Abstract

We demonstrate a comparative investigation on Er,Pr:GYSGG and GYSGG/Er,Pr:GYSGG composite crystals at 2.79 μm. Simulating results show the highest temperatures are 369 K and 318 K, respectively. A maximum output power of 825 mW with slope efficiency of 19.2% and maximum laser energy of 3.65 mJ with slope efficiency of 22.7% are obtained in the GYSGG/Er,Pr:GYSGG composite crystal, which have an obvious improvement than those of Er,Pr:GYSGG crystal. The thermal focal lengths are respectively 41 and 62 mm when the pump power is 2.5 W. All these results indicate that the GYSGG/Er,Pr:GYSGG composite crystal has great advantages in reducing the influence of thermal effects and improving laser performances.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermal analysis and laser performance of a GYSGG/Cr,Er,Pr:GYSGG composite laser crystal operated at 2.79 μm

Zhongqing Fang, Dunlu Sun, Jianqiao Luo, Huili Zhang, Xuyao Zhao, Cong Quan, Lunzhen Hu, Maojie Cheng, Qingli Zhang, and Shaotang Yin
Opt. Express 25(18) 21349-21357 (2017)

Spectroscopic properties and diode end-pumped 2.79 μm laser performance of Er,Pr:GYSGG crystal

Jiakang Chen, Dunlu Sun, Jianqiao Luo, Huili Zhang, Renqin Dou, Jingzhong Xiao, Qingli Zhang, and Shaotang Yin
Opt. Express 21(20) 23425-23432 (2013)

Laser performance of a 966  nm LD side-pumped Er,Pr:GYSGG laser crystal operated at 2.79  μm

Xuyao Zhao, Dunlu Sun, Jianqiao Luo, Huili Zhang, Zhongqing Fang, Cong Quan, Lunzhen Hu, Maojie Cheng, Qingli Zhang, and Shaotang Yin
Opt. Lett. 43(17) 4312-4315 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
    [Crossref]
  2. A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
    [Crossref]
  3. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008).
    [Crossref] [PubMed]
  4. B. Neuenschwander, R. Weber, and H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31(6), 1082–1087 (1995).
    [Crossref]
  5. B. Ozygus and Q. Zhang, “Thermal lens determination of end-pumped solid-state lasers using primary degeneration modes,” Appl. Phys. Lett. 71(18), 2590–2592 (1997).
    [Crossref]
  6. F. Song, C. Zhang, X. Ding, J. J. Xu, G. Y. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
    [Crossref]
  7. F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd:Y3Al5O12 rod,” Appl. Phys. Lett. 66(26), 3549–3551 (1995).
    [Crossref]
  8. R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
    [Crossref]
  9. M. Tsunekane, N. Taguchi, and H. Inaba, “Efficient 946-nm laser operation of a composite Nd:YAG rod with undoped ends,” Appl. Opt. 37(24), 5713–5719 (1998).
    [Crossref] [PubMed]
  10. B. J. Shen, H. X. Kang, D. L. Sun, Q. L. Zhang, S. T. Yin, P. Chen, and J. Liang, “Investigation of laser diode end pumped Er:YSGG/YSGG composite crystal lasers at 2.79 µm,” Laser Phys. Lett. 11(1), 015002 (2014).
    [Crossref]
  11. M. Tsunekane, N. Taguchi, and H. Inaba, “Improvement of thermal effects in a diode-end-pumped, composite Tm:YAG rod with undoped ends,” Appl. Opt. 38(9), 1788–1791 (1999).
    [Crossref] [PubMed]
  12. M. P. MacDonald, Th. Graf, J. E. Balmer, and H. P. Weber, “Reducing thermal lensing in diode-pumped laser rods,” Opt. Commun. 178(4–6), 383–393 (2000).
    [Crossref]
  13. J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, H. X. Kang, H. L. Zhang, M. J. Cheng, Q. L. Zhang, and S. T. Yin, “Spectroscopic, diode-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals,” Opt. Lett. 38(8), 1218–1220 (2013).
    [Crossref] [PubMed]
  14. D. S. Knowles and H. P. Jenssen, “Unconversion versus Pr-deactivation for efficient 3 μm laser operation in Er,” IEEE J. Quantum Electron. 28(4), 1197–1208 (1992).
    [Crossref]
  15. J. K. Chen, D. L. Sun, J. Q. Luo, H. L. Zhang, R. Q. Dou, J. Z. Xiao, Q. L. Zhang, and S. T. Yin, “Spectroscopic properties and diode end-pumped 2.79 μm laser performance of Er,Pr:GYSGG crystal,” Opt. Express 21(20), 23425–23432 (2013).
    [Crossref] [PubMed]
  16. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
    [Crossref]
  17. J. H. Liu, J. R. Lu, J. H. Lu, Z. S. Shao, and M. H. Jiang, “Thermal lens determination of end-pumped solid-state lasers by a simple direct approach,” Chin. Phys. Lett. 16(3), 181–183 (1999).
    [Crossref]

