Abstract

We propose and demonstrate a simple technique to monitor both the optical signal-to-noise ratio (OSNR) and chromatic dispersion (CD) by using the software-based synchronous amplitude histogram (SAH) analysis. We exploit the software-based synchronization technique to construct SAHs from the asynchronously sampled intensities of the signal. The use of SAHs facilitates the accurate extraction of the monitoring parameters at the center of the symbol. Thus, unlike in the case of using the technique based on the asynchronous amplitude histogram (AAH), this technique is not affected by the transient characteristics of the modulated signals. The performance of the proposed monitoring technique is evaluated experimentally by using 10-Gbaud quadrature phase-shift keying (QPSK) and quadrature amplitude modulation (QAM) signals over wide ranges of OSNR and CD. We also evaluate the robustness of the proposed technique to the signal’s transient characteristics.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-task deep neural network (MT-DNN) enabled optical performance monitoring from directly detected PDM-QAM signals

Yijun Cheng, Songnian Fu, Ming Tang, and Deming Liu
Opt. Express 27(13) 19062-19074 (2019)

Phasor monitoring of DxPSK signals using software-based synchronization technique

H. G. Choi, Y. Takushima, and Y. C. Chung
Opt. Express 18(21) 21511-21518 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. C. Kilper, R. Bach, D. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. E. Willner, “Optical performance monitoring,” J. Lightwave Technol. 22(1), 294–304 (2004).
    [Crossref]
  2. Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
    [Crossref]
  3. S. D. Dods and T. B. Anderson, “Optical performance monitoring technique using delay tap asynchronous waveform sampling,” in Proc. Optical Fiber Communication Conference (OFC/NFOEC’06), paper OThP5 (2006).
    [Crossref]
  4. B. Kozicki, A. Maruta, and K. Kitayama, “Transparent performance monitoring of RZ-DQPSK systems employing delay-tap sampling,” J. Opt. Netw. 6(11), 1257–1269 (2007).
    [Crossref]
  5. B. Kozicki, A. Maruta, and K. Kitayama, “Experimental demonstration of optical performance monitoring for RZ-DPSK signals using delay-tap sampling method,” Opt. Express 16(6), 3566–3576 (2008).
    [Crossref] [PubMed]
  6. B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
    [Crossref]
  7. T. B. Anderson, A. Kowalczyk, K. Clarke, S. D. Dods, D. Hewitt, and J. C. Li, “Multi impairment monitoring for optical networks,” J. Lightwave Technol. 27(16), 3729–3736 (2009).
    [Crossref]
  8. Z. Li, C. Lu, Y. Wang, and G. Li, “In-service signal quality monitoring and multi-impairment discrimination based on asynchronous amplitude histogram evaluation for NRZ-DPSK systems,” IEEE Photon. Technol. Lett. 17(9), 1998–2000 (2005).
    [Crossref]
  9. Z. Li and G. Li, “In-line performance monitoring for RZ-DPSK signals using asynchronous amplitude histogram evaluation,” IEEE Photon. Technol. Lett. 18(3), 472–474 (2006).
    [Crossref]
  10. Z. Li and G. Li, “Chromatic dispersion and polarization-mode dispersion monitoring for RZ-DPSK signals based on asynchronous amplitude-histogram evaluation,” J. Lightwave Technol. 24(7), 2859–2866 (2006).
    [Crossref]
  11. B. Kozicki, O. Takuya, and T. Hidehiko, “Optical performance monitoring of phase-modulated signals using asynchronous amplitude histogram analysis,” J. Lightwave Technol. 26(10), 1353–1361 (2008).
    [Crossref]
  12. T. S. R. Shen, A. P. T. Lau, and G. N. Liu, “OSNR monitoring for higher order modulation formats using asynchronous amplitude histogram,” IEEE Photon. Technol. Lett. 22(22), 1632–1634 (2010).
  13. A. Nag, M. Tornatore, and B. Mukherjee, “Optical network design with mixed line rates and multiple modulation formats,” J. Lightwave Technol. 28(4), 466–475 (2010).
    [Crossref]
  14. T. S. R. Shen, K. Meng, A. P. T. Lau, and Z. Y. Dong, “Optical performance monitoring using artificial neural network trained with asynchronous amplitude histograms,” IEEE Photon. Technol. Lett. 22(22), 1665–1667 (2010).
  15. H. G. Choi, J. H. Chang, and Y. C. Chung, “OSNR monitoring technique based on software-based synchronous amplitude histogram analysis,” in Proc. Opto-Electron. Communication Conference (OECC’13), paper TuR2–5 (2013).
  16. H. G. Choi, Y. Takushima, and Y. C. Chung, “Phasor monitoring of DxPSK signals using software-based synchronization technique,” Opt. Express 18(21), 21511–21518 (2010).
    [Crossref] [PubMed]

