Abstract

Enhancement of pulsed laser ablation can be achieved in acetic acid as an environmentally friendly liquid. This paper evaluates microholes and textured features induced by a nanosecond pulsed laser under different processing circumstances. The microholes are fabricated by laser drilling in acetic acid and found to be 100% deeper than in air. The textured features achieved in the liquid demonstrate a higher content of Copper and a lower content of Oxygen. The improvement of laser ablation efficiency in the liquid is attributed to the strong confinement of plasma plume accompanying with shockwave and cavitation bubbles. Meanwhile, the laser enhanced chemical etching by the weak acid plays a critical role.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses

Ran An, Yan Li, Yanping Dou, Hong Yang, and Qihuang Gong
Opt. Express 13(6) 1855-1859 (2005)

Experimental study on the laser-matter-plume interaction and its effects on ablation characteristics during nanosecond pulsed laser scanning ablation process

Jiandong Yuan, Liang Liang, Guozhi Lin, Xiaoqiang Li, and Ming Jiang
Opt. Express 27(16) 23204-23216 (2019)

Stoichiometry of laser ablated brass nanoparticles in water and air

D. N. Patel, Pramod K. Pandey, and Raj K. Thareja
Appl. Opt. 52(31) 7592-7601 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279(5348), 208–211 (1998).
    [Crossref] [PubMed]
  2. B. N. Chichkov, C. Momma, S. Nolte, F. V. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
    [Crossref]
  3. A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
    [Crossref] [PubMed]
  4. M. Huang, F. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [Crossref] [PubMed]
  5. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
    [Crossref]
  6. Y. C. Guan, G. K. L. Ng, H. Y. Zheng, M. H. Hong, X. Hong, and Z. Zhang, “Laser surface cleaning of carbonaceous deposits on diesel engine piston,” Appl. Surf. Sci. 270, 526–530 (2013).
    [Crossref]
  7. J. Yang, F. F. Luo, T. S. Kao, X. Li, G. W. Ho, J. H. Teng, X. G. Luo, and M. H. Hong, “Broadband ultra-low reflectivity black Si surfaces: design and fabrication by laser micro/nanoprocessing,” Light: Sci. Appl. 3(1), e185 (2014).
    [Crossref]
  8. M. E. Shaheen, J. E. Gagnon, and B. J. Fryer, “Femtosecond laser ablation of brass in air and liquid media,” J. Appl. Phys. 113(21), 213106 (2013).
    [Crossref]
  9. N. Krstulović, S. Shannon, R. Stefanuik, and C. Fanara, “Underwater-laser drilling of aluminum,” Int. J. Adv. Manuf. Technol. 69, 1765–1773 (2013).
  10. J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, S. Y. Zhang, and C. M. Gao, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95(8), 3890–3894 (2004).
    [Crossref]
  11. W. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95(6), 2952–2956 (2004).
    [Crossref]
  12. S. Zhu, Y. F. Lu, and M. H. Hong, “Laser ablation of solid substrates in a water-confined environment,” Appl. Phys. Lett. 79(9), 1396–1398 (2001).
    [Crossref]
  13. A. V. Simakin and G. A. Shafeev, “Laser-assisted etching-like damage of Si,” Appl. Surf. Sci. 86(1-4), 422–427 (1995).
    [Crossref]
  14. M. R. Brook and G. A. Shafeev, “Laser-assisted engraving of HgCdTe under a liquid layer,” Appl. Surf. Sci. 54, 336–340 (1992).
    [Crossref]
  15. M. H. Hong, K. Y. Ng, Q. Xie, L. P. Shi, and T. C. Chong, “Pulsed laser ablation in a cooled liquid environment,” Appl. Phys., A Mater. Sci. Process. 93(1), 153–157 (2008).
    [Crossref]
  16. J. M. Lee and K. G. Watkins, “Laser removal of oxides and particles from copper surfaces for microelectronic fabrication,” Opt. Express 7(2), 68–76 (2000).
    [Crossref] [PubMed]
  17. M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
    [Crossref]
  18. B. Kumar and R. K. Thareja, “Laser ablated copper plasmas in liquid and gas ambient,” Phys. Plasmas 20(5), 053503 (2013).
    [Crossref]
  19. B. Kumar and R. K. Thareja, “Growth of titanium nanoparticles in confined plasma,” Phys. Plasmas 19(3), 033516 (2012).
    [Crossref]
  20. M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: A focus on laser induced plasma radiation,” J. Appl. Phys. 104(5), 053303 (2008).
    [Crossref]
  21. Y. L. Liao, Y. L. Yang, and G. J. Cheng, “Enhanced laser shock by an active liquid confinement—hydrogen peroxide,” J. Manuf. Sci. Eng. 134(3), 034503 (2012).
    [Crossref]
  22. K. J. Laidler, The World of Physical Chemistry (Oxford University Press, 1993).
  23. H. B. Zeng, W. P. Cai, Y. Li, J. L. Hu, and P. S. Liu, “Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media,” J. Phys. Chem. B 109(39), 18260–18266 (2005).
    [Crossref] [PubMed]