2014 (1)

B. J. Shen, H. X. Kang, D. L. Sun, Q. L. Zhang, S. T. Yin, P. Chen, and J. Liang, “Investigation of laser diode end pumped Er:YSGG/YSGG composite crystal lasers at 2.79 µm,” Laser Phys. Lett. 11(1), 015002 (2014).
[Crossref]

2013 (2)

2008 (1)

2002 (1)

F. Song, C. Zhang, X. Ding, J. J. Xu, G. Y. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

2000 (1)

M. P. MacDonald, Th. Graf, J. E. Balmer, and H. P. Weber, “Reducing thermal lensing in diode-pumped laser rods,” Opt. Commun. 178(4–6), 383–393 (2000).
[Crossref]

1999 (2)

M. Tsunekane, N. Taguchi, and H. Inaba, “Improvement of thermal effects in a diode-end-pumped, composite Tm:YAG rod with undoped ends,” Appl. Opt. 38(9), 1788–1791 (1999).
[Crossref] [PubMed]

J. H. Liu, J. R. Lu, J. H. Lu, Z. S. Shao, and M. H. Jiang, “Thermal lens determination of end-pumped solid-state lasers by a simple direct approach,” Chin. Phys. Lett. 16(3), 181–183 (1999).
[Crossref]

1998 (2)

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

M. Tsunekane, N. Taguchi, and H. Inaba, “Efficient 946-nm laser operation of a composite Nd:YAG rod with undoped ends,” Appl. Opt. 37(24), 5713–5719 (1998).
[Crossref] [PubMed]

1997 (1)

B. Ozygus and Q. Zhang, “Thermal lens determination of end-pumped solid-state lasers using primary degeneration modes,” Appl. Phys. Lett. 71(18), 2590–2592 (1997).
[Crossref]

1995 (2)

F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd:Y3Al5O12 rod,” Appl. Phys. Lett. 66(26), 3549–3551 (1995).
[Crossref]

B. Neuenschwander, R. Weber, and H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31(6), 1082–1087 (1995).
[Crossref]

1992 (2)

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[Crossref]

D. S. Knowles and H. P. Jenssen, “Unconversion versus Pr-deactivation for efficient 3 μm laser operation in Er,” IEEE J. Quantum Electron. 28(4), 1197–1208 (1992).
[Crossref]

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

1988 (1)

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[Crossref]

Balmer, J. E.

M. P. MacDonald, Th. Graf, J. E. Balmer, and H. P. Weber, “Reducing thermal lensing in diode-pumped laser rods,” Opt. Commun. 178(4–6), 383–393 (2000).
[Crossref]

Byer, R. L.

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[Crossref]

Chang, Y. T.

Chen, J. K.

Chen, P.

B. J. Shen, H. X. Kang, D. L. Sun, Q. L. Zhang, S. T. Yin, P. Chen, and J. Liang, “Investigation of laser diode end pumped Er:YSGG/YSGG composite crystal lasers at 2.79 µm,” Laser Phys. Lett. 11(1), 015002 (2014).
[Crossref]

Chen, Y. F.

Cheng, M. J.

Cousins, A. K.

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[Crossref]

Ding, X.

F. Song, C. Zhang, X. Ding, J. J. Xu, G. Y. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

Donald, M. M.

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

Dou, R. Q.

Fan, T. Y.

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[Crossref]

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Graf, Th.

M. P. MacDonald, Th. Graf, J. E. Balmer, and H. P. Weber, “Reducing thermal lensing in diode-pumped laser rods,” Opt. Commun. 178(4–6), 383–393 (2000).
[Crossref]

Hanson, F.

