Abstract

A transparent reconfigurable optical interleaver module composed of cascaded AWGs-based wavelength-channel-selector/interleaver monolithically integrated with multimode interference (MMI) variable optical attenuators (VOAs) and Mach-Zehnder interferometer (MZI) switch arrays was designed and fabricated using polymer photonic lightwave circuits. Highly fluorinated photopolymer and grafting modified organic-inorganic hybrid material were synthesized as the waveguide core and caldding, respectively. Thermo-optic (TO) tunable wavelength transfer matrix (WTM) function of the module can be achieved for optical routing network. The one-chip transmission loss is ~6dB and crosstalk is less than ~25 dB for transverse-magnetic (TM) mode. The crosstalk and extinction ratio of the MMI VOAs were measured as −15.2 dB and 17.5 dB with driving current 8 mA, respectively. The modulation depth of the TO switches is obtained as ~18.2 dB with 2.2 V bias. Proposed novel interleaver module could be well suited for DWDM optical communication systems.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monolithic multi-functional integration of ROADM modules based on polymer photonic lightwave circuit

Changming Chen, Xiaoyan Niu, Chao Han, Zuosen Shi, Xinbin Wang, Xiaoqiang Sun, Fei Wang, Zhanchen Cui, and Daming Zhang
Opt. Express 22(9) 10716-10727 (2014)

Fluorinated photopolymer cascaded MMI-based integrated optical waveguide switching matrix with encoding functions

Ru Cheng, Daming Zhang, Jihou Wang, Chunxue Wang, Fengli Gao, Xiaoqiang Sun, Zuosen Shi, Zhanchen Cui, and Changming Chen
Opt. Express 27(9) 12883-12898 (2019)

Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI

Junfeng Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong
Opt. Express 16(26) 21476-21482 (2008)

References

  • View by:
  • |
  • |
  • |

  1. Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “A Y-junction polymer optical waveguide interleaver,” J. Chem. Phys. Opt. Commun. 267, 373–378 (2006).
  2. J. C. Ng, C. B. Li, P. R. Herman, and L. Qian, “Femtosecond laser writing of a flat-top interleaver via cascaded Mach-Zehnder interferometers,” Opt. Express 20(16), 17894–17903 (2012).
    [Crossref] [PubMed]
  3. L. M. Zhuang, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express 21(3), 3114–3124 (2013).
    [Crossref] [PubMed]
  4. Q. Wu, H. P. Chan, P. L. Chu, D. P. Hand, and C. X. Yu, “Analysis of a Y-junction optical waveguide interleaver,” Opt. Commun. 281(15-16), 4014–4018 (2008).
    [Crossref]
  5. M. Y. Sander, S. Frolov, J. Shmulovich, E. P. Ippen, and F. X. Kärtner, “10 GHz femtosecond pulse interleaver in planar waveguide technology,” Opt. Express 20(4), 4102–4113 (2012).
    [Crossref] [PubMed]
  6. J. T. Ahn, S. Park, J. Y. Do, J. M. Lee, M. H. Lee, and K. H. Kim, “Polymer Wavelength Channel Selector Composed of Electrooptic Polymer Switch Array and Two Polymer Arrayed Waveguide Gratings,” IEEE Photon. Technol. Lett. 16(6), 1567–1569 (2004).
    [Crossref]
  7. W. Y. Chan, K. X. Chen, H. P. Chan, B. P. Pal, and R. K. Varshney, “A flattop PLC polymer waveguide interleaver based on folded two-stage-cascaded Y-junction Mach–Zehnder interferometers,” Opt. Commun. 282(5), 883–886 (2009).
    [Crossref]
  8. M. Gad, J. Ackert, D. Yevick, L. Chrostowski, and P. E. Jessop, “Ring Resonator Wavelength Division Multiplexing Interleaver,” J. Lightwave Technol. 29(14), 2102–2109 (2011).
    [Crossref]
  9. J. X. Li and K. X. Chen, “An Interleaver with arbitrary passband width ratio based on hybrid structure of microring and Mach–Zehnder interferometer,” J. Lightwave Technol. 31(10), 1538–1543 (2013).
    [Crossref]
  10. M. Smit, J. V. D. Tol, and M. Hill, “Moore’s law in photonics,” Laser Photonics Rev. 6(1), 1–13 (2012).
    [Crossref]
  11. C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev. 6(4), 419–462 (2012).
    [Crossref]
  12. J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-Optical Enhanced Silicon Wire Interleavers,” IEEE Photon. Technol. Lett. 20(24), 2165–2167 (2008).
    [Crossref]
  13. D. X. Dai, J. Bauter, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl. 1(3), e1 (2012), doi:.
    [Crossref]
  14. F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP Monolithically Integrated Unicast and Multicast Wavelength Converter,” IEEE Photon. Technol. Lett 25(22), 2178–2181 (2013).
    [Crossref]
  15. N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
    [Crossref] [PubMed]
  16. N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Monolithically Integrated All-Optical Regenerator for Constant Envelope WDM Signals,” J. Lightwave Technol. 31(2), 322–327 (2013).
    [Crossref]
  17. F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional Current-Controlled InP Photonic Integrated Delay Interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
    [Crossref]
  18. S. C. Nicholes, M. L. Masanovic, B. Jevremovic, E. Lively, L. A. Coldren, and D. J. Blumenthal, “An 8×8 InP monolithic tunable optical router (motor) packet forwarding chip,” J. Lightwave Technol. 28(4), 641–650 (2010).
    [Crossref]
  19. D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
    [Crossref]
  20. J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Y. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-Integrated Polarization Diverse Coherent Receiver Based on Polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
    [Crossref]
  21. T. Gorman, S. Haxha, and J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” J. Lightwave Technol. 27(1), 68–76 (2009).
    [Crossref]
  22. R. Z. Li, T. Zhang, Y. Yu, Y. J. Jiang, X. Y. Zhang, and L. D. Wang, “Physical Flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
    [Crossref]
  23. C. M. Chen, F. Zhang, H. Wang, X. Q. Sun, F. Wang, Z. C. Cui, and D. M. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
    [Crossref]
  24. L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
    [Crossref] [PubMed]
  25. C. M. Chen, X. Q. Sun, F. Wang, F. Zhang, H. Wang, Z. S. Shi, Z. C. Cui, and D. M. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
    [Crossref]
  26. G. H. Hu, Y. P. Cui, B. F. Yun, C. G. Lu, and Z. Y. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
    [Crossref]
  27. Y. Wan, X. Fei, Z. S. Shi, J. Hu, X. L. Zhang, L. S. Zhao, C. M. Chen, Z. C. Cui, and D. M. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
  28. C. M. Chen, C. Han, L. Wang, H. X. Zhang, X. Q. Sun, F. Wang, and D. M. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
    [Crossref]
  29. K. Oguchi, “New notations based on the wavelength transfer matrix for functional analysis of wavelength circuits and new WDM networks using AWG-based star coupler with asymmetric characteristics,” J. Lightwave Technol. 14(6), 1255–1263 (1996).
    [Crossref]
  30. X. L. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 x 2 polymer waveguide switch array,” Appl. Opt. 46(3), 379–383 (2007).
    [Crossref] [PubMed]
  31. K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
    [Crossref]
  32. S. Tomofuji, S. Matsuo, T. Kakitsuka, and K. Kitayama, “Dynamic switching characteristics of InGaAsP/InP multimode interference optical waveguide switch,” Opt. Express 17(26), 23380–23388 (2009).
    [Crossref] [PubMed]