2014 (1)

J. Yang, F. F. Luo, T. S. Kao, X. Li, G. W. Ho, J. H. Teng, X. G. Luo, and M. H. Hong, “Broadband ultra-low reflectivity black Si surfaces: design and fabrication by laser micro/nanoprocessing,” Light: Sci. Appl. 3(1), e185 (2014).
[Crossref]

2013 (4)

M. E. Shaheen, J. E. Gagnon, and B. J. Fryer, “Femtosecond laser ablation of brass in air and liquid media,” J. Appl. Phys. 113(21), 213106 (2013).
[Crossref]

N. Krstulović, S. Shannon, R. Stefanuik, and C. Fanara, “Underwater-laser drilling of aluminum,” Int. J. Adv. Manuf. Technol. 69, 1765–1773 (2013).

Y. C. Guan, G. K. L. Ng, H. Y. Zheng, M. H. Hong, X. Hong, and Z. Zhang, “Laser surface cleaning of carbonaceous deposits on diesel engine piston,” Appl. Surf. Sci. 270, 526–530 (2013).
[Crossref]

B. Kumar and R. K. Thareja, “Laser ablated copper plasmas in liquid and gas ambient,” Phys. Plasmas 20(5), 053503 (2013).
[Crossref]

2012 (2)

B. Kumar and R. K. Thareja, “Growth of titanium nanoparticles in confined plasma,” Phys. Plasmas 19(3), 033516 (2012).
[Crossref]

Y. L. Liao, Y. L. Yang, and G. J. Cheng, “Enhanced laser shock by an active liquid confinement—hydrogen peroxide,” J. Manuf. Sci. Eng. 134(3), 034503 (2012).
[Crossref]

2009 (2)

A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

2008 (2)

M. H. Hong, K. Y. Ng, Q. Xie, L. P. Shi, and T. C. Chong, “Pulsed laser ablation in a cooled liquid environment,” Appl. Phys., A Mater. Sci. Process. 93(1), 153–157 (2008).
[Crossref]

M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: A focus on laser induced plasma radiation,” J. Appl. Phys. 104(5), 053303 (2008).
[Crossref]

2005 (1)

H. B. Zeng, W. P. Cai, Y. Li, J. L. Hu, and P. S. Liu, “Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media,” J. Phys. Chem. B 109(39), 18260–18266 (2005).
[Crossref] [PubMed]

2004 (3)

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, S. Y. Zhang, and C. M. Gao, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95(8), 3890–3894 (2004).
[Crossref]

W. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95(6), 2952–2956 (2004).
[Crossref]

2001 (1)

S. Zhu, Y. F. Lu, and M. H. Hong, “Laser ablation of solid substrates in a water-confined environment,” Appl. Phys. Lett. 79(9), 1396–1398 (2001).
[Crossref]

2000 (1)

1998 (2)

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279(5348), 208–211 (1998).
[Crossref] [PubMed]

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. V. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

1995 (1)

A. V. Simakin and G. A. Shafeev, “Laser-assisted etching-like damage of Si,” Appl. Surf. Sci. 86(1-4), 422–427 (1995).
[Crossref]

1992 (1)

M. R. Brook and G. A. Shafeev, “Laser-assisted engraving of HgCdTe under a liquid layer,” Appl. Surf. Sci. 54, 336–340 (1992).
[Crossref]

Aghaei, M.

