Abstract

A novel wavefront measurement interferometer is developed that enables the user to evaluate the wavefronts of multi-wavelength optical pickups. In this interferometer, instead of transparent pinholes used in Mach-Zehnder interferometers, reflection dot pinhole mirrors are used to generate reference wavefronts for different wavelengths which make the optical system very flexible and simple compared with those using transparent pinholes. The interferometer is designed to operate at wavelengths of 405nm, 650nm and 780nm over an NA range of up to 0.95, which is very difficult to realize when transparent pinholes are used for generating reference wavefronts. The three-beam problem is solved and the optics of the interferometer is simplified by employing a software filter instead of using spatial filters in the optics of the interferometer. The instrument has an equal optical path length that enables the user to measure pickups with a very short coherence length. A new method by which asymmetric aberration components, such as astigmatic and coma aberrations, can be calibrated by rotating the measured lens with 90 and 180 degrees is proposed and the calibration results are verified by using a high precision reference point source. System accuracy is also evaluated by comparing with the measurement results obtained by commercial Fizeau type interferometer and a good agreement is achieved.

©2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interferometry with optical pickups

Franco Quercioli, Bruno Tiribilli, and Alessandro Bartoli
Opt. Lett. 24(10) 670-672 (1999)

Wavefront error measurement of high-numerical-aperture optics with a Shack-Hartmann sensor and a point source

Jin-Seok Lee, Ho-Soon Yang, and Jae-Won Hahn
Appl. Opt. 46(9) 1411-1415 (2007)

Aberration calibration in high-NA spherical surfaces measurement on point diffraction interferometry

Xiaoyu Chen, Yongying Yang, Chen Wang, Dong Liu, Jian Bai, and Yibing Shen
Appl. Opt. 54(13) 3877-3885 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Benno H. W. Hendriks, Jean Schleipen, Sjoerd Stallinga, and Henk van Houten, “Optical Pickup for blue optical recording at NA=0.85,” Opt.l Rev. 8, 211–213 (2001).
    [Crossref]
  2. Donald K. Cohen, Blake Little, and Frank S. Luecke, “Techniques for measuring 1-µm diameter Gaussian beams,” Appl. Opt. 23, 637–640 (1984).
    [Crossref] [PubMed]
  3. E. C. Broockman, L. D. Dickson, and R. S. Fortenberrgy, “Generalization of the Ronchi ruling method for measuring Gaussian beam diameter,” Opt. Eng. 22, 643–647 (1983).
  4. Yasuhiro Tanaka and Motonobu Yoshikawa, “Novel measuring technique of optical performance in objective lenses for optical disk systems,” Appl. Opt. 31, 5305–5311 (1992).
    [Crossref] [PubMed]
  5. J. -S. Lee, H. -S. Yang, and J. -W. Hahn, “Wavefront error measurement of high-numerical-aperture optics with a Shack-Hartmann sensor and a point source,” Appl. Opt. 46, 1411–1415 (2007).
    [Crossref] [PubMed]
  6. H. -S. Yang, J. -B. Song, I. -W. Lee, and Y. -W. Lee, “Testing of steep convex aspheric surface with a Hartmann sensor by using a CGH,” Opt. Express 14, 3247–3254 (2006).
    [Crossref] [PubMed]
  7. Timothy L. Pennington, Byron M. Welsh, and Michael C. Roggemann, “Performance Comparison of the Shearing interferometer and the Hartmann wavefront sensor,” Proc SPIE 2201, 508–518 (1994).
    [Crossref]
  8. W.-J. Cho and Seung-Woo Kim, “Stable lateral-shearing interferometer for production-line inspection of lenses,” Opt. Eng. 36, 896–900 (1997).
    [Crossref]
  9. D. Korwan, “Lateral-shearing interferogram analysis,” Proc. SPIE 0429, 194–198 (1983).
  10. R. N. Smartt and W. Stell, “Theory and application of point-diffraction interferometer,” Jpn. J. Appl. Phys. 14, 351–356 (1975).
  11. R. N. Smartt, “Special application of the point-diffraction interferometer,” Proc. SPIE 192, 35–40 (1979).
  12. B. E. Truax, “A phase measuring radial shear interferometer for measuring the wavefront of compact Disc laser pickups,” Proc. SPIE 661, 74–82 (1986).
  13. R. de la Fuente and E. López Lago, “Mach-Zehnder diffracted beam interferometer,” Opt. Express 15, 3876–3887 (2007).
    [Crossref] [PubMed]
  14. C. R. Mercer and K. Creath, “Liquid-crystal point-diffraction interferometer for wave-front measurements,” Appl. Opt. 35, 1633 (1996).
    [Crossref] [PubMed]
  15. M. Paturzo, F. Pignatiello, S. Grilli, S. De Nicola, and P. Ferraro, “Phase-shifting point-diffraction interferometer developed by using the electro-optic effect in ferroelectric crystals,” Opt. Lett. 31, 3597–3599 (2006).
    [Crossref] [PubMed]
  16. C. L. Koliopoulos, O. Kwon, R. Shagam, J. C. Wyant, and C. R. Hayslett, “Infrared point diffraction interferometer,” Opt. Lett. 3, 118- (1978).
    [Crossref] [PubMed]
  17. G. Harbers, P. J. Kunst, and G. W. R. Leibbrandt, “Analysis of lateral shearing interferograms by use of Zernike polynomials,” Appl. Opt. 35, 6162–6172 (1996).
    [Crossref] [PubMed]
  18. S. Okuda, T. Nomura, K. Kamiya, H. Miyashiro, K. Yoshikawa, and H. Tashiro, “High-Precision Analysis of a Lateral Shearing Interferogram by use of the Integration Method and Polynomials,” Appl. Opt. 39, 5179–5186 (2000).
    [Crossref]
  19. G. Schulz and J. Schwider, “Precise measurement of planeness,” Appl. Opt. 6, 1077 (1967).
    [Crossref] [PubMed]
  20. R. E. Parks, L. Shao, and C. J. Evans, “Pixel-Based Absolute Topography Test for Three Flats,” Appl. Opt. 37, 5951–5956 (1998).
    [Crossref]
  21. B. B. F. Oreb, D. I. Farrant, C. J. Walsh, G. Forbes, and P. S. Fairman, “Calibration of a 300-mm-Aperture Phase-Shifting Fizeau Interferometer,” Appl. Opt. 39, 5161–5171 (2000).
    [Crossref]
  22. M. Born and E. Wolf, Principles of Optics (Pergamon press, New York, 1980) p.470.