F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd:Y3Al5O12 rod,” Appl. Phys. Lett. 66(26), 3549–3551 (1995).
[Crossref]

Huang, Y. P.

Inaba, H.

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Jenssen, H. P.

D. S. Knowles and H. P. Jenssen, “Unconversion versus Pr-deactivation for efficient 3 μm laser operation in Er,” IEEE J. Quantum Electron. 28(4), 1197–1208 (1992).
[Crossref]

Jiang, M. H.

J. H. Liu, J. R. Lu, J. H. Lu, Z. S. Shao, and M. H. Jiang, “Thermal lens determination of end-pumped solid-state lasers by a simple direct approach,” Chin. Phys. Lett. 16(3), 181–183 (1999).
[Crossref]

Kang, H. X.

B. J. Shen, H. X. Kang, D. L. Sun, Q. L. Zhang, S. T. Yin, P. Chen, and J. Liang, “Investigation of laser diode end pumped Er:YSGG/YSGG composite crystal lasers at 2.79 µm,” Laser Phys. Lett. 11(1), 015002 (2014).
[Crossref]

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, H. X. Kang, H. L. Zhang, M. J. Cheng, Q. L. Zhang, and S. T. Yin, “Spectroscopic, diode-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals,” Opt. Lett. 38(8), 1218–1220 (2013).
[Crossref] [PubMed]

Knowles, D. S.

D. S. Knowles and H. P. Jenssen, “Unconversion versus Pr-deactivation for efficient 3 μm laser operation in Er,” IEEE J. Quantum Electron. 28(4), 1197–1208 (1992).
[Crossref]

Leigh, M.

F. Song, C. Zhang, X. Ding, J. J. Xu, G. Y. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

Liang, J.

B. J. Shen, H. X. Kang, D. L. Sun, Q. L. Zhang, S. T. Yin, P. Chen, and J. Liang, “Investigation of laser diode end pumped Er:YSGG/YSGG composite crystal lasers at 2.79 µm,” Laser Phys. Lett. 11(1), 015002 (2014).
[Crossref]

Liu, J. H.

J. H. Liu, J. R. Lu, J. H. Lu, Z. S. Shao, and M. H. Jiang, “Thermal lens determination of end-pumped solid-state lasers by a simple direct approach,” Chin. Phys. Lett. 16(3), 181–183 (1999).
[Crossref]

Lu, J. H.

J. H. Liu, J. R. Lu, J. H. Lu, Z. S. Shao, and M. H. Jiang, “Thermal lens determination of end-pumped solid-state lasers by a simple direct approach,” Chin. Phys. Lett. 16(3), 181–183 (1999).
[Crossref]

Lu, J. R.

J. H. Liu, J. R. Lu, J. H. Lu, Z. S. Shao, and M. H. Jiang, “Thermal lens determination of end-pumped solid-state lasers by a simple direct approach,” Chin. Phys. Lett. 16(3), 181–183 (1999).
[Crossref]

Luo, J. Q.

MacDonald, M. P.

M. P. MacDonald, Th. Graf, J. E. Balmer, and H. P. Weber, “Reducing thermal lensing in diode-pumped laser rods,” Opt. Commun. 178(4–6), 383–393 (2000).
[Crossref]

Neuenschwander, B.

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

B. Neuenschwander, R. Weber, and H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31(6), 1082–1087 (1995).
[Crossref]

Ozygus, B.

B. Ozygus and Q. Zhang, “Thermal lens determination of end-pumped solid-state lasers using primary degeneration modes,” Appl. Phys. Lett. 71(18), 2590–2592 (1997).
[Crossref]

Peyghambarian, N.

F. Song, C. Zhang, X. Ding, J. J. Xu, G. Y. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

Roos, M. B.

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

Shao, Z. S.

J. H. Liu, J. R. Lu, J. H. Lu, Z. S. Shao, and M. H. Jiang, “Thermal lens determination of end-pumped solid-state lasers by a simple direct approach,” Chin. Phys. Lett. 16(3), 181–183 (1999).
[Crossref]

Shen, B. J.

B. J. Shen, H. X. Kang, D. L. Sun, Q. L. Zhang, S. T. Yin, P. Chen, and J. Liang, “Investigation of laser diode end pumped Er:YSGG/YSGG composite crystal lasers at 2.79 µm,” Laser Phys. Lett. 11(1), 015002 (2014).
[Crossref]

Song, F.