M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: A focus on laser induced plasma radiation,” J. Appl. Phys. 104(5), 053303 (2008).
[Crossref]

Alvensleben, F. V.

B. N. Chichkov, C. Momma, S. Nolte, F. V. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Brook, M. R.

M. R. Brook and G. A. Shafeev, “Laser-assisted engraving of HgCdTe under a liquid layer,” Appl. Surf. Sci. 54, 336–340 (1992).
[Crossref]

Cai, W. P.

H. B. Zeng, W. P. Cai, Y. Li, J. L. Hu, and P. S. Liu, “Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media,” J. Phys. Chem. B 109(39), 18260–18266 (2005).
[Crossref] [PubMed]

Carey, J. E.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

Chen, X.

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, S. Y. Zhang, and C. M. Gao, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95(8), 3890–3894 (2004).
[Crossref]

Cheng, G. J.

Y. L. Liao, Y. L. Yang, and G. J. Cheng, “Enhanced laser shock by an active liquid confinement—hydrogen peroxide,” J. Manuf. Sci. Eng. 134(3), 034503 (2012).
[Crossref]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. V. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Chong, T. C.

M. H. Hong, K. Y. Ng, Q. Xie, L. P. Shi, and T. C. Chong, “Pulsed laser ablation in a cooled liquid environment,” Appl. Phys., A Mater. Sci. Process. 93(1), 153–157 (2008).
[Crossref]

W. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95(6), 2952–2956 (2004).
[Crossref]

Crouch, C. H.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

Deliwala, S.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Fanara, C.

N. Krstulović, S. Shannon, R. Stefanuik, and C. Fanara, “Underwater-laser drilling of aluminum,” Int. J. Adv. Manuf. Technol. 69, 1765–1773 (2013).

Finlay, R. J.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Fryer, B. J.

M. E. Shaheen, J. E. Gagnon, and B. J. Fryer, “Femtosecond laser ablation of brass in air and liquid media,” J. Appl. Phys. 113(21), 213106 (2013).
[Crossref]

Gagnon, J. E.

M. E. Shaheen, J. E. Gagnon, and B. J. Fryer, “Femtosecond laser ablation of brass in air and liquid media,” J. Appl. Phys. 113(21), 213106 (2013).
[Crossref]

Gao, C. M.

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, S. Y. Zhang, and C. M. Gao, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95(8), 3890–3894 (2004).
[Crossref]

Guan, Y. C.

Y. C. Guan, G. K. L. Ng, H. Y. Zheng, M. H. Hong, X. Hong, and Z. Zhang, “Laser surface cleaning of carbonaceous deposits on diesel engine piston,” Appl. Surf. Sci. 270, 526–530 (2013).
[Crossref]

Guo, C. L.

A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

Her, T.-H.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Ho, G. W.

J. Yang, F. F. Luo, T. S. Kao, X. Li, G. W. Ho, J. H. Teng, X. G. Luo, and M. H. Hong, “Broadband ultra-low reflectivity black Si surfaces: design and fabrication by laser micro/nanoprocessing,” Light: Sci. Appl. 3(1), e185 (2014).
[Crossref]

Hong, M. H.

J. Yang, F. F. Luo, T. S. Kao, X. Li, G. W. Ho, J. H. Teng, X. G. Luo, and M. H. Hong, “Broadband ultra-low reflectivity black Si surfaces: design and fabrication by laser micro/nanoprocessing,” Light: Sci. Appl. 3(1), e185 (2014).
[Crossref]

Y. C. Guan, G. K. L. Ng, H. Y. Zheng, M. H. Hong, X. Hong, and Z. Zhang, “Laser surface cleaning of carbonaceous deposits on diesel engine piston,” Appl. Surf. Sci. 270, 526–530 (2013).
[Crossref]

M. H. Hong, K. Y. Ng, Q. Xie, L. P. Shi, and T. C. Chong, “Pulsed laser ablation in a cooled liquid environment,” Appl. Phys., A Mater. Sci. Process. 93(1), 153–157 (2008).
[Crossref]

W. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95(6), 2952–2956 (2004).
[Crossref]

S. Zhu, Y. F. Lu, and M. H. Hong, “Laser ablation of solid substrates in a water-confined environment,” Appl. Phys. Lett. 79(9), 1396–1398 (2001).
[Crossref]

Hong, X.