2007 (2)

2006 (2)

2001 (1)

Benno H. W. Hendriks, Jean Schleipen, Sjoerd Stallinga, and Henk van Houten, “Optical Pickup for blue optical recording at NA=0.85,” Opt.l Rev. 8, 211–213 (2001).
[Crossref]

2000 (2)

1998 (1)

1997 (1)

W.-J. Cho and Seung-Woo Kim, “Stable lateral-shearing interferometer for production-line inspection of lenses,” Opt. Eng. 36, 896–900 (1997).
[Crossref]

1996 (2)

1994 (1)

Timothy L. Pennington, Byron M. Welsh, and Michael C. Roggemann, “Performance Comparison of the Shearing interferometer and the Hartmann wavefront sensor,” Proc SPIE 2201, 508–518 (1994).
[Crossref]

1992 (1)

1986 (1)

B. E. Truax, “A phase measuring radial shear interferometer for measuring the wavefront of compact Disc laser pickups,” Proc. SPIE 661, 74–82 (1986).

1984 (1)

1983 (2)

E. C. Broockman, L. D. Dickson, and R. S. Fortenberrgy, “Generalization of the Ronchi ruling method for measuring Gaussian beam diameter,” Opt. Eng. 22, 643–647 (1983).

D. Korwan, “Lateral-shearing interferogram analysis,” Proc. SPIE 0429, 194–198 (1983).

1979 (1)

R. N. Smartt, “Special application of the point-diffraction interferometer,” Proc. SPIE 192, 35–40 (1979).

1978 (1)

1975 (1)

R. N. Smartt and W. Stell, “Theory and application of point-diffraction interferometer,” Jpn. J. Appl. Phys. 14, 351–356 (1975).

1967 (1)

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon press, New York, 1980) p.470.

Broockman, E. C.

E. C. Broockman, L. D. Dickson, and R. S. Fortenberrgy, “Generalization of the Ronchi ruling method for measuring Gaussian beam diameter,” Opt. Eng. 22, 643–647 (1983).

Cho, W.-J.

W.-J. Cho and Seung-Woo Kim, “Stable lateral-shearing interferometer for production-line inspection of lenses,” Opt. Eng. 36, 896–900 (1997).
[Crossref]

Cohen, Donald K.

Creath, K.

de la Fuente, R.

De Nicola, S.

Dickson, L. D.

