M. Brunstein, A. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85, 1–5 (2012).

[Crossref]

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E 84, 1–8 (2011).

[Crossref]

K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, and P. Bienstman, “Parallel reservoir computing using optical amplifiers,” IEEE Trans. Neural Netw. 22, 1469–1481 (2011).

[Crossref]
[PubMed]

M. Fiers, T. Van Vaerenbergh, K. Caluwaerts, D. Vande Ginste, B. Schrauwen, J. Dambre, and P. Bienstman, “Time-domain and frequency-domain modeling of nonlinear optical components on circuit-level using a node-based approach,” J. Opt. Soc. Am. B 29, 896–900 (2011).

[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Time-domain and frequency-domain modeling of nonlinear optical components on circuit-level using a node-based approach,” Comp. Phys. Commun. 181, 687–702 (2010).

[Crossref]

W. H. P. Pernice, M. Li, and H. X. Tang, “Time-domain measurement of optical transport in silicon micro-ring resonators,” Opt. Express 18, 18438–18452 (2010).

[Crossref]
[PubMed]

A. Yacomotti, P. Monnier, F. Raineri, B. Bakir, C. Seassal, R. Raj, and J. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett. 97, 6–9 (2006).

[Crossref]

T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14, 817–831 (2006).

[Crossref]
[PubMed]

G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures,” Opt. Express 13, 9623–9628 (2005).

[Crossref]
[PubMed]

P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005).

[Crossref]
[PubMed]

W. Maass, T. Natschläger, and H. Markram, “Real-time computing without stable states: A new framework for neural computation based on perturbations,” Neural Comput. 14, 2531–2560 (2002).

[Crossref]
[PubMed]

A. Yacomotti, P. Monnier, F. Raineri, B. Bakir, C. Seassal, R. Raj, and J. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett. 97, 6–9 (2006).

[Crossref]

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E 84, 1–8 (2011).

[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Time-domain and frequency-domain modeling of nonlinear optical components on circuit-level using a node-based approach,” Comp. Phys. Commun. 181, 687–702 (2010).

[Crossref]

M. Fiers, T. Van Vaerenbergh, K. Caluwaerts, D. Vande Ginste, B. Schrauwen, J. Dambre, and P. Bienstman, “Time-domain and frequency-domain modeling of nonlinear optical components on circuit-level using a node-based approach,” J. Opt. Soc. Am. B 29, 896–900 (2011).

[Crossref]

K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, and P. Bienstman, “Parallel reservoir computing using optical amplifiers,” IEEE Trans. Neural Netw. 22, 1469–1481 (2011).

[Crossref]
[PubMed]

M. Brunstein, A. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85, 1–5 (2012).

[Crossref]

M. Brunstein, A. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85, 1–5 (2012).

[Crossref]

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E 84, 1–8 (2011).

[Crossref]

M. Fiers, T. Van Vaerenbergh, K. Caluwaerts, D. Vande Ginste, B. Schrauwen, J. Dambre, and P. Bienstman, “Time-domain and frequency-domain modeling of nonlinear optical components on circuit-level using a node-based approach,” J. Opt. Soc. Am. B 29, 896–900 (2011).

[Crossref]

K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, and P. Bienstman, “Parallel reservoir computing using optical amplifiers,” IEEE Trans. Neural Netw. 22, 1469–1481 (2011).

[Crossref]
[PubMed]

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E 84, 1–8 (2011).

[Crossref]

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E 84, 1–8 (2011).

[Crossref]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields, 2nd ed. (Springer-Verlag, 1983).

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields, 2nd ed. (Springer-Verlag, 1983).

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Time-domain and frequency-domain modeling of nonlinear optical components on circuit-level using a node-based approach,” Comp. Phys. Commun. 181, 687–702 (2010).

[Crossref]

E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Computational Neuroscience), 1st ed. (The MIT Press, 2006).

[PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Time-domain and frequency-domain modeling of nonlinear optical components on circuit-level using a node-based approach,” Comp. Phys. Commun. 181, 687–702 (2010).

[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Time-domain and frequency-domain modeling of nonlinear optical components on circuit-level using a node-based approach,” Comp. Phys. Commun. 181, 687–702 (2010).

[Crossref]

Q. Lin, T. J. Johnson, C. P. Michael, and O. Painter, “Adiabatic self-tuning in a silicon microdisk optical resonator,” Opt. Express 16, 14801–14811 (2008).

[Crossref]
[PubMed]

T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14, 817–831 (2006).

[Crossref]
[PubMed]

M. Brunstein, A. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85, 1–5 (2012).

[Crossref]

A. Yacomotti, P. Monnier, F. Raineri, B. Bakir, C. Seassal, R. Raj, and J. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett. 97, 6–9 (2006).

[Crossref]

W. Maass, T. Natschläger, and H. Markram, “Real-time computing without stable states: A new framework for neural computation based on perturbations,” Neural Comput. 14, 2531–2560 (2002).

[Crossref]
[PubMed]

W. Maass, T. Natschläger, and H. Markram, “Real-time computing without stable states: A new framework for neural computation based on perturbations,” Neural Comput. 14, 2531–2560 (2002).

[Crossref]
[PubMed]

A. Yacomotti, P. Monnier, F. Raineri, B. Bakir, C. Seassal, R. Raj, and J. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett. 97, 6–9 (2006).

[Crossref]

W. Maass, T. Natschläger, and H. Markram, “Real-time computing without stable states: A new framework for neural computation based on perturbations,” Neural Comput. 14, 2531–2560 (2002).

[Crossref]
[PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Time-domain and frequency-domain modeling of nonlinear optical components on circuit-level using a node-based approach,” Comp. Phys. Commun. 181, 687–702 (2010).

[Crossref]

Q. Lin, T. J. Johnson, C. P. Michael, and O. Painter, “Adiabatic self-tuning in a silicon microdisk optical resonator,” Opt. Express 16, 14801–14811 (2008).

[Crossref]
[PubMed]

T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14, 817–831 (2006).

[Crossref]
[PubMed]

P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005).

[Crossref]
[PubMed]

M. Brunstein, A. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85, 1–5 (2012).

[Crossref]

A. Yacomotti, P. Monnier, F. Raineri, B. Bakir, C. Seassal, R. Raj, and J. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett. 97, 6–9 (2006).

[Crossref]

A. Yacomotti, P. Monnier, F. Raineri, B. Bakir, C. Seassal, R. Raj, and J. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett. 97, 6–9 (2006).

[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Time-domain and frequency-domain modeling of nonlinear optical components on circuit-level using a node-based approach,” Comp. Phys. Commun. 181, 687–702 (2010).

[Crossref]

M. Brunstein, A. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85, 1–5 (2012).

[Crossref]

M. Fiers, T. Van Vaerenbergh, K. Caluwaerts, D. Vande Ginste, B. Schrauwen, J. Dambre, and P. Bienstman, “Time-domain and frequency-domain modeling of nonlinear optical components on circuit-level using a node-based approach,” J. Opt. Soc. Am. B 29, 896–900 (2011).

[Crossref]

K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, and P. Bienstman, “Parallel reservoir computing using optical amplifiers,” IEEE Trans. Neural Netw. 22, 1469–1481 (2011).

[Crossref]
[PubMed]

A. Yacomotti, P. Monnier, F. Raineri, B. Bakir, C. Seassal, R. Raj, and J. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett. 97, 6–9 (2006).

[Crossref]

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E 84, 1–8 (2011).

[Crossref]

K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, and P. Bienstman, “Parallel reservoir computing using optical amplifiers,” IEEE Trans. Neural Netw. 22, 1469–1481 (2011).

[Crossref]
[PubMed]

K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, and P. Bienstman, “Parallel reservoir computing using optical amplifiers,” IEEE Trans. Neural Netw. 22, 1469–1481 (2011).

[Crossref]
[PubMed]

M. Brunstein, A. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85, 1–5 (2012).

[Crossref]

A. Yacomotti, P. Monnier, F. Raineri, B. Bakir, C. Seassal, R. Raj, and J. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett. 97, 6–9 (2006).

[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Time-domain and frequency-domain modeling of nonlinear optical components on circuit-level using a node-based approach,” Comp. Phys. Commun. 181, 687–702 (2010).

[Crossref]

K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, and P. Bienstman, “Parallel reservoir computing using optical amplifiers,” IEEE Trans. Neural Netw. 22, 1469–1481 (2011).

[Crossref]
[PubMed]

W. Maass, T. Natschläger, and H. Markram, “Real-time computing without stable states: A new framework for neural computation based on perturbations,” Neural Comput. 14, 2531–2560 (2002).

[Crossref]
[PubMed]

P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005).

[Crossref]
[PubMed]

G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures,” Opt. Express 13, 9623–9628 (2005).

[Crossref]
[PubMed]

T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14, 817–831 (2006).

[Crossref]
[PubMed]

Q. Lin, T. J. Johnson, C. P. Michael, and O. Painter, “Adiabatic self-tuning in a silicon microdisk optical resonator,” Opt. Express 16, 14801–14811 (2008).

[Crossref]
[PubMed]

W. H. P. Pernice, M. Li, and H. X. Tang, “Time-domain measurement of optical transport in silicon micro-ring resonators,” Opt. Express 18, 18438–18452 (2010).

[Crossref]
[PubMed]

M. Brunstein, A. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85, 1–5 (2012).

[Crossref]

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E 84, 1–8 (2011).

[Crossref]

A. Yacomotti, P. Monnier, F. Raineri, B. Bakir, C. Seassal, R. Raj, and J. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett. 97, 6–9 (2006).

[Crossref]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields, 2nd ed. (Springer-Verlag, 1983).

R. H. Clewley, W. E. Sherwood, M. D. LaMar, and J. M. Guckenheimer“PyDSTool, a software environment for dynamical systems modeling,” http://pydstool.sourceforge.net , (2007).

E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Computational Neuroscience), 1st ed. (The MIT Press, 2006).

[PubMed]