2010 (5)

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[Crossref]

T. S. R. Shen, A. P. T. Lau, and G. N. Liu, “OSNR monitoring for higher order modulation formats using asynchronous amplitude histogram,” IEEE Photon. Technol. Lett. 22(22), 1632–1634 (2010).

A. Nag, M. Tornatore, and B. Mukherjee, “Optical network design with mixed line rates and multiple modulation formats,” J. Lightwave Technol. 28(4), 466–475 (2010).
[Crossref]

T. S. R. Shen, K. Meng, A. P. T. Lau, and Z. Y. Dong, “Optical performance monitoring using artificial neural network trained with asynchronous amplitude histograms,” IEEE Photon. Technol. Lett. 22(22), 1665–1667 (2010).

H. G. Choi, Y. Takushima, and Y. C. Chung, “Phasor monitoring of DxPSK signals using software-based synchronization technique,” Opt. Express 18(21), 21511–21518 (2010).
[Crossref] [PubMed]

2009 (2)

B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
[Crossref]

T. B. Anderson, A. Kowalczyk, K. Clarke, S. D. Dods, D. Hewitt, and J. C. Li, “Multi impairment monitoring for optical networks,” J. Lightwave Technol. 27(16), 3729–3736 (2009).
[Crossref]

2008 (2)

2007 (1)

2006 (2)

Z. Li and G. Li, “In-line performance monitoring for RZ-DPSK signals using asynchronous amplitude histogram evaluation,” IEEE Photon. Technol. Lett. 18(3), 472–474 (2006).
[Crossref]

Z. Li and G. Li, “Chromatic dispersion and polarization-mode dispersion monitoring for RZ-DPSK signals based on asynchronous amplitude-histogram evaluation,” J. Lightwave Technol. 24(7), 2859–2866 (2006).
[Crossref]

2005 (1)

Z. Li, C. Lu, Y. Wang, and G. Li, “In-service signal quality monitoring and multi-impairment discrimination based on asynchronous amplitude histogram evaluation for NRZ-DPSK systems,” IEEE Photon. Technol. Lett. 17(9), 1998–2000 (2005).
[Crossref]

2004 (1)

Anderson, T. B.

Bach, R.

Blumenthal, D.

Choi, H. G.

Chung, Y. C.

Clarke, K.

Dods, S. D.

Dong, Z. Y.

T. S. R. Shen, K. Meng, A. P. T. Lau, and Z. Y. Dong, “Optical performance monitoring using artificial neural network trained with asynchronous amplitude histograms,” IEEE Photon. Technol. Lett. 22(22), 1665–1667 (2010).

Einstein, D.

Hewitt, D.

Hidehiko, T.

Kilper, D. C.

Kitayama, K.

Kowalczyk, A.

Kozicki, B.

Landolsi, T.

Lau, A. P. T.

T. S. R. Shen, A. P. T. Lau, and G. N. Liu, “OSNR monitoring for higher order modulation formats using asynchronous amplitude histogram,” IEEE Photon. Technol. Lett. 22(22), 1632–1634 (2010).

T. S. R. Shen, K. Meng, A. P. T. Lau, and Z. Y. Dong, “Optical performance monitoring using artificial neural network trained with asynchronous amplitude histograms,” IEEE Photon. Technol. Lett. 22(22), 1665–1667 (2010).

