Abstract

This paper describes a proposal and successful demonstration of a dual wavelength all-fiber passively Q-switched erbium-doped fiber ring laser. The Q-switch operation was realized by using a nonlinear loop mirror that incorporated an unbalanced dispersion-decreasing taper fiber to act as a saturable absorber without additional elements. This setup enabled a fiber ring laser to achieve a performance of 48.7 kHz repetition rate with pulse duration of around 3.2 μs and approximate pulse energy of 20 nJ.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic crystal fiber based dual-wavelength Q-switched fiber laser using graphene oxide as a saturable absorber

H. Ahmad, M. R. K. Soltanian, C. H. Pua, M. Alimadad, and S. W. Harun
Appl. Opt. 53(16) 3581-3586 (2014)

Passively Q-switched Er3+-doped fiber lasers using colloidal PbS quantum dot saturable absorber

Yin-Wen Lee, Chien-Ming Chen, Chia-Wei Huang, Shih-Ken Chen, and Jhang-Rong Jiang
Opt. Express 24(10) 10675-10681 (2016)

Dual-wavelength passively Q-switched Er-doped fiber laser based on a MoSSe saturable absorber

Guoru Li, Jingliang He, Bingzheng Yan, Bingnan Shi, Junting Liu, Baitao Zhang, and Kejian Yang
OSA Continuum 2(1) 192-200 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. M. Chang, J. Lee, Y. M. Jhon, and J. H. Lee, “Active Q-switching in an erbium-doped fiber laser using an ultrafast silicon-based variable optical attenuator,” Opt. Express 19(27), 26911–26916 (2011).
    [Crossref] [PubMed]
  2. A. F. El-Sherif and T. A. King, “High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator,” Opt. Commun. 218(4–6), 337–344 (2003).
    [Crossref]
  3. Z. J. Chen, A. B. Grudinin, J. Porta, and J. D. Minelly, “Enhanced Q switching in double-clad fiber lasers,” Opt. Lett. 23(6), 454–456 (1998).
    [Crossref] [PubMed]
  4. S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, M. Tokomuto, H. Kataura, Y. Achiba, and K. Kikuchi, “A dual-regime mode-locked/Q-switched laser using a saturable absorber incorporating carbon nanotubes (SAINT),” in Lasers and Electro-Optics, 2003. CLEO '03. Conference on (2003), p. 3pp.
  5. R. Mary, S. J. Beecher, G. Brown, Z. Sun, D. Popa, T. Hasan, A. C. Ferrari, S. Ohara, and A. K. Kar, “Q-switched modelocking using carbon nanotubes in an ultrafast laser inscribed ytterbium doped bismuthate glass waveguide laser,“ in International Conference on Fibre Optics and Photonics(Optical Society of America, Chennai, 2012), p. T3B.3.
    [Crossref]
  6. Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
    [Crossref]
  7. M. Jung, J. Koo, Y. Chang, P. Debnath, Y. Song, and J. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9(9), 669–673 (2012).
    [Crossref]
  8. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98(7), 073106 (2011).
    [Crossref]
  9. H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene-oxide-based saturable absorber for all-fiber Q-switching with a simple optical deposition technique,” IEEE Photonics J. 4(6), 2205–2213 (2012).
    [Crossref]
  10. R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21(7), 7943–7950 (2013).
    [Crossref] [PubMed]
  11. F. Wang, F. Torrisi, Z. Jiang, D. Popa, T. Hasan, Z. Sun, W. Cho, and A. C. Ferrari, “Graphene passively Q-switched two-micron fiber lasers,” in Conference on Lasers and Electro-Optics 2012(Optical Society of America, San Jose, California, 2012), p. JW2A.72.
    [Crossref]
  12. X. Li, G. Li, S. Zhao, X. Wang, L. Yin, H. Huang, and X. Ma, “Diode-pumped Nd:YVO4 laser passively Q-switched with graphene oxide spin coated on ITO substrate,” Laser Phys. 22(4), 673–677 (2012).