Y. C. Guan, G. K. L. Ng, H. Y. Zheng, M. H. Hong, X. Hong, and Z. Zhang, “Laser surface cleaning of carbonaceous deposits on diesel engine piston,” Appl. Surf. Sci. 270, 526–530 (2013).
[Crossref]

Hu, J. L.

H. B. Zeng, W. P. Cai, Y. Li, J. L. Hu, and P. S. Liu, “Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media,” J. Phys. Chem. B 109(39), 18260–18266 (2005).
[Crossref] [PubMed]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Kao, T. S.

J. Yang, F. F. Luo, T. S. Kao, X. Li, G. W. Ho, J. H. Teng, X. G. Luo, and M. H. Hong, “Broadband ultra-low reflectivity black Si surfaces: design and fabrication by laser micro/nanoprocessing,” Light: Sci. Appl. 3(1), e185 (2014).
[Crossref]

Krstulovic, N.

N. Krstulović, S. Shannon, R. Stefanuik, and C. Fanara, “Underwater-laser drilling of aluminum,” Int. J. Adv. Manuf. Technol. 69, 1765–1773 (2013).

Kumar, B.

B. Kumar and R. K. Thareja, “Laser ablated copper plasmas in liquid and gas ambient,” Phys. Plasmas 20(5), 053503 (2013).
[Crossref]

B. Kumar and R. K. Thareja, “Growth of titanium nanoparticles in confined plasma,” Phys. Plasmas 19(3), 033516 (2012).
[Crossref]

Lee, J. M.

Li, X.

J. Yang, F. F. Luo, T. S. Kao, X. Li, G. W. Ho, J. H. Teng, X. G. Luo, and M. H. Hong, “Broadband ultra-low reflectivity black Si surfaces: design and fabrication by laser micro/nanoprocessing,” Light: Sci. Appl. 3(1), e185 (2014).
[Crossref]

Li, Y.

H. B. Zeng, W. P. Cai, Y. Li, J. L. Hu, and P. S. Liu, “Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media,” J. Phys. Chem. B 109(39), 18260–18266 (2005).
[Crossref] [PubMed]

Liao, Y. L.

Y. L. Liao, Y. L. Yang, and G. J. Cheng, “Enhanced laser shock by an active liquid confinement—hydrogen peroxide,” J. Manuf. Sci. Eng. 134(3), 034503 (2012).
[Crossref]

Lieber, C. M.

A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279(5348), 208–211 (1998).
[Crossref] [PubMed]

Liu, P. S.

H. B. Zeng, W. P. Cai, Y. Li, J. L. Hu, and P. S. Liu, “Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media,” J. Phys. Chem. B 109(39), 18260–18266 (2005).
[Crossref] [PubMed]

Lu, J.

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, S. Y. Zhang, and C. M. Gao, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95(8), 3890–3894 (2004).
[Crossref]

Lu, Y. F.

S. Zhu, Y. F. Lu, and M. H. Hong, “Laser ablation of solid substrates in a water-confined environment,” Appl. Phys. Lett. 79(9), 1396–1398 (2001).
[Crossref]

Lukyanchuk, B.

W. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95(6), 2952–2956 (2004).
[Crossref]

Luo, F. F.

J. Yang, F. F. Luo, T. S. Kao, X. Li, G. W. Ho, J. H. Teng, X. G. Luo, and M. H. Hong, “Broadband ultra-low reflectivity black Si surfaces: design and fabrication by laser micro/nanoprocessing,” Light: Sci. Appl. 3(1), e185 (2014).
[Crossref]

Luo, X. G.