E. C. Broockman, L. D. Dickson, and R. S. Fortenberrgy, “Generalization of the Ronchi ruling method for measuring Gaussian beam diameter,” Opt. Eng. 22, 643–647 (1983).

Evans, C. J.

Fairman, P. S.

Farrant, D. I.

Ferraro, P.

Forbes, G.

Fortenberrgy, R. S.

E. C. Broockman, L. D. Dickson, and R. S. Fortenberrgy, “Generalization of the Ronchi ruling method for measuring Gaussian beam diameter,” Opt. Eng. 22, 643–647 (1983).

Grilli, S.

Hahn, J. -W.

Harbers, G.

Hayslett, C. R.

Hendriks, Benno H. W.

Benno H. W. Hendriks, Jean Schleipen, Sjoerd Stallinga, and Henk van Houten, “Optical Pickup for blue optical recording at NA=0.85,” Opt.l Rev. 8, 211–213 (2001).
[Crossref]

Kamiya, K.

Kim, Seung-Woo

W.-J. Cho and Seung-Woo Kim, “Stable lateral-shearing interferometer for production-line inspection of lenses,” Opt. Eng. 36, 896–900 (1997).
[Crossref]

Koliopoulos, C. L.

Korwan, D.

D. Korwan, “Lateral-shearing interferogram analysis,” Proc. SPIE 0429, 194–198 (1983).

Kunst, P. J.

Kwon, O.

Lago, E. López

Lee, I. -W.

Lee, J. -S.

Lee, Y. -W.

Leibbrandt, G. W. R.

Little, Blake

Luecke, Frank S.

Mercer, C. R.

Miyashiro, H.

Nomura, T.

Okuda, S.

Oreb, B. B. F.

Parks, R. E.

Paturzo, M.

Pennington, Timothy L.

Timothy L. Pennington, Byron M. Welsh, and Michael C. Roggemann, “Performance Comparison of the Shearing interferometer and the Hartmann wavefront sensor,” Proc SPIE 2201, 508–518 (1994).
[Crossref]

Pignatiello, F.

Roggemann, Michael C.

Timothy L. Pennington, Byron M. Welsh, and Michael C. Roggemann, “Performance Comparison of the Shearing interferometer and the Hartmann wavefront sensor,” Proc SPIE 2201, 508–518 (1994).
[Crossref]

Schleipen, Jean

Benno H. W. Hendriks, Jean Schleipen, Sjoerd Stallinga, and Henk van Houten, “Optical Pickup for blue optical recording at NA=0.85,” Opt.l Rev. 8, 211–213 (2001).
[Crossref]

Schulz, G.

Schwider, J.

Shagam, R.

Shao, L.

Smartt, R. N.

R. N. Smartt, “Special application of the point-diffraction interferometer,” Proc. SPIE 192, 35–40 (1979).

R. N. Smartt and W. Stell, “Theory and application of point-diffraction interferometer,” Jpn. J. Appl. Phys. 14, 351–356 (1975).

Song, J. -B.

Stallinga, Sjoerd

Benno H. W. Hendriks, Jean Schleipen, Sjoerd Stallinga, and Henk van Houten, “Optical Pickup for blue optical recording at NA=0.85,” Opt.l Rev. 8, 211–213 (2001).
[Crossref]

Stell, W.

R. N. Smartt and W. Stell, “Theory and application of point-diffraction interferometer,” Jpn. J. Appl. Phys. 14, 351–356 (1975).

Tanaka, Yasuhiro

Tashiro, H.

Truax, B. E.

B. E. Truax, “A phase measuring radial shear interferometer for measuring the wavefront of compact Disc laser pickups,” Proc. SPIE 661, 74–82 (1986).

van Houten, Henk

Benno H. W. Hendriks, Jean Schleipen, Sjoerd Stallinga, and Henk van Houten, “Optical Pickup for blue optical recording at NA=0.85,” Opt.l Rev. 8, 211–213 (2001).
[Crossref]

Walsh, C. J.

Welsh, Byron M.

Timothy L. Pennington, Byron M. Welsh, and Michael C. Roggemann, “Performance Comparison of the Shearing interferometer and the Hartmann wavefront sensor,” Proc SPIE 2201, 508–518 (1994).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon press, New York, 1980) p.470.

Wyant, J. C.

Yang, H. -S.

Yoshikawa, K.