2014 (1)

R. Z. Li, T. Zhang, Y. Yu, Y. J. Jiang, X. Y. Zhang, and L. D. Wang, “Physical Flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[Crossref]

2013 (6)

2012 (8)

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional Current-Controlled InP Photonic Integrated Delay Interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[Crossref]

M. Smit, J. V. D. Tol, and M. Hill, “Moore’s law in photonics,” Laser Photonics Rev. 6(1), 1–13 (2012).
[Crossref]

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev. 6(4), 419–462 (2012).
[Crossref]

J. C. Ng, C. B. Li, P. R. Herman, and L. Qian, “Femtosecond laser writing of a flat-top interleaver via cascaded Mach-Zehnder interferometers,” Opt. Express 20(16), 17894–17903 (2012).
[Crossref] [PubMed]

M. Y. Sander, S. Frolov, J. Shmulovich, E. P. Ippen, and F. X. Kärtner, “10 GHz femtosecond pulse interleaver in planar waveguide technology,” Opt. Express 20(4), 4102–4113 (2012).
[Crossref] [PubMed]

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Y. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-Integrated Polarization Diverse Coherent Receiver Based on Polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

C. M. Chen, X. Q. Sun, F. Wang, F. Zhang, H. Wang, Z. S. Shi, Z. C. Cui, and D. M. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

D. X. Dai, J. Bauter, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl. 1(3), e1 (2012), doi:.
[Crossref]

2011 (4)

Y. Wan, X. Fei, Z. S. Shi, J. Hu, X. L. Zhang, L. S. Zhao, C. M. Chen, Z. C. Cui, and D. M. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).

C. M. Chen, F. Zhang, H. Wang, X. Q. Sun, F. Wang, Z. C. Cui, and D. M. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

M. Gad, J. Ackert, D. Yevick, L. Chrostowski, and P. E. Jessop, “Ring Resonator Wavelength Division Multiplexing Interleaver,” J. Lightwave Technol. 29(14), 2102–2109 (2011).
[Crossref]

2010 (2)

S. C. Nicholes, M. L. Masanovic, B. Jevremovic, E. Lively, L. A. Coldren, and D. J. Blumenthal, “An 8×8 InP monolithic tunable optical router (motor) packet forwarding chip,” J. Lightwave Technol. 28(4), 641–650 (2010).
[Crossref]

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (2)

Q. Wu, H. P. Chan, P. L. Chu, D. P. Hand, and C. X. Yu, “Analysis of a Y-junction optical waveguide interleaver,” Opt. Commun. 281(15-16), 4014–4018 (2008).
[Crossref]

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-Optical Enhanced Silicon Wire Interleavers,” IEEE Photon. Technol. Lett. 20(24), 2165–2167 (2008).
[Crossref]

2007 (3)

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

X. L. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 x 2 polymer waveguide switch array,” Appl. Opt. 46(3), 379–383 (2007).
[Crossref] [PubMed]

G. H. Hu, Y. P. Cui, B. F. Yun, C. G. Lu, and Z. Y. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[Crossref]

2006 (1)

Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “A Y-junction polymer optical waveguide interleaver,” J. Chem. Phys. Opt. Commun. 267, 373–378 (2006).