F. Song, C. Zhang, X. Ding, J. J. Xu, G. Y. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

Su, K. W.

Sun, D. L.

Taguchi, N.

Tsunekane, M.

Weber, H. P.

M. P. MacDonald, Th. Graf, J. E. Balmer, and H. P. Weber, “Reducing thermal lensing in diode-pumped laser rods,” Opt. Commun. 178(4–6), 383–393 (2000).
[Crossref]

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

B. Neuenschwander, R. Weber, and H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31(6), 1082–1087 (1995).
[Crossref]

Weber, R.

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

B. Neuenschwander, R. Weber, and H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31(6), 1082–1087 (1995).
[Crossref]

Xiao, J. Z.

Xu, J. J.

F. Song, C. Zhang, X. Ding, J. J. Xu, G. Y. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

Yin, S. T.

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Zhang, C.

F. Song, C. Zhang, X. Ding, J. J. Xu, G. Y. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

Zhang, G. Y.

F. Song, C. Zhang, X. Ding, J. J. Xu, G. Y. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

Zhang, H. L.

Zhang, Q.

B. Ozygus and Q. Zhang, “Thermal lens determination of end-pumped solid-state lasers using primary degeneration modes,” Appl. Phys. Lett. 71(18), 2590–2592 (1997).
[Crossref]

Zhang, Q. L.

Appl. Opt. (2)

Appl. Phys. Lett. (4)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

B. Ozygus and Q. Zhang, “Thermal lens determination of end-pumped solid-state lasers using primary degeneration modes,” Appl. Phys. Lett. 71(18), 2590–2592 (1997).
[Crossref]

F. Song, C. Zhang, X. Ding, J. J. Xu, G. Y. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd:Y3Al5O12 rod,” Appl. Phys. Lett. 66(26), 3549–3551 (1995).
[Crossref]

Chin. Phys. Lett. (1)

J. H. Liu, J. R. Lu, J. H. Lu, Z. S. Shao, and M. H. Jiang, “Thermal lens determination of end-pumped solid-state lasers by a simple direct approach,” Chin. Phys. Lett. 16(3), 181–183 (1999).
[Crossref]

IEEE J. Quantum Electron. (5)

B. Neuenschwander, R. Weber, and H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31(6), 1082–1087 (1995).
[Crossref]

D. S. Knowles and H. P. Jenssen, “Unconversion versus Pr-deactivation for efficient 3 μm laser operation in Er,” IEEE J. Quantum Electron. 28(4), 1197–1208 (1992).
[Crossref]

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[Crossref]

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[Crossref]

Laser Phys. Lett. (1)

B. J. Shen, H. X. Kang, D. L. Sun, Q. L. Zhang, S. T. Yin, P. Chen, and J. Liang, “Investigation of laser diode end pumped Er:YSGG/YSGG composite crystal lasers at 2.79 µm,” Laser Phys. Lett. 11(1), 015002 (2014).
[Crossref]

Opt. Commun. (1)

M. P. MacDonald, Th. Graf, J. E. Balmer, and H. P. Weber, “Reducing thermal lensing in diode-pumped laser rods,” Opt. Commun. 178(4–6), 383–393 (2000).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of LD end-pumped GYSGG/Er,Pr:GYSGG composite crystal.
Fig. 2
Fig. 2 Temperature distribution on the pump end-face of the crystals. (a) Er,Pr:GYSGG; (b) GYSGG/Er,Pr:GYSGG.
Fig. 3
Fig. 3 Fluorescence spectrum of Er,Pr:GYSGG crystal excited by a 968 nm LD.
Fig. 4
Fig. 4 Fluorescence decay curves (a) at 1.016 μm and (b) 1.530 μm.
Fig. 5
Fig. 5 Output power versus pump power for the two crystals.
Fig. 6
Fig. 6 Output energy versus input energy for different repetition rates on the two crystals.
Fig. 7
Fig. 7 Thermal focal lengths of laser crystals as a function of pump power.

Tables (1)

Tables Icon

Table 1 Parameters of the temperature distribution simulating.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

0<(1 L c / f T )(1 L c /R)<1

Metrics