Li, G.

Z. Li and G. Li, “Chromatic dispersion and polarization-mode dispersion monitoring for RZ-DPSK signals based on asynchronous amplitude-histogram evaluation,” J. Lightwave Technol. 24(7), 2859–2866 (2006).
[Crossref]

Z. Li and G. Li, “In-line performance monitoring for RZ-DPSK signals using asynchronous amplitude histogram evaluation,” IEEE Photon. Technol. Lett. 18(3), 472–474 (2006).
[Crossref]

Z. Li, C. Lu, Y. Wang, and G. Li, “In-service signal quality monitoring and multi-impairment discrimination based on asynchronous amplitude histogram evaluation for NRZ-DPSK systems,” IEEE Photon. Technol. Lett. 17(9), 1998–2000 (2005).
[Crossref]

Li, J. C.

Li, Z.

Z. Li and G. Li, “In-line performance monitoring for RZ-DPSK signals using asynchronous amplitude histogram evaluation,” IEEE Photon. Technol. Lett. 18(3), 472–474 (2006).
[Crossref]

Z. Li and G. Li, “Chromatic dispersion and polarization-mode dispersion monitoring for RZ-DPSK signals based on asynchronous amplitude-histogram evaluation,” J. Lightwave Technol. 24(7), 2859–2866 (2006).
[Crossref]

Z. Li, C. Lu, Y. Wang, and G. Li, “In-service signal quality monitoring and multi-impairment discrimination based on asynchronous amplitude histogram evaluation for NRZ-DPSK systems,” IEEE Photon. Technol. Lett. 17(9), 1998–2000 (2005).
[Crossref]

Liu, G. N.

T. S. R. Shen, A. P. T. Lau, and G. N. Liu, “OSNR monitoring for higher order modulation formats using asynchronous amplitude histogram,” IEEE Photon. Technol. Lett. 22(22), 1632–1634 (2010).

Lu, C.

Z. Li, C. Lu, Y. Wang, and G. Li, “In-service signal quality monitoring and multi-impairment discrimination based on asynchronous amplitude histogram evaluation for NRZ-DPSK systems,” IEEE Photon. Technol. Lett. 17(9), 1998–2000 (2005).
[Crossref]

Maruta, A.

Meng, K.

T. S. R. Shen, K. Meng, A. P. T. Lau, and Z. Y. Dong, “Optical performance monitoring using artificial neural network trained with asynchronous amplitude histograms,” IEEE Photon. Technol. Lett. 22(22), 1665–1667 (2010).

Mukherjee, B.

Nag, A.

Ostar, L.

Pan, Z.

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[Crossref]

Preiss, M.

Shen, T. S. R.

T. S. R. Shen, K. Meng, A. P. T. Lau, and Z. Y. Dong, “Optical performance monitoring using artificial neural network trained with asynchronous amplitude histograms,” IEEE Photon. Technol. Lett. 22(22), 1665–1667 (2010).

T. S. R. Shen, A. P. T. Lau, and G. N. Liu, “OSNR monitoring for higher order modulation formats using asynchronous amplitude histogram,” IEEE Photon. Technol. Lett. 22(22), 1632–1634 (2010).

Takushima, Y.

Takuya, O.

Tornatore, M.

Wang, Y.

Z. Li, C. Lu, Y. Wang, and G. Li, “In-service signal quality monitoring and multi-impairment discrimination based on asynchronous amplitude histogram evaluation for NRZ-DPSK systems,” IEEE Photon. Technol. Lett. 17(9), 1998–2000 (2005).
[Crossref]

Willner, A. E.

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[Crossref]

D. C. Kilper, R. Bach, D. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. E. Willner, “Optical performance monitoring,” J. Lightwave Technol. 22(1), 294–304 (2004).
[Crossref]

Yu, C.