2004 (1)

J. T. Ahn, S. Park, J. Y. Do, J. M. Lee, M. H. Lee, and K. H. Kim, “Polymer Wavelength Channel Selector Composed of Electrooptic Polymer Switch Array and Two Polymer Arrayed Waveguide Gratings,” IEEE Photon. Technol. Lett. 16(6), 1567–1569 (2004).
[Crossref]

1996 (1)

K. Oguchi, “New notations based on the wavelength transfer matrix for functional analysis of wavelength circuits and new WDM networks using AWG-based star coupler with asymmetric characteristics,” J. Lightwave Technol. 14(6), 1255–1263 (1996).
[Crossref]

Ackert, J.

Ahn, J. T.

J. T. Ahn, S. Park, J. Y. Do, J. M. Lee, M. H. Lee, and K. H. Kim, “Polymer Wavelength Channel Selector Composed of Electrooptic Polymer Switch Array and Two Polymer Arrayed Waveguide Gratings,” IEEE Photon. Technol. Lett. 16(6), 1567–1569 (2004).
[Crossref]

Andriolli, N.

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP Monolithically Integrated Unicast and Multicast Wavelength Converter,” IEEE Photon. Technol. Lett 25(22), 2178–2181 (2013).
[Crossref]

N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Monolithically Integrated All-Optical Regenerator for Constant Envelope WDM Signals,” J. Lightwave Technol. 31(2), 322–327 (2013).
[Crossref]

N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[Crossref] [PubMed]

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional Current-Controlled InP Photonic Integrated Delay Interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[Crossref]

Back, J.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Bale, D. H.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

Bauter, J.

D. X. Dai, J. Bauter, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl. 1(3), e1 (2012), doi:.
[Crossref]

Beeker, W.

Blumenthal, D. J.

Bogoni, A.

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional Current-Controlled InP Photonic Integrated Delay Interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[Crossref]

Bolk, J.

N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Monolithically Integrated All-Optical Regenerator for Constant Envelope WDM Signals,” J. Lightwave Technol. 31(2), 322–327 (2013).
[Crossref]

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional Current-Controlled InP Photonic Integrated Delay Interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[Crossref]

Bontempi, F.

N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[Crossref] [PubMed]

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP Monolithically Integrated Unicast and Multicast Wavelength Converter,” IEEE Photon. Technol. Lett 25(22), 2178–2181 (2013).
[Crossref]

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional Current-Controlled InP Photonic Integrated Delay Interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[Crossref]

Bowers, J. E.

D. X. Dai, J. Bauter, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl. 1(3), e1 (2012), doi:.
[Crossref]

Chan, H. P.

W. Y. Chan, K. X. Chen, H. P. Chan, B. P. Pal, and R. K. Varshney, “A flattop PLC polymer waveguide interleaver based on folded two-stage-cascaded Y-junction Mach–Zehnder interferometers,” Opt. Commun. 282(5), 883–886 (2009).
[Crossref]

Q. Wu, H. P. Chan, P. L. Chu, D. P. Hand, and C. X. Yu, “Analysis of a Y-junction optical waveguide interleaver,” Opt. Commun. 281(15-16), 4014–4018 (2008).
[Crossref]

Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “A Y-junction polymer optical waveguide interleaver,” J. Chem. Phys. Opt. Commun. 267, 373–378 (2006).

Chan, W. Y.

W. Y. Chan, K. X. Chen, H. P. Chan, B. P. Pal, and R. K. Varshney, “A flattop PLC polymer waveguide interleaver based on folded two-stage-cascaded Y-junction Mach–Zehnder interferometers,” Opt. Commun. 282(5), 883–886 (2009).
[Crossref]

Chen, C. M.

C. M. Chen, C. Han, L. Wang, H. X. Zhang, X. Q. Sun, F. Wang, and D. M. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[Crossref]

C. M. Chen, X. Q. Sun, F. Wang, F. Zhang, H. Wang, Z. S. Shi, Z. C. Cui, and D. M. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

Y. Wan, X. Fei, Z. S. Shi, J. Hu, X. L. Zhang, L. S. Zhao, C. M. Chen, Z. C. Cui, and D. M. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).

C. M. Chen, F. Zhang, H. Wang, X. Q. Sun, F. Wang, Z. C. Cui, and D. M. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

Chen, K. X.

