1998).
[Crossref]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber grating as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Wang, L. A.

C. Y. Lin and L. A. Wang, “A wavelength- and loss-tunable band-rejection filter based on corrugated long-period fiber grating,” IEEE Photon. Technol. Lett. 13(4), 332–334 (2001).
[Crossref]

Wong, W. C.

P. Zu, C. C. Chan, T. X. Gong, Y. X. Jin, W. C. Wong, and X. Y. Dong, “Magneto-optical fiber sensor based on bandgap effect of photonic crystal fiber infiltrated with magnetic fluid,” Appl. Phys. Lett. 101(24), 241118 (2012).
[Crossref]

Wu, J. J.

Wu, Q.

Q. Wu, G. Farrell, and Y. Semenova, “Simple design technique for a triangular FBG filter based on a linearly chirped gratings,” Opt. Commun. 283(6), 985–992 (2010).
[Crossref]

Wu, S. T.

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

Wyatt, R.

R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29(2), 154–155 (1993).
[Crossref]

Yang, F.

Yang, T. J.

Zhang, L.

Y. Liu, L. Zhang, and I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on tilted chirped grating structures,” Meas. Sci. Technol. 10(1), L1–L3 (1999).
[Crossref]

Zhao, Z. Y.

Zippin, M.

C. W. Haggans, H. Singh, W. F. Varner, Y. W. Li, and M. Zippin, “Narrow-band rejection filters with negligible backreflection using tilted photoinduced grating in single-mode fibers,” IEEE Photon. Technol. Lett. 10(5), 690–692 (1998).
[Crossref]

Zu, P.

P. Zu, C. C. Chan, T. X. Gong, Y. X. Jin, W. C. Wong, and X. Y. Dong, “Magneto-optical fiber sensor based on bandgap effect of photonic crystal fiber infiltrated with magnetic fluid,” Appl. Phys. Lett. 101(24), 241118 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

P. Zu, C. C. Chan, T. X. Gong, Y. X. Jin, W. C. Wong, and X. Y. Dong, “Magneto-optical fiber sensor based on bandgap effect of photonic crystal fiber infiltrated with magnetic fluid,” Appl. Phys. Lett. 101(24), 241118 (2012).
[Crossref]

Electron. Lett. (1)

R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29(2), 154–155 (1993).
[Crossref]

IEEE Photon. Technol. Lett. (3)

C. Y. Lin and L. A. Wang, “A wavelength- and loss-tunable band-rejection filter based on corrugated long-period fiber grating,” IEEE Photon. Technol. Lett. 13(4), 332–334 (2001).
[Crossref]

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J. M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters,” IEEE Photon. Technol. Lett. 15(3), 407–409 (2003).
[Crossref]

C. W. Haggans, H. Singh, W. F. Varner, Y. W. Li, and M. Zippin, “Narrow-band rejection filters with negligible backreflection using tilted photoinduced grating in single-mode fibers,” IEEE Photon. Technol. Lett. 10(5), 690–692 (1998).
[Crossref]

J. Lightwave Technol. (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber grating as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Photon. Rev. (1)

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 10, 1–26 (2012).

Meas. Sci. Technol. (1)

Y. Liu, L. Zhang, and I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on tilted chirped grating structures,” Meas. Sci. Technol. 10(1), L1–L3 (1999).
[Crossref]

Opt. Commun. (1)

Q. Wu, G. Farrell, and Y. Semenova, “Simple design technique for a triangular FBG filter based on a linearly chirped gratings,” Opt. Commun. 283(6), 985–992 (2010).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

R. I. M. Chavez, A. M. Rios, I. T. Gomez, J. A. A. Chavez, R. S. Aguilar, and J. E. Ayala, “Wavelength band-rejection filters based on optical fiber fattening by fusion splicing,” Opt. Laser Technol. 40(4), 671–675 (2008).
[Crossref]

Opt. Lett. (3)

Other (3)

I. Riant, C. Muller, T. Lopez, V. Croz, and P. Sansonetti, “New and efficient technique for suppressing the peaks induced by discrete cladding mode coupling in fiber slanted Bragg grating spectrum,” Proc. IEEE, Optical Fiber Communication Conference, 1, 118–120 (2000).
[Crossref]

T. Guo, H. Y. Tam, and J. Albert, “Chirped and tilted fiber Bragg grating edge filter for in-fiber sensor interrogation,” Proc. SPIE 7753, International Conference on Optical Fiber Sensors, 77537V (2011).
[Crossref]

T. Osuch, T. Jurek, and K. Jedrzejewski, “Spectral transmission characteristics of weakly tilted and tilted chirped fiber grating comparative studies,” Proc. SPIE 8903, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, 89030W (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The schematic diagram of CTFBG.
Fig. 2
Fig. 2 How to get a broadband CTFBG spectrum by the combination of CFBG and TFBG: (a) chirped FBG without tilt (chirp rate of 20 nm/cm); (b) tilted FBG without chirping (tilt angle of 15°); (c) chirped and tilted FBG (chirp rate of 20 nm/cm and tilt angle of 15°) before and after polymer coating. All spectra are measured experimentally.
Fig. 3
Fig. 3 Experimental setup of CTFBG inscription system.
Fig. 4
Fig. 4 Spectral trimming of CTFBG with different tilt angles: (a) moderate band-rejection of CTFBGs inscribed by a 10 nm/cm phase mask; (b) broad band-rejection of CTFBG inscribed by a 20 nm/cm phase mask.
Fig. 5
Fig. 5 Polarization dependence of CTFBG transmission spectra: (a) a 8° CTFBG inscribed by 10 nm/cm chirp rate; (b) a 15° CTFBG inscribed by 20 nm/cm chirp rate.
Fig. 6
Fig. 6 Spectral characteristics of CTFBG to (a) temperature, (b) axial strain, and (c) SRI.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Λ g ( z ) = Λ o ( 1 + F z / L ) cos θ ( L 2 z L 2 )
n ( z ) = n o + Δ n cos ( 2 π Λ g ( z ) z )
Δ β c o r e = 2 n c o r e ω c 2 π Λ g ( z )
Δ β c l a d , i = ( n c o r e + n c l a d , i ) ω c 2 π Λ g ( z )
λ core (Z)=2 n core Λ(z)
λ clad,i (z)=( n core + n clad,i )Λ(z)
Δ λ core 2 n core ( Λ g(max) Λ g(min) )
Δ λ clad,i ( n core + n clad,i )( Λ g(max) Λ g(min) )

Metrics