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (5)

B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
[Crossref]

Z. Li, C. Lu, Y. Wang, and G. Li, “In-service signal quality monitoring and multi-impairment discrimination based on asynchronous amplitude histogram evaluation for NRZ-DPSK systems,” IEEE Photon. Technol. Lett. 17(9), 1998–2000 (2005).
[Crossref]

Z. Li and G. Li, “In-line performance monitoring for RZ-DPSK signals using asynchronous amplitude histogram evaluation,” IEEE Photon. Technol. Lett. 18(3), 472–474 (2006).
[Crossref]

T. S. R. Shen, A. P. T. Lau, and G. N. Liu, “OSNR monitoring for higher order modulation formats using asynchronous amplitude histogram,” IEEE Photon. Technol. Lett. 22(22), 1632–1634 (2010).

T. S. R. Shen, K. Meng, A. P. T. Lau, and Z. Y. Dong, “Optical performance monitoring using artificial neural network trained with asynchronous amplitude histograms,” IEEE Photon. Technol. Lett. 22(22), 1665–1667 (2010).

J. Lightwave Technol. (5)

J. Opt. Netw. (1)

Opt. Express (2)

Opt. Fiber Technol. (1)

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[Crossref]

Other (2)

S. D. Dods and T. B. Anderson, “Optical performance monitoring technique using delay tap asynchronous waveform sampling,” in Proc. Optical Fiber Communication Conference (OFC/NFOEC’06), paper OThP5 (2006).
[Crossref]

H. G. Choi, J. H. Chang, and Y. C. Chung, “OSNR monitoring technique based on software-based synchronous amplitude histogram analysis,” in Proc. Opto-Electron. Communication Conference (OECC’13), paper TuR2–5 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Measured OSNR monitoring parameter, FOSNR, versus OSNR with and without 7.64-GHz-bandwidth LPFs at the modulator drivers for 10-Gbaud (a) QPSK and (b) 16QAM signals. The right-hand side of the figures show the obtained amplitude samples and their corresponding AAH when the OSNR is 20 dB.
Fig. 2
Fig. 2 Schematic diagram of the proposed monitoring technique using software-based SAH analysis.
Fig. 3
Fig. 3 (a) Asynchronously sampled data, (b) reconstructed eye diagram, (c) SAH, and (d) AAH of the 20-Gb/s NRZ-QPSK signal.
Fig. 4
Fig. 4 (a) Eye diagram of the 20-Gb/s NRZ-QPSK signal with CD of 338 ps/nm. (b) SAH of the 20-Gb/s NRZ-QPSK signal with CD of 0 ps/nm (the blue squares) and 338 ps/nm (the red circles).
Fig. 5
Fig. 5 (a) Eye diagram and (b) SAH of the 40-Gb/s NRZ-16QAM signal.
Fig. 6
Fig. 6 (a) Eye diagram of the 40-Gb/s NRZ-16QAM signal with CD of 338 ps/nm. (b) SAH of the 40-Gb/s NRZ-16QAM signal with CD of 0 ps/nm (the blue squares) and 338 ps/nm (the red circles).
Fig. 7
Fig. 7 Experimental setup.
Fig. 8
Fig. 8 Measured (a) FOSNR and (b) FCD as a function of OSNR with various amounts of CD for the 20-Gb/s NRZ-QPSK signal.
Fig. 9
Fig. 9 Relationships between the monitoring parameters, FOSNR and FCD, and the monitoring attributes, actual OSNR and accumulated CD for the 20-Gb/s NRZ-QPSK signal. Solid lines: OSNR. Dashed lines: CD.
Fig. 10
Fig. 10 Measured (a) FOSNR and (b) FCD as a function of OSNR with various amounts of CD for the 40-Gb/s 16QAM signal.
Fig. 11
Fig. 11 Relationships between the monitoring parameters, FOSNR and FCD, and the monitoring attributes, actual OSNR and accumulated CD for the 40-Gb/s NRZ-16QAM signal. Solid lines: OSNR. Dashed lines: CD.
Fig. 12
Fig. 12 The effect of transmitter bandwidth variations on the performance of the proposed monitoring technique for the (a) 20-Gb/s NRZ-QPSK and (b) 40-Gb/s NRZ-16QAM signals.

Metrics