J. X. Li and K. X. Chen, “An Interleaver with arbitrary passband width ratio based on hybrid structure of microring and Mach–Zehnder interferometer,” J. Lightwave Technol. 31(10), 1538–1543 (2013).
[Crossref]

W. Y. Chan, K. X. Chen, H. P. Chan, B. P. Pal, and R. K. Varshney, “A flattop PLC polymer waveguide interleaver based on folded two-stage-cascaded Y-junction Mach–Zehnder interferometers,” Opt. Commun. 282(5), 883–886 (2009).
[Crossref]

Chen, M. Y.

Chen, R. T.

Chrostowski, L.

Chu, P. L.

Q. Wu, H. P. Chan, P. L. Chu, D. P. Hand, and C. X. Yu, “Analysis of a Y-junction optical waveguide interleaver,” Opt. Commun. 281(15-16), 4014–4018 (2008).
[Crossref]

Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “A Y-junction polymer optical waveguide interleaver,” J. Chem. Phys. Opt. Commun. 267, 373–378 (2006).

Coldren, L. A.

Contestabile, G.

N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Monolithically Integrated All-Optical Regenerator for Constant Envelope WDM Signals,” J. Lightwave Technol. 31(2), 322–327 (2013).
[Crossref]

N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[Crossref] [PubMed]

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP Monolithically Integrated Unicast and Multicast Wavelength Converter,” IEEE Photon. Technol. Lett 25(22), 2178–2181 (2013).
[Crossref]

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional Current-Controlled InP Photonic Integrated Delay Interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[Crossref]

Cui, Y. P.

G. H. Hu, Y. P. Cui, B. F. Yun, C. G. Lu, and Z. Y. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[Crossref]

Cui, Z. C.

C. M. Chen, X. Q. Sun, F. Wang, F. Zhang, H. Wang, Z. S. Shi, Z. C. Cui, and D. M. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

Y. Wan, X. Fei, Z. S. Shi, J. Hu, X. L. Zhang, L. S. Zhao, C. M. Chen, Z. C. Cui, and D. M. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).

C. M. Chen, F. Zhang, H. Wang, X. Q. Sun, F. Wang, Z. C. Cui, and D. M. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

Dai, D. X.

D. X. Dai, J. Bauter, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl. 1(3), e1 (2012), doi:.
[Crossref]

Dalton, L. R.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

Dentai, A. G.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Dereux, A.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

Do, J. Y.

J. T. Ahn, S. Park, J. Y. Do, J. M. Lee, M. H. Lee, and K. H. Kim, “Polymer Wavelength Channel Selector Composed of Electrooptic Polymer Switch Array and Two Polymer Arrayed Waveguide Gratings,” IEEE Photon. Technol. Lett. 16(6), 1567–1569 (2004).
[Crossref]

Dominic, V. G.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Evans, P. W.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Fang, Q.

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-Optical Enhanced Silicon Wire Interleavers,” IEEE Photon. Technol. Lett. 20(24), 2165–2167 (2008).
[Crossref]

Faralli, S.

Fei, X.

Y. Wan, X. Fei, Z. S. Shi, J. Hu, X. L. Zhang, L. S. Zhao, C. M. Chen, Z. C. Cui, and D. M. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).

Frolov, S.

Gad, M.

Gorman, T.

Grivas, C.

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev. 6(4), 419–462 (2012).
[Crossref]

Grote, N.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Y. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-Integrated Polarization Diverse Coherent Receiver Based on Polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Grubb, S. G.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Han, C.

C. M. Chen, C. Han, L. Wang, H. X. Zhang, X. Q. Sun, F. Wang, and D. M. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[Crossref]

Hand, D. P.

Q. Wu, H. P. Chan, P. L. Chu, D. P. Hand, and C. X. Yu, “Analysis of a Y-junction optical waveguide interleaver,” Opt. Commun. 281(15-16), 4014–4018 (2008).
[Crossref]

Hassan, K.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

Haxha, S.

Heideman, R.

Herman, P. R.

Hill, M.

M. Smit, J. V. D. Tol, and M. Hill, “Moore’s law in photonics,” Laser Photonics Rev. 6(1), 1–13 (2012).
[Crossref]

Howley, B.

Hu, G. H.

G. H. Hu, Y. P. Cui, B. F. Yun, C. G. Lu, and Z. Y. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[Crossref]

Hu, J.

Y. Wan, X. Fei, Z. S. Shi, J. Hu, X. L. Zhang, L. S. Zhao, C. M. Chen, Z. C. Cui, and D. M. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).

Hurtt, S. K.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Ippen, E. P.

Jessop, P. E.

Jevremovic, B.

Jiang, Y. J.

R. Z. Li, T. Zhang, Y. Yu, Y. J. Jiang, X. Y. Zhang, and L. D. Wang, “Physical Flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[Crossref]

Joyner, C. H.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Ju, J. J.

Kakitsuka, T.

Kärtner, F. X.

Kato, M.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Kauffman, M.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Keil, N.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Y. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-Integrated Polarization Diverse Coherent Receiver Based on Polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Kim, K. H.