Yoshikawa, Motonobu

Appl. Opt. (9)

Yasuhiro Tanaka and Motonobu Yoshikawa, “Novel measuring technique of optical performance in objective lenses for optical disk systems,” Appl. Opt. 31, 5305–5311 (1992).
[Crossref] [PubMed]

J. -S. Lee, H. -S. Yang, and J. -W. Hahn, “Wavefront error measurement of high-numerical-aperture optics with a Shack-Hartmann sensor and a point source,” Appl. Opt. 46, 1411–1415 (2007).
[Crossref] [PubMed]

Donald K. Cohen, Blake Little, and Frank S. Luecke, “Techniques for measuring 1-µm diameter Gaussian beams,” Appl. Opt. 23, 637–640 (1984).
[Crossref] [PubMed]

G. Harbers, P. J. Kunst, and G. W. R. Leibbrandt, “Analysis of lateral shearing interferograms by use of Zernike polynomials,” Appl. Opt. 35, 6162–6172 (1996).
[Crossref] [PubMed]

S. Okuda, T. Nomura, K. Kamiya, H. Miyashiro, K. Yoshikawa, and H. Tashiro, “High-Precision Analysis of a Lateral Shearing Interferogram by use of the Integration Method and Polynomials,” Appl. Opt. 39, 5179–5186 (2000).
[Crossref]

G. Schulz and J. Schwider, “Precise measurement of planeness,” Appl. Opt. 6, 1077 (1967).
[Crossref] [PubMed]

R. E. Parks, L. Shao, and C. J. Evans, “Pixel-Based Absolute Topography Test for Three Flats,” Appl. Opt. 37, 5951–5956 (1998).
[Crossref]

B. B. F. Oreb, D. I. Farrant, C. J. Walsh, G. Forbes, and P. S. Fairman, “Calibration of a 300-mm-Aperture Phase-Shifting Fizeau Interferometer,” Appl. Opt. 39, 5161–5171 (2000).
[Crossref]

C. R. Mercer and K. Creath, “Liquid-crystal point-diffraction interferometer for wave-front measurements,” Appl. Opt. 35, 1633 (1996).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

R. N. Smartt and W. Stell, “Theory and application of point-diffraction interferometer,” Jpn. J. Appl. Phys. 14, 351–356 (1975).

Opt. Eng. (2)

E. C. Broockman, L. D. Dickson, and R. S. Fortenberrgy, “Generalization of the Ronchi ruling method for measuring Gaussian beam diameter,” Opt. Eng. 22, 643–647 (1983).

W.-J. Cho and Seung-Woo Kim, “Stable lateral-shearing interferometer for production-line inspection of lenses,” Opt. Eng. 36, 896–900 (1997).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt.l Rev. (1)

Benno H. W. Hendriks, Jean Schleipen, Sjoerd Stallinga, and Henk van Houten, “Optical Pickup for blue optical recording at NA=0.85,” Opt.l Rev. 8, 211–213 (2001).
[Crossref]

Proc SPIE (1)

Timothy L. Pennington, Byron M. Welsh, and Michael C. Roggemann, “Performance Comparison of the Shearing interferometer and the Hartmann wavefront sensor,” Proc SPIE 2201, 508–518 (1994).
[Crossref]

Proc. SPIE (3)

D. Korwan, “Lateral-shearing interferogram analysis,” Proc. SPIE 0429, 194–198 (1983).

R. N. Smartt, “Special application of the point-diffraction interferometer,” Proc. SPIE 192, 35–40 (1979).

B. E. Truax, “A phase measuring radial shear interferometer for measuring the wavefront of compact Disc laser pickups,” Proc. SPIE 661, 74–82 (1986).

Other (1)

M. Born and E. Wolf, Principles of Optics (Pergamon press, New York, 1980) p.470.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Pinhole mirror for reference wavefront generation.
Fig. 2.
Fig. 2. SEM image of reflection pinhole mirror.
Fig. 3.
Fig. 3. Optical layout of the interferometer
Fig. 4.
Fig. 4. Interferogram of three beams of a BD pickup
Fig. 5.
Fig. 5. 3D image of the reconstructed wavefront
Fig. 6.
Fig. 6. Example of FFT low-pass filter
Fig. 7.
Fig. 7. 3D image of the obtained wavefront after LPF
Fig. 8.
Fig. 8. Interferogram of DVD pickup
Fig. 9.
Fig. 9. 3D image of reconstructed wavefront
Fig. 10.
Fig. 10. Interferogram of parallel beam of HD-DVD pickup
Fig.11.
Fig.11. 3D image of reconstructed wavefront
Fig. 12.
Fig. 12. Standard wavefront generation setup
Fig. 13.
Fig. 13. SEM image of the transparent pinhole
Fig. 14.
Fig. 14. Contour images of the reconstructed wavefront obtained by rotating the test lens