    [Crossref]
  13. J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10(3), 035103 (2013).
    [Crossref]
  14. C. Liu, C. Ye, Z. Luo, H. Cheng, D. Wu, Y. Zheng, Z. Liu, and B. Qu, “High-energy passively Q-switched 2 μm Tm3+-doped double-clad fiber laser using graphene-oxide-deposited fiber taper,” Opt. Express 21(1), 204–209 (2013).
    [Crossref] [PubMed]
  15. I. N. Duling, C. J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
    [Crossref]
  16. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13(1), 56–58 (1988).
    [Crossref] [PubMed]
  17. K. Smith, N. J. Doran, and P. G. Wigley, “Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror,” Opt. Lett. 15(22), 1294–1296 (1990).
    [Crossref] [PubMed]
  18. Z. Zhang, Z. Ye, M. Sang, and Y. Nie, “Passively mode‐locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5(5), 364–366 (2008).
    [Crossref]
  19. Y. J. Song, L. Zhan, J. H. Ji, and Y. X. Xia, “All-fiber passively Q-switched laser by a symmetrical nonlinear optical loop mirror with nonlinear polarization rotation,” in European Conference on Optical Communication2005629–630.
    [Crossref]
  20. G. P. Agrawal, Nonlinear fiber optics (Springer, 2000).
  21. A. F. Evans, “Dispersion-tapered fiber in nonlinear loop mirrors for intensity and pulse width switching,” in European Conference on Optical Communication (ECOC 1996) 4 27–30.
  22. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2001).
  23. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18(7), 476–478 (1993).
    [Crossref] [PubMed]
  24. A. J. Stentz, R. W. Boyd, and A. F. Evans, “Dramatically improved transmission of ultrashort solitons through 40 km of dispersion-decreasing fiber,” Opt. Lett. 20(17), 1770–1772 (1995).
    [Crossref] [PubMed]
  25. M. Rusu, R. Herda, S. Kivistö, and O. G. Okhotnikov, “Fiber taper for dispersion management in a mode-locked ytterbium fiber laser,” Opt. Lett. 31(15), 2257–2259 (2006).
    [Crossref] [PubMed]
  26. J. C. Graf, S. A. Teston, P. V. de Barba, J. Dallmann, J. A. S. Lima, H. J. Kalinowski, and A. S. Paterno, “Fiber taper rig using a simplified heat source and the flame-brush technique,” in International Microwave and Optoelectronics Conference (IMOC 2009) 621–624.
    [Crossref]
  27. L. Feng, F. Xinhuan, and P. K. A. Wai, “Tunable multiwavelength erbium-doped fiber ring laser with intensity-dependent loss,” in OptoeElectronics and Communications Conference (OECC), 2010 15th(2010), pp. 646–647.

2013 (3)

2012 (3)

X. Li, G. Li, S. Zhao, X. Wang, L. Yin, H. Huang, and X. Ma, “Diode-pumped Nd:YVO4 laser passively Q-switched with graphene oxide spin coated on ITO substrate,” Laser Phys. 22(4), 673–677 (2012).
[Crossref]

H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene-oxide-based saturable absorber for all-fiber Q-switching with a simple optical deposition technique,” IEEE Photonics J. 4(6), 2205–2213 (2012).
[Crossref]

M. Jung, J. Koo, Y. Chang, P. Debnath, Y. Song, and J. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9(9), 669–673 (2012).
[Crossref]

2011 (2)

2008 (2)

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
[Crossref]

Z. Zhang, Z. Ye, M. Sang, and Y. Nie, “Passively mode‐locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5(5), 364–366 (2008).
[Crossref]

2006 (1)

2003 (1)

A. F. El-Sherif and T. A. King, “High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator,” Opt. Commun. 218(4–6), 337–344 (2003).
[Crossref]

1998 (1)

1995 (1)

1994 (1)

I. N. Duling, C. J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
[Crossref]

1993 (1)

1990 (1)

1988 (1)

Ahmad, H.