J. T. Ahn, S. Park, J. Y. Do, J. M. Lee, M. H. Lee, and K. H. Kim, “Polymer Wavelength Channel Selector Composed of Electrooptic Polymer Switch Array and Two Polymer Arrayed Waveguide Gratings,” IEEE Photon. Technol. Lett. 16(6), 1567–1569 (2004).
[Crossref]

Kish, F. A.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Kitayama, K.

Kriezis, E. E.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

Kroh, M.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Y. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-Integrated Polarization Diverse Coherent Receiver Based on Polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Kwong, D. L.

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-Optical Enhanced Silicon Wire Interleavers,” IEEE Photon. Technol. Lett. 20(24), 2165–2167 (2008).
[Crossref]

Lambert, D. J. H.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Lee, J. M.

J. T. Ahn, S. Park, J. Y. Do, J. M. Lee, M. H. Lee, and K. H. Kim, “Polymer Wavelength Channel Selector Composed of Electrooptic Polymer Switch Array and Two Polymer Arrayed Waveguide Gratings,” IEEE Photon. Technol. Lett. 16(6), 1567–1569 (2004).
[Crossref]

Lee, M. H.

J. T. Ahn, S. Park, J. Y. Do, J. M. Lee, M. H. Lee, and K. H. Kim, “Polymer Wavelength Channel Selector Composed of Electrooptic Polymer Switch Array and Two Polymer Arrayed Waveguide Gratings,” IEEE Photon. Technol. Lett. 16(6), 1567–1569 (2004).
[Crossref]

Leijtens, X. J. M.

N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Monolithically Integrated All-Optical Regenerator for Constant Envelope WDM Signals,” J. Lightwave Technol. 31(2), 322–327 (2013).
[Crossref]

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional Current-Controlled InP Photonic Integrated Delay Interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[Crossref]

Leinse, A.

Li, C. B.

Li, J. X.

Li, R. Z.

R. Z. Li, T. Zhang, Y. Yu, Y. J. Jiang, X. Y. Zhang, and L. D. Wang, “Physical Flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[Crossref]

Liow, T. Y.

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-Optical Enhanced Silicon Wire Interleavers,” IEEE Photon. Technol. Lett. 20(24), 2165–2167 (2008).
[Crossref]

Lively, E.

Lo, G. Q.

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-Optical Enhanced Silicon Wire Interleavers,” IEEE Photon. Technol. Lett. 20(24), 2165–2167 (2008).
[Crossref]

Lu, C. G.

G. H. Hu, Y. P. Cui, B. F. Yun, C. G. Lu, and Z. Y. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[Crossref]

Markey, L.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

Masanovic, M. L.

Mathur, A.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Matiss, A.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Y. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-Integrated Polarization Diverse Coherent Receiver Based on Polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Matsuo, S.

Mehuys, D. G.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Melle, S.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Missey, M.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Mitchell, M. L.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Murthy, S.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Nagarajan, R.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Ng, J. C.

Nicholes, S. C.

Nilsson, A. C.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Oguchi, K.

K. Oguchi, “New notations based on the wavelength transfer matrix for functional analysis of wavelength circuits and new WDM networks using AWG-based star coupler with asymmetric characteristics,” J. Lightwave Technol. 14(6), 1255–1263 (1996).
[Crossref]

Pal, B. P.

W. Y. Chan, K. X. Chen, H. P. Chan, B. P. Pal, and R. K. Varshney, “A flattop PLC polymer waveguide interleaver based on folded two-stage-cascaded Y-junction Mach–Zehnder interferometers,” Opt. Commun. 282(5), 883–886 (2009).
[Crossref]

Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “A Y-junction polymer optical waveguide interleaver,” J. Chem. Phys. Opt. Commun. 267, 373–378 (2006).

Park, S.

J. T. Ahn, S. Park, J. Y. Do, J. M. Lee, M. H. Lee, and K. H. Kim, “Polymer Wavelength Channel Selector Composed of Electrooptic Polymer Switch Array and Two Polymer Arrayed Waveguide Gratings,” IEEE Photon. Technol. Lett. 16(6), 1567–1569 (2004).
[Crossref]

Perkins, D.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Pinna, S.

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional Current-Controlled InP Photonic Integrated Delay Interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[Crossref]

Pitilakis, A.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

Pleumeekers, J. L.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Pollnau, M.

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev. 6(4), 419–462 (2012).
[Crossref]

Qian, L.

Reffle, M.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Richter, T.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Y. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-Integrated Polarization Diverse Coherent Receiver Based on Polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Roeloffzen, C.

Salvatore, R. A.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Sander, M. Y.

Schneider, R. P.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Schubert, C.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Y. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-Integrated Polarization Diverse Coherent Receiver Based on Polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Shi, Z. S.

C. M. Chen, X. Q. Sun, F. Wang, F. Zhang, H. Wang, Z. S. Shi, Z. C. Cui, and D. M. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

Y. Wan, X. Fei, Z. S. Shi, J. Hu, X. L. Zhang, L. S. Zhao, C. M. Chen, Z. C. Cui, and D. M. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).

Shmulovich, J.

Smit, M.

M. Smit, J. V. D. Tol, and M. Hill, “Moore’s law in photonics,” Laser Photonics Rev. 6(1), 1–13 (2012).
[Crossref]

Song, J. F.

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-Optical Enhanced Silicon Wire Interleavers,” IEEE Photon. Technol. Lett. 20(24), 2165–2167 (2008).
[Crossref]

Steffan, A.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Y. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-Integrated Polarization Diverse Coherent Receiver Based on Polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Sullivan, P. A.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

Sun, X. Q.

C. M. Chen, C. Han, L. Wang, H. X. Zhang, X. Q. Sun, F. Wang, and D. M. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[Crossref]

C. M. Chen, X. Q. Sun, F. Wang, F. Zhang, H. Wang, Z. S. Shi, Z. C. Cui, and D. M. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

C. M. Chen, F. Zhang, H. Wang, X. Q. Sun, F. Wang, Z. C. Cui, and D. M. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

Tao, S. H.

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-Optical Enhanced Silicon Wire Interleavers,” IEEE Photon. Technol. Lett. 20(24), 2165–2167 (2008).
[Crossref]

Theurer, A.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Y. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-Integrated Polarization Diverse Coherent Receiver Based on Polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Tol, J. V. D.

M. Smit, J. V. D. Tol, and M. Hill, “Moore’s law in photonics,” Laser Photonics Rev. 6(1), 1–13 (2012).
[Crossref]

Tomofuji, S.

Tsilipakos, O.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

van Dijk, P.

Van Leeuwen, M. F.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Varshney, R. K.

W. Y. Chan, K. X. Chen, H. P. Chan, B. P. Pal, and R. K. Varshney, “A flattop PLC polymer waveguide interleaver based on folded two-stage-cascaded Y-junction Mach–Zehnder interferometers,” Opt. Commun. 282(5), 883–886 (2009).
[Crossref]

Wan, Y.

Y. Wan, X. Fei, Z. S. Shi, J. Hu, X. L. Zhang, L. S. Zhao, C. M. Chen, Z. C. Cui, and D. M. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).

Wang, F.

C. M. Chen, C. Han, L. Wang, H. X. Zhang, X. Q. Sun, F. Wang, and D. M. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[Crossref]

C. M. Chen, X. Q. Sun, F. Wang, F. Zhang, H. Wang, Z. S. Shi, Z. C. Cui, and D. M. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

C. M. Chen, F. Zhang, H. Wang, X. Q. Sun, F. Wang, Z. C. Cui, and D. M. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

Wang, H.

C. M. Chen, X. Q. Sun, F. Wang, F. Zhang, H. Wang, Z. S. Shi, Z. C. Cui, and D. M. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

C. M. Chen, F. Zhang, H. Wang, X. Q. Sun, F. Wang, Z. C. Cui, and D. M. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

Wang, J.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Y. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-Integrated Polarization Diverse Coherent Receiver Based on Polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Wang, L.

C. M. Chen, C. Han, L. Wang, H. X. Zhang, X. Q. Sun, F. Wang, and D. M. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[Crossref]

Wang, L. D.

R. Z. Li, T. Zhang, Y. Yu, Y. J. Jiang, X. Y. Zhang, and L. D. Wang, “Physical Flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[Crossref]

Wang, X. L.

Wang, Z. Y.

G. H. Hu, Y. P. Cui, B. F. Yun, C. G. Lu, and Z. Y. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[Crossref]

Webjorn, J.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Weeber, J.-C.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

Welch, D. F.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Wu, Q.

Q. Wu, H. P. Chan, P. L. Chu, D. P. Hand, and C. X. Yu, “Analysis of a Y-junction optical waveguide interleaver,” Opt. Commun. 281(15-16), 4014–4018 (2008).
[Crossref]

Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “A Y-junction polymer optical waveguide interleaver,” J. Chem. Phys. Opt. Commun. 267, 373–378 (2006).

Yevick, D.

Yu, C. X.

Q. Wu, H. P. Chan, P. L. Chu, D. P. Hand, and C. X. Yu, “Analysis of a Y-junction optical waveguide interleaver,” Opt. Commun. 281(15-16), 4014–4018 (2008).
[Crossref]

Yu, M. B.

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-Optical Enhanced Silicon Wire Interleavers,” IEEE Photon. Technol. Lett. 20(24), 2165–2167 (2008).
[Crossref]

Yu, Y.

R. Z. Li, T. Zhang, Y. Yu, Y. J. Jiang, X. Y. Zhang, and L. D. Wang, “Physical Flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[Crossref]

Yun, B. F.

G. H. Hu, Y. P. Cui, B. F. Yun, C. G. Lu, and Z. Y. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[Crossref]

Zawadzki, C.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Y. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-Integrated Polarization Diverse Coherent Receiver Based on Polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Zhang, D. M.

C. M. Chen, C. Han, L. Wang, H. X. Zhang, X. Q. Sun, F. Wang, and D. M. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[Crossref]

C. M. Chen, X. Q. Sun, F. Wang, F. Zhang, H. Wang, Z. S. Shi, Z. C. Cui, and D. M. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

Y. Wan, X. Fei, Z. S. Shi, J. Hu, X. L. Zhang, L. S. Zhao, C. M. Chen, Z. C. Cui, and D. M. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).