J. Yang, F. F. Luo, T. S. Kao, X. Li, G. W. Ho, J. H. Teng, X. G. Luo, and M. H. Hong, “Broadband ultra-low reflectivity black Si surfaces: design and fabrication by laser micro/nanoprocessing,” Light: Sci. Appl. 3(1), e185 (2014).
[Crossref]

Makin, V. S.

A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

Mazur, E.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Mehrabian, S.

M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: A focus on laser induced plasma radiation,” J. Appl. Phys. 104(5), 053303 (2008).
[Crossref]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. V. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Morales, A. M.

A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279(5348), 208–211 (1998).
[Crossref] [PubMed]

Ng, G. K. L.

Y. C. Guan, G. K. L. Ng, H. Y. Zheng, M. H. Hong, X. Hong, and Z. Zhang, “Laser surface cleaning of carbonaceous deposits on diesel engine piston,” Appl. Surf. Sci. 270, 526–530 (2013).
[Crossref]

Ng, K. Y.

M. H. Hong, K. Y. Ng, Q. Xie, L. P. Shi, and T. C. Chong, “Pulsed laser ablation in a cooled liquid environment,” Appl. Phys., A Mater. Sci. Process. 93(1), 153–157 (2008).
[Crossref]

Ni, X. W.

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, S. Y. Zhang, and C. M. Gao, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95(8), 3890–3894 (2004).
[Crossref]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. V. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Shafeev, G. A.

A. V. Simakin and G. A. Shafeev, “Laser-assisted etching-like damage of Si,” Appl. Surf. Sci. 86(1-4), 422–427 (1995).
[Crossref]

M. R. Brook and G. A. Shafeev, “Laser-assisted engraving of HgCdTe under a liquid layer,” Appl. Surf. Sci. 54, 336–340 (1992).
[Crossref]

Shaheen, M. E.

M. E. Shaheen, J. E. Gagnon, and B. J. Fryer, “Femtosecond laser ablation of brass in air and liquid media,” J. Appl. Phys. 113(21), 213106 (2013).
[Crossref]

Shannon, S.

N. Krstulović, S. Shannon, R. Stefanuik, and C. Fanara, “Underwater-laser drilling of aluminum,” Int. J. Adv. Manuf. Technol. 69, 1765–1773 (2013).

Shen, M. Y.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

Shen, Z. H.

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, S. Y. Zhang, and C. M. Gao, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95(8), 3890–3894 (2004).
[Crossref]

Shi, L. P.

M. H. Hong, K. Y. Ng, Q. Xie, L. P. Shi, and T. C. Chong, “Pulsed laser ablation in a cooled liquid environment,” Appl. Phys., A Mater. Sci. Process. 93(1), 153–157 (2008).
[Crossref]

Simakin, A. V.

A. V. Simakin and G. A. Shafeev, “Laser-assisted etching-like damage of Si,” Appl. Surf. Sci. 86(1-4), 422–427 (1995).
[Crossref]

Song, W. D.

W. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95(6), 2952–2956 (2004).
[Crossref]

Stefanuik, R.

N. Krstulović, S. Shannon, R. Stefanuik, and C. Fanara, “Underwater-laser drilling of aluminum,” Int. J. Adv. Manuf. Technol. 69, 1765–1773 (2013).

Tavassoli, S. H.

M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: A focus on laser induced plasma radiation,” J. Appl. Phys. 104(5), 053303 (2008).
[Crossref]

Teng, J. H.

J. Yang, F. F. Luo, T. S. Kao, X. Li, G. W. Ho, J. H. Teng, X. G. Luo, and M. H. Hong, “Broadband ultra-low reflectivity black Si surfaces: design and fabrication by laser micro/nanoprocessing,” Light: Sci. Appl. 3(1), e185 (2014).
[Crossref]

Thareja, R. K.

B. Kumar and R. K. Thareja, “Laser ablated copper plasmas in liquid and gas ambient,” Phys. Plasmas 20(5), 053503 (2013).
[Crossref]

B. Kumar and R. K. Thareja, “Growth of titanium nanoparticles in confined plasma,” Phys. Plasmas 19(3), 033516 (2012).
[Crossref]

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. V. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

Watkins, K. G.

Wu, C.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Xie, Q.

M. H. Hong, K. Y. Ng, Q. Xie, L. P. Shi, and T. C. Chong, “Pulsed laser ablation in a cooled liquid environment,” Appl. Phys., A Mater. Sci. Process. 93(1), 153–157 (2008).
[Crossref]

Xu, N. S.

M. Huang, F. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Xu, R. Q.

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, S. Y. Zhang, and C. M. Gao, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95(8), 3890–3894 (2004).
[Crossref]

Xu, Z. Z.

M. Huang, F. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Yang, J.

J. Yang, F. F. Luo, T. S. Kao, X. Li, G. W. Ho, J. H. Teng, X. G. Luo, and M. H. Hong, “Broadband ultra-low reflectivity black Si surfaces: design and fabrication by laser micro/nanoprocessing,” Light: Sci. Appl. 3(1), e185 (2014).
[Crossref]

Yang, Y. L.

Y. L. Liao, Y. L. Yang, and G. J. Cheng, “Enhanced laser shock by an active liquid confinement—hydrogen peroxide,” J. Manuf. Sci. Eng. 134(3), 034503 (2012).
[Crossref]

Zeng, H. B.

H. B. Zeng, W. P. Cai, Y. Li, J. L. Hu, and P. S. Liu, “Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media,” J. Phys. Chem. B 109(39), 18260–18266 (2005).
[Crossref] [PubMed]

Zhang, S. Y.

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, S. Y. Zhang, and C. M. Gao, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95(8), 3890–3894 (2004).
[Crossref]

Zhang, Z.

Y. C. Guan, G. K. L. Ng, H. Y. Zheng, M. H. Hong, X. Hong, and Z. Zhang, “Laser surface cleaning of carbonaceous deposits on diesel engine piston,” Appl. Surf. Sci. 270, 526–530 (2013).
[Crossref]

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Zheng, H. Y.

Y. C. Guan, G. K. L. Ng, H. Y. Zheng, M. H. Hong, X. Hong, and Z. Zhang, “Laser surface cleaning of carbonaceous deposits on diesel engine piston,” Appl. Surf. Sci. 270, 526–530 (2013).
[Crossref]

Zhu, S.

S. Zhu, Y. F. Lu, and M. H. Hong, “Laser ablation of solid substrates in a water-confined environment,” Appl. Phys. Lett. 79(9), 1396–1398 (2001).
[Crossref]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

S. Zhu, Y. F. Lu, and M. H. Hong, “Laser ablation of solid substrates in a water-confined environment,” Appl. Phys. Lett. 79(9), 1396–1398 (2001).
[Crossref]

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

B. N. Chichkov, C. Momma, S. Nolte, F. V. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

M. H. Hong, K. Y. Ng, Q. Xie, L. P. Shi, and T. C. Chong, “Pulsed laser ablation in a cooled liquid environment,” Appl. Phys., A Mater. Sci. Process. 93(1), 153–157 (2008).
[Crossref]

Appl. Surf. Sci. (3)

Y. C. Guan, G. K. L. Ng, H. Y. Zheng, M. H. Hong, X. Hong, and Z. Zhang, “Laser surface cleaning of carbonaceous deposits on diesel engine piston,” Appl. Surf. Sci. 270, 526–530 (2013).
[Crossref]

A. V. Simakin and G. A. Shafeev, “Laser-assisted etching-like damage of Si,” Appl. Surf. Sci. 86(1-4), 422–427 (1995).
[Crossref]

M. R. Brook and G. A. Shafeev, “Laser-assisted engraving of HgCdTe under a liquid layer,” Appl. Surf. Sci. 54, 336–340 (1992).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

N. Krstulović, S. Shannon, R. Stefanuik, and C. Fanara, “Underwater-laser drilling of aluminum,” Int. J. Adv. Manuf. Technol. 69, 1765–1773 (2013).