H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene-oxide-based saturable absorber for all-fiber Q-switching with a simple optical deposition technique,” IEEE Photonics J. 4(6), 2205–2213 (2012).
[Crossref]

Beecher, S. J.

Boyd, R. W.

Brown, G.

Chang, Y.

M. Jung, J. Koo, Y. Chang, P. Debnath, Y. Song, and J. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9(9), 669–673 (2012).
[Crossref]

Chang, Y. M.

Chen, C. J.

I. N. Duling, C. J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
[Crossref]

Chen, Z. J.

Cheng, H.

Chernikov, S. V.

Dallmann, J.

J. C. Graf, S. A. Teston, P. V. de Barba, J. Dallmann, J. A. S. Lima, H. J. Kalinowski, and A. S. Paterno, “Fiber taper rig using a simplified heat source and the flame-brush technique,” in International Microwave and Optoelectronics Conference (IMOC 2009) 621–624.
[Crossref]

de Barba, P. V.

J. C. Graf, S. A. Teston, P. V. de Barba, J. Dallmann, J. A. S. Lima, H. J. Kalinowski, and A. S. Paterno, “Fiber taper rig using a simplified heat source and the flame-brush technique,” in International Microwave and Optoelectronics Conference (IMOC 2009) 621–624.
[Crossref]

Debnath, P.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10(3), 035103 (2013).
[Crossref]

M. Jung, J. Koo, Y. Chang, P. Debnath, Y. Song, and J. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9(9), 669–673 (2012).
[Crossref]

Dianov, E. M.

Doran, N. J.

Duling, I. N.

I. N. Duling, C. J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
[Crossref]

El-Sherif, A. F.

A. F. El-Sherif and T. A. King, “High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator,” Opt. Commun. 218(4–6), 337–344 (2003).
[Crossref]

Evans, A. F.

A. J. Stentz, R. W. Boyd, and A. F. Evans, “Dramatically improved transmission of ultrashort solitons through 40 km of dispersion-decreasing fiber,” Opt. Lett. 20(17), 1770–1772 (1995).
[Crossref] [PubMed]

A. F. Evans, “Dispersion-tapered fiber in nonlinear loop mirrors for intensity and pulse width switching,” in European Conference on Optical Communication (ECOC 1996) 4 27–30.

Ferrari, A. C.

Graf, J. C.

J. C. Graf, S. A. Teston, P. V. de Barba, J. Dallmann, J. A. S. Lima, H. J. Kalinowski, and A. S. Paterno, “Fiber taper rig using a simplified heat source and the flame-brush technique,” in International Microwave and Optoelectronics Conference (IMOC 2009) 621–624.
[Crossref]

Grudinin, A. B.

Harun, S. W.

H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene-oxide-based saturable absorber for all-fiber Q-switching with a simple optical deposition technique,” IEEE Photonics J. 4(6), 2205–2213 (2012).
[Crossref]

Hasan, T.

Herda, R.

Huang, H.

X. Li, G. Li, S. Zhao, X. Wang, L. Yin, H. Huang, and X. Ma, “Diode-pumped Nd:YVO4 laser passively Q-switched with graphene oxide spin coated on ITO substrate,” Laser Phys. 22(4), 673–677 (2012).
[Crossref]

Jhon, Y. M.

Ji, J. H.

Y. J. Song, L. Zhan, J. H. Ji, and Y. X. Xia, “All-fiber passively Q-switched laser by a symmetrical nonlinear optical loop mirror with nonlinear polarization rotation,” in European Conference on Optical Communication2005629–630.
[Crossref]

Jung, M.

M. Jung, J. Koo, Y. Chang, P. Debnath, Y. Song, and J. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9(9), 669–673 (2012).
[Crossref]

Kalinowski, H. J.

J. C. Graf, S. A. Teston, P. V. de Barba, J. Dallmann, J. A. S. Lima, H. J. Kalinowski, and A. S. Paterno, “Fiber taper rig using a simplified heat source and the flame-brush technique,” in International Microwave and Optoelectronics Conference (IMOC 2009) 621–624.
[Crossref]

Kar, A. K.

King, T. A.

A. F. El-Sherif and T. A. King, “High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator,” Opt. Commun. 218(4–6), 337–344 (2003).
[Crossref]

Kivistö, S.

Koo, J.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10(3), 035103 (2013).
[Crossref]

M. Jung, J. Koo, Y. Chang, P. Debnath, Y. Song, and J. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9(9), 669–673 (2012).
[Crossref]

Lee, J.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10(3), 035103 (2013).
[Crossref]

M. Jung, J. Koo, Y. Chang, P. Debnath, Y. Song, and J. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9(9), 669–673 (2012).
[Crossref]

Y. M. Chang, J. Lee, Y. M. Jhon, and J. H. Lee, “Active Q-switching in an erbium-doped fiber laser using an ultrafast silicon-based variable optical attenuator,” Opt. Express 19(27), 26911–26916 (2011).
[Crossref] [PubMed]

Lee, J. H.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10(3), 035103 (2013).
[Crossref]

Y. M. Chang, J. Lee, Y. M. Jhon, and J. H. Lee, “Active Q-switching in an erbium-doped fiber laser using an ultrafast silicon-based variable optical attenuator,” Opt. Express 19(27), 26911–26916 (2011).
[Crossref] [PubMed]

Li, G.

X. Li, G. Li, S. Zhao, X. Wang, L. Yin, H. Huang, and X. Ma, “Diode-pumped Nd:YVO4 laser passively Q-switched with graphene oxide spin coated on ITO substrate,” Laser Phys. 22(4), 673–677 (2012).
[Crossref]

Li, X.

X. Li, G. Li, S. Zhao, X. Wang, L. Yin, H. Huang, and X. Ma, “Diode-pumped Nd:YVO4 laser passively Q-switched with graphene oxide spin coated on ITO substrate,” Laser Phys. 22(4), 673–677 (2012).
[Crossref]

Lidorikis, E.

Lima, J. A. S.

J. C. Graf, S. A. Teston, P. V. de Barba, J. Dallmann, J. A. S. Lima, H. J. Kalinowski, and A. S. Paterno, “Fiber taper rig using a simplified heat source and the flame-brush technique,” in International Microwave and Optoelectronics Conference (IMOC 2009) 621–624.
[Crossref]

Liu, C.

Liu, Z.

Luo, Z.

Ma, X.

X. Li, G. Li, S. Zhao, X. Wang, L. Yin, H. Huang, and X. Ma, “Diode-pumped Nd:YVO4 laser passively Q-switched with graphene oxide spin coated on ITO substrate,” Laser Phys. 22(4), 673–677 (2012).
[Crossref]

Maruyama, S.

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
[Crossref]

Mary, R.

Menyuk, C. R.

I. N. Duling, C. J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
[Crossref]

Milana, S.

Minelly, J. D.

Muhammad, F. D.

H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene-oxide-based saturable absorber for all-fiber Q-switching with a simple optical deposition technique,” IEEE Photonics J. 4(6), 2205–2213 (2012).
[Crossref]

Nie, Y.

Z. Zhang, Z. Ye, M. Sang, and Y. Nie, “Passively mode‐locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5(5), 364–366 (2008).
[Crossref]

Ohara, S.

Okhotnikov, O. G.

Paterno, A. S.

J. C. Graf, S. A. Teston, P. V. de Barba, J. Dallmann, J. A. S. Lima, H. J. Kalinowski, and A. S. Paterno, “Fiber taper rig using a simplified heat source and the flame-brush technique,” in International Microwave and Optoelectronics Conference (IMOC 2009) 621–624.
[Crossref]

Payne, D. N.