C. M. Chen, F. Zhang, H. Wang, X. Q. Sun, F. Wang, Z. C. Cui, and D. M. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

Zhang, F.

C. M. Chen, X. Q. Sun, F. Wang, F. Zhang, H. Wang, Z. S. Shi, Z. C. Cui, and D. M. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

C. M. Chen, F. Zhang, H. Wang, X. Q. Sun, F. Wang, Z. C. Cui, and D. M. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

Zhang, H. X.

C. M. Chen, C. Han, L. Wang, H. X. Zhang, X. Q. Sun, F. Wang, and D. M. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[Crossref]

Zhang, T.

R. Z. Li, T. Zhang, Y. Yu, Y. J. Jiang, X. Y. Zhang, and L. D. Wang, “Physical Flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[Crossref]

Zhang, X. L.

Y. Wan, X. Fei, Z. S. Shi, J. Hu, X. L. Zhang, L. S. Zhao, C. M. Chen, Z. C. Cui, and D. M. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).

Zhang, X. Y.

R. Z. Li, T. Zhang, Y. Yu, Y. J. Jiang, X. Y. Zhang, and L. D. Wang, “Physical Flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[Crossref]

Zhang, Z. Y.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Y. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-Integrated Polarization Diverse Coherent Receiver Based on Polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Zhao, L. S.

Y. Wan, X. Fei, Z. S. Shi, J. Hu, X. L. Zhang, L. S. Zhao, C. M. Chen, Z. C. Cui, and D. M. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).

Zhuang, L. M.

Ziari, M.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

Chem. Rev. (1)

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (4)

C. M. Chen, X. Q. Sun, F. Wang, F. Zhang, H. Wang, Z. S. Shi, Z. C. Cui, and D. M. Zhang, “Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

C. M. Chen, F. Zhang, H. Wang, X. Q. Sun, F. Wang, Z. C. Cui, and D. M. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

C. M. Chen, C. Han, L. Wang, H. X. Zhang, X. Q. Sun, F. Wang, and D. M. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[Crossref]

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional Current-Controlled InP Photonic Integrated Delay Interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007).
[Crossref]

IEEE Photon. Technol. Lett (1)

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP Monolithically Integrated Unicast and Multicast Wavelength Converter,” IEEE Photon. Technol. Lett 25(22), 2178–2181 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (3)

J. T. Ahn, S. Park, J. Y. Do, J. M. Lee, M. H. Lee, and K. H. Kim, “Polymer Wavelength Channel Selector Composed of Electrooptic Polymer Switch Array and Two Polymer Arrayed Waveguide Gratings,” IEEE Photon. Technol. Lett. 16(6), 1567–1569 (2004).
[Crossref]

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-Optical Enhanced Silicon Wire Interleavers,” IEEE Photon. Technol. Lett. 20(24), 2165–2167 (2008).
[Crossref]

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Y. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-Integrated Polarization Diverse Coherent Receiver Based on Polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

J. Chem. Phys. Opt. Commun. (1)

Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “A Y-junction polymer optical waveguide interleaver,” J. Chem. Phys. Opt. Commun. 267, 373–378 (2006).

J. Lightwave Technol. (6)

J. Polym. Sci. A Polym. Chem. (1)

Y. Wan, X. Fei, Z. S. Shi, J. Hu, X. L. Zhang, L. S. Zhao, C. M. Chen, Z. C. Cui, and D. M. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).

Laser Photonics Rev. (2)

M. Smit, J. V. D. Tol, and M. Hill, “Moore’s law in photonics,” Laser Photonics Rev. 6(1), 1–13 (2012).
[Crossref]

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev. 6(4), 419–462 (2012).
[Crossref]

Light: Sci. Appl. (1)

D. X. Dai, J. Bauter, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl. 1(3), e1 (2012), doi:.
[Crossref]

Opt. Commun. (3)

W. Y. Chan, K. X. Chen, H. P. Chan, B. P. Pal, and R. K. Varshney, “A flattop PLC polymer waveguide interleaver based on folded two-stage-cascaded Y-junction Mach–Zehnder interferometers,” Opt. Commun. 282(5), 883–886 (2009).
[Crossref]

Q. Wu, H. P. Chan, P. L. Chu, D. P. Hand, and C. X. Yu, “Analysis of a Y-junction optical waveguide interleaver,” Opt. Commun. 281(15-16), 4014–4018 (2008).
[Crossref]

G. H. Hu, Y. P. Cui, B. F. Yun, C. G. Lu, and Z. Y. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[Crossref]

Opt. Express (5)

Sens. Actuators A Phys. (1)

R. Z. Li, T. Zhang, Y. Yu, Y. J. Jiang, X. Y. Zhang, and L. D. Wang, “Physical Flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic diagram of the monolithically multi-functional integrated interleaver module.
Fig. 2
Fig. 2 The operating principle and schematic configuration of the first-stage AWG selector (a) input WTM N and output WTM M; (b) input WTM N and variable WTM M’ with TO tuning effect.
Fig. 3
Fig. 3 Output wavelength transmission spectral of output wavelength matrix M (a) as the first column vector and (b) as the second column vector.
Fig. 4
Fig. 4 Output wavelength transmission spectral of output wavelength matrix M (a) as the third column vector and (b) as the fourth column vector.
Fig. 5
Fig. 5 The operating principle and schematic configuration of the last-stage AWG interleaver (a) input WTM M and output odd WTM Oodd; (b) input WTM M and even WTM Oeven with TO tuning effect.
Fig. 6
Fig. 6 The TO tuning conversion relationships between WTM Oodd and Oeven (a) as the first column vector; (b) as the second column vector.
Fig. 7
Fig. 7 The TO tuning conversion relationships between WTM Oodd and Oeven (a) as the third column vector; (b) as the fourth column vector.
Fig. 8
Fig. 8 Fabrication process for UV defined waveguide and electrode heater structure.
Fig. 9
Fig. 9 SEM photographs of (a) input and (b) transmission segment patterns of cross-sectional waveguides; (c) Y branchs and (d) output channel arrays.
Fig. 10
Fig. 10 The surface profiles of (a) MMI-VOA; (b) serpentine and (c) switch-arrayed electrode heaters ( × 500).
Fig. 11
Fig. 11 (a) Schematic photographs of the proposed polymer 4-channel integrated interleaver module measured. (b) Near-field guide-mode patterns of the device with signal light from a wide-band EDFA.
Fig. 12
Fig. 12 The actual output spectral response of the first-stage AWG-based selector from the output channel#0 with (a) ΔT = 0 and (b) ΔT = 17 K ; The actual output spectral response of the Last-stage AWG-based interleaver from the output channel#0 with (a) ΔT = 0 and (b) ΔT = 10 K.
Fig. 13
Fig. 13 Performances of MZI TO switch arrays. (a) TO switch responses measured by applying square-wave voltage at frequency of 100 Hz. (b) Actual channel output versus power consumption of optical switch at 1550 nm for TM mode.

Tables (1)

Tables Icon

Table 1 Design Parameters of the Polymer Cascaded AWGs

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δϕ2πm 2π n s d/λ =θ
Δϕ= 2π λ ( n c ΔL+jΔ n c Δ L e )
jΔx jΔ n c = RΔL n s d
λ i + N = λ i + F S R = λ i + N Δ λ
λ i j = λ = λ 0 + ( i + j ) Δ λ
M = I F N
M = I F N = [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ] [ δ 3 δ 4 δ 1 δ 2 δ 4 δ 1 δ 2 δ 3 δ 1 δ 2 δ 3 δ 4 δ 2 δ 3 δ 4 δ 1 ] [ A 1 + A 2 + A 3 + A 4 B 1 + B 2 + B 3 + B 4 C 1 + C 2 + C 3 + C 4 D 1 + D 2 + D 3 + D 4 ] = [ A 3 + B 4 + C 1 + D 2 A 4 + B 1 + C 2 + D 3 A 1 + B 2 + C 3 + D 4 A 2 + B 3 + C 4 + D 1 ]
T(x,y)= P π K h LW tan h 1 [ sinh( πy 2 L s ) cosh( πτ 2 L s ) ]dτ
M ' = I ' F N = [ 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 ] [ δ 3 δ 4 δ 1 δ 2 δ 4 δ 1 δ 2 δ 3 δ 1 δ 2 δ 3 δ 4 δ 2 δ 3 δ 4 δ 1 ] [ A 1 + A 2 + A 3 + A 4 B 1 + B 2 + B 3 + B 4 C 1 + C 2 + C 3 + C 4 D 1 + D 2 + D 3 + D 4 ] = [ A 4 + B 1 + C 2 + D 3 A 1 + B 2 + C 3 + D 4 A 2 + B 3 + C 4 + D 1 A 3 + B 4 + C 1 + D 2 ]
O o d d = F o d d ' M = [ 0 0 δ 1 δ 3 0 δ 1 δ 3 0 δ 1 δ 3 0 0 δ 3 0 0 δ 1 ] [ A 3 + B 4 + C 1 + D 2 A 4 + B 1 + C 2 + D 3 A 1 + B 2 + C 3 + D 4 A 2 + B 3 + C 4 + D 1 ] = [ 0 + 0 + A 1 + B 3 0 + B 1 + C 3 + 0 C 1 + D 3 + 0 + 0 A 3 + 0 + 0 + D 1 ]
O e v e n = F e v e n ' M = [ 0 0 δ 2 δ 4 0 δ 2 δ 4 0 δ 2 δ 4 0 0 δ 4 0 0 δ 2 ] [ A 3 + B 4 + C 1 + D 2 A 4 + B 1 + C 2 + D 3 A 1 + B 2 + C 3 + D 4 A 2 + B 3 + C 4 + D 1 ] = [ 0 + 0 + B 2 + C 4 0 + C 2 + D 4 + 0 D 2 + A 4 + 0 + 0 B 4 + 0 + 0 + A 2 ]

Metrics