J. Appl. Phys. (4)

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, S. Y. Zhang, and C. M. Gao, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95(8), 3890–3894 (2004).
[Crossref]

W. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95(6), 2952–2956 (2004).
[Crossref]

M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: A focus on laser induced plasma radiation,” J. Appl. Phys. 104(5), 053303 (2008).
[Crossref]

M. E. Shaheen, J. E. Gagnon, and B. J. Fryer, “Femtosecond laser ablation of brass in air and liquid media,” J. Appl. Phys. 113(21), 213106 (2013).
[Crossref]

J. Manuf. Sci. Eng. (1)

Y. L. Liao, Y. L. Yang, and G. J. Cheng, “Enhanced laser shock by an active liquid confinement—hydrogen peroxide,” J. Manuf. Sci. Eng. 134(3), 034503 (2012).
[Crossref]

J. Phys. Chem. B (1)

H. B. Zeng, W. P. Cai, Y. Li, J. L. Hu, and P. S. Liu, “Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media,” J. Phys. Chem. B 109(39), 18260–18266 (2005).
[Crossref] [PubMed]

Light: Sci. Appl. (1)

J. Yang, F. F. Luo, T. S. Kao, X. Li, G. W. Ho, J. H. Teng, X. G. Luo, and M. H. Hong, “Broadband ultra-low reflectivity black Si surfaces: design and fabrication by laser micro/nanoprocessing,” Light: Sci. Appl. 3(1), e185 (2014).
[Crossref]

Opt. Express (1)

Phys. Plasmas (2)

B. Kumar and R. K. Thareja, “Laser ablated copper plasmas in liquid and gas ambient,” Phys. Plasmas 20(5), 053503 (2013).
[Crossref]

B. Kumar and R. K. Thareja, “Growth of titanium nanoparticles in confined plasma,” Phys. Plasmas 19(3), 033516 (2012).
[Crossref]

Phys. Rev. Lett. (1)

A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

Science (1)

A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279(5348), 208–211 (1998).
[Crossref] [PubMed]

Other (1)

K. J. Laidler, The World of Physical Chemistry (Oxford University Press, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 SEM images of microholes on Cu samples formed by laser drilling in different environments of (a) air, (b) acetic acid, and (c) DI-water. Microholes produced by the fiber laser drilling at a laser fluence of 10 J/cm2 and a pulse number of 400. 2-D profiles of the microholes in Figs. 1(a)-1(c) are shown in Figs. 1(d)-1(f). (The samples are tilted at 15° for taking SEM images.)
Fig. 2
Fig. 2 Depth evolution of the microholes with pulse number and liquid thickness drilled in (a) acetic acid and (b) DI-water. The results in air are presented as a reference. The pulse number is set as 50, 80, 100, 200, 400, 600, 800 and 1000, respectively.
Fig. 3
Fig. 3 SEM images of Cu surfaces (a) before and after the laser ablation in (b) air, (c) acetic acid, and (d) DI-water. The sample surfaces treated by the fiber laser at a speed of 200 mm/s and laser fluence of 1 J/cm2.
Fig. 4
Fig. 4 AFM images of copper surfaces (a) before and after the laser ablation in (b) air, (c) acetic acid, and (d) DI-water. The measured areas of Figs. 4(a)-4(d) are corresponding to those of Figs. 3(a)-3(d).
Fig. 5
Fig. 5 EDX elemental analysis of the samples at different processing conditions, (a) Copper (at%) and (b) Oxygen (at%).
Fig. 6
Fig. 6 Schematic illustration of the laser processing in the acetic acid. (a) the plasma plume is ignited on the irradiated spot, (b) the plasma plume isothermally expands by the absorption of laser energy, (c) after the laser pulse terminates, the plasma plume adiabatically expands and chemical reaction takes place at the liquid-material interface.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

CH 3 COOH+CuO ( CH 3 COO ) 2 Cu+ H 2 O, or
CH 3 COOH+ Cu 2 O CH 3 COOCu+ H 2 O.
k=Aexp( Ea/( k B T ) )

Metrics