Popa, D.

Porta, J.

Qu, B.

Richardson, D. J.

Rusu, M.

Sang, M.

Z. Zhang, Z. Ye, M. Sang, and Y. Nie, “Passively mode‐locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5(5), 364–366 (2008).
[Crossref]

Smith, K.

Song, Y.

M. Jung, J. Koo, Y. Chang, P. Debnath, Y. Song, and J. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9(9), 669–673 (2012).
[Crossref]

Song, Y. J.

Y. J. Song, L. Zhan, J. H. Ji, and Y. X. Xia, “All-fiber passively Q-switched laser by a symmetrical nonlinear optical loop mirror with nonlinear polarization rotation,” in European Conference on Optical Communication2005629–630.
[Crossref]

Song, Y. W.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10(3), 035103 (2013).
[Crossref]

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
[Crossref]

Stentz, A. J.

Sun, Z.

Teston, S. A.

J. C. Graf, S. A. Teston, P. V. de Barba, J. Dallmann, J. A. S. Lima, H. J. Kalinowski, and A. S. Paterno, “Fiber taper rig using a simplified heat source and the flame-brush technique,” in International Microwave and Optoelectronics Conference (IMOC 2009) 621–624.
[Crossref]

Torrisi, F.

Wai, P. K. A.

I. N. Duling, C. J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
[Crossref]

Wang, F.

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98(7), 073106 (2011).
[Crossref]

Wang, X.

X. Li, G. Li, S. Zhao, X. Wang, L. Yin, H. Huang, and X. Ma, “Diode-pumped Nd:YVO4 laser passively Q-switched with graphene oxide spin coated on ITO substrate,” Laser Phys. 22(4), 673–677 (2012).
[Crossref]

Wigley, P. G.

Wood, D.

Wu, D.

Xia, Y. X.

Y. J. Song, L. Zhan, J. H. Ji, and Y. X. Xia, “All-fiber passively Q-switched laser by a symmetrical nonlinear optical loop mirror with nonlinear polarization rotation,” in European Conference on Optical Communication2005629–630.
[Crossref]

Yamashita, S.

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
[Crossref]

Ye, C.

Ye, Z.

Z. Zhang, Z. Ye, M. Sang, and Y. Nie, “Passively mode‐locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5(5), 364–366 (2008).
[Crossref]

Yin, L.

X. Li, G. Li, S. Zhao, X. Wang, L. Yin, H. Huang, and X. Ma, “Diode-pumped Nd:YVO4 laser passively Q-switched with graphene oxide spin coated on ITO substrate,” Laser Phys. 22(4), 673–677 (2012).
[Crossref]

Zhan, L.

Y. J. Song, L. Zhan, J. H. Ji, and Y. X. Xia, “All-fiber passively Q-switched laser by a symmetrical nonlinear optical loop mirror with nonlinear polarization rotation,” in European Conference on Optical Communication2005629–630.
[Crossref]

Zhang, Z.

Z. Zhang, Z. Ye, M. Sang, and Y. Nie, “Passively mode‐locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5(5), 364–366 (2008).
[Crossref]

Zhao, S.

X. Li, G. Li, S. Zhao, X. Wang, L. Yin, H. Huang, and X. Ma, “Diode-pumped Nd:YVO4 laser passively Q-switched with graphene oxide spin coated on ITO substrate,” Laser Phys. 22(4), 673–677 (2012).
[Crossref]

Zheng, Y.

Zulkifli, M. Z.

H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene-oxide-based saturable absorber for all-fiber Q-switching with a simple optical deposition technique,” IEEE Photonics J. 4(6), 2205–2213 (2012).
[Crossref]

Appl. Phys. Lett. (2)

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
[Crossref]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98(7), 073106 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

I. N. Duling, C. J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
[Crossref]

IEEE Photonics J. (1)

H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene-oxide-based saturable absorber for all-fiber Q-switching with a simple optical deposition technique,” IEEE Photonics J. 4(6), 2205–2213 (2012).
[Crossref]

Laser Phys. (1)

X. Li, G. Li, S. Zhao, X. Wang, L. Yin, H. Huang, and X. Ma, “Diode-pumped Nd:YVO4 laser passively Q-switched with graphene oxide spin coated on ITO substrate,” Laser Phys. 22(4), 673–677 (2012).
[Crossref]

Laser Phys. Lett. (3)

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10(3), 035103 (2013).
[Crossref]

Z. Zhang, Z. Ye, M. Sang, and Y. Nie, “Passively mode‐locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5(5), 364–366 (2008).
[Crossref]

M. Jung, J. Koo, Y. Chang, P. Debnath, Y. Song, and J. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9(9), 669–673 (2012).
[Crossref]

Opt. Commun. (1)

A. F. El-Sherif and T. A. King, “High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator,” Opt. Commun. 218(4–6), 337–344 (2003).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Other (9)

F. Wang, F. Torrisi, Z. Jiang, D. Popa, T. Hasan, Z. Sun, W. Cho, and A. C. Ferrari, “Graphene passively Q-switched two-micron fiber lasers,” in Conference on Lasers and Electro-Optics 2012(Optical Society of America, San Jose, California, 2012), p. JW2A.72.
[Crossref]

J. C. Graf, S. A. Teston, P. V. de Barba, J. Dallmann, J. A. S. Lima, H. J. Kalinowski, and A. S. Paterno, “Fiber taper rig using a simplified heat source and the flame-brush technique,” in International Microwave and Optoelectronics Conference (IMOC 2009) 621–624.
[Crossref]

L. Feng, F. Xinhuan, and P. K. A. Wai, “Tunable multiwavelength erbium-doped fiber ring laser with intensity-dependent loss,” in OptoeElectronics and Communications Conference (OECC), 2010 15th(2010), pp. 646–647.

S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, M. Tokomuto, H. Kataura, Y. Achiba, and K. Kikuchi, “A dual-regime mode-locked/Q-switched laser using a saturable absorber incorporating carbon nanotubes (SAINT),” in Lasers and Electro-Optics, 2003. CLEO '03. Conference on (2003), p. 3pp.

R. Mary, S. J. Beecher, G. Brown, Z. Sun, D. Popa, T. Hasan, A. C. Ferrari, S. Ohara, and A. K. Kar, “Q-switched modelocking using carbon nanotubes in an ultrafast laser inscribed ytterbium doped bismuthate glass waveguide laser,“ in International Conference on Fibre Optics and Photonics(Optical Society of America, Chennai, 2012), p. T3B.3.
[Crossref]

Y. J. Song, L. Zhan, J. H. Ji, and Y. X. Xia, “All-fiber passively Q-switched laser by a symmetrical nonlinear optical loop mirror with nonlinear polarization rotation,” in European Conference on Optical Communication2005629–630.
[Crossref]

G. P. Agrawal, Nonlinear fiber optics (Springer, 2000).

A. F. Evans, “Dispersion-tapered fiber in nonlinear loop mirrors for intensity and pulse width switching,” in European Conference on Optical Communication (ECOC 1996) 4 27–30.

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup with symmetrical NOLM.
Fig. 2
Fig. 2 The DDTF used to create the NOLM switching device (a) Slow transition phase section of decreasing cross-section, (b) core size of 4 μm.
Fig. 3
Fig. 3 (a) 14.22 kHz repetition rate with 23 mW pump power, (b) 48.7 kHz repetition rate with 96 mW pump power.
Fig. 4
Fig. 4 FWHM of 3.2 μs for the 48.7 kHz repetition rate.
Fig. 5
Fig. 5 Variation of repetition rate with pump power.
Fig. 6
Fig. 6 (a) Laser output power versus pump power, (b) Pulse duration versus pump power.
Fig. 7
Fig. 7 Dual wavelength output from the OSA.

Metrics