Tables (2)

Tables Icon

Table 1, Comparison of resulted wavefronts of BD lenses measured by BA-3 and V-10 (Units in λ)

Tables Icon

Table 2. Estimation of RMS astigmatism and coma aberrations using data obtained by rotating the test sample

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

M φ ( ρ , θ ) = W φ ( ρ , θ ) + S φ ( ρ , θ ) ,
A am ( ρ , θ ) = A am ρ 2 cos 2 ( θ + φ am )
A aw ( ρ , θ ) = A aw ρ 2 cos 2 ( θ + φ aw )
A as ( ρ , θ ) = A as ρ 2 cos 2 ( θ + φ as )
A am ( 0 ) ( ρ , θ ) = A aw ( 0 ) ( ρ , θ ) + A as ( ρ , θ )
A am ( 90 ) ( ρ , θ ) = A aw ( 90 ) ( ρ , θ + 90 ) + A as ( ρ , θ )
A am ( 0 ) ( ρ , θ ) + A am ( 90 ) ( ρ , θ ) = A aw ( 0 ) ρ 2 cos 2 ( θ + φ aw ( 0 ) ) + A aw ( 0 ) ρ 2 cos 2 ( θ + φ aw ( 0 ) + 90 ) + 2 A as ( ρ , θ )
= 2 A as ( ρ , θ ) + A aw ( 0 ) ρ 2
A am ( 0 ) ( ρ , θ ) A am ( 90 ) ( ρ , θ ) = A aw ( 0 ) ρ 2 cos 2 ( θ + φ aw ( 0 ) ) A aw ( 0 ) ρ 2 cos 2 ( θ + φ aw ( 0 ) + 90 )
= 2 A aw ( 0 ) ( ρ , θ ) A aw ( 0 ) ρ 2
A am ( 0 ) ( ρ , θ ) + A am ( 90 ) ( ρ , θ ) = 2 A as ( ρ , θ )
A am ( 0 ) ( ρ , θ ) A am ( 90 ) ( ρ , θ ) = 2 A aw ( 0 ) ( ρ , θ ) ,
A cm ( 0 ) ( ρ , θ ) + A cm ( 180 ) ( ρ , θ ) = 2 A cs ( ρ , θ )
A cm ( 0 ) ( ρ , θ ) A cm ( 180 ) ( ρ , θ ) = 2 A cw ( 0 ) ( ρ , θ )
{ A cm ( ρ , θ ) = A cm ρ 3 cos ( θ + φ cm ) A cw ( ρ , θ ) = A cw ρ 3 cos ( θ + φ cw ) A cs ( ρ , θ ) = A cs ρ 3 cos ( θ + φ cs )
A as ( ρ , θ ) = A am ( 0 ) ( ρ , θ ) + A am ( 90 ) ( ρ , θ ) 2
= A am ( 0 ) + A am ( 90 ) 4 ρ 2 + A am ( 0 ) ρ 2 cos 2 ( θ + φ am ( 0 ) ) + A am ( 90 ) ρ 2 cos 2 [ ( θ + φ am ( 0 ) ) + ( φ am ( 90 ) φ am ( 0 ) ) ] 4
A as ( ρ , θ ) = M 2 + N 2 cos 2 ( θ + φ am ( 0 ) + 1 2 α ) 2 ρ 2 + M 2 + N 2 2 ρ 2 ,
{ M = A am ( 0 ) + A am ( 90 ) cos 2 ( φ am ( 90 ) φ am ( 0 ) ) N = A am ( 90 ) sin 2 ( φ am ( 90 ) φ am ( 0 ) ) α = arctan ( N M )
A aw ( ρ , θ ) = A am ( 0 ) ( ρ , θ ) A am ( 90 ) ( ρ , θ ) 2
= A am ( 0 ) A am ( 90 ) 4 ρ 2 + A am ( 0 ) ρ 2 cos 2 ( θ + φ am ( 0 ) ) A am ( 90 ) ρ 2 cos 2 ( ( θ + φ am ( 0 ) ) + ( φ am ( 90 ) φ am ( 0 ) ) ) 4
A aw ( ρ , θ ) = K 2 + N 2 cos 2 ( θ + φ am ( 0 ) 1 2 β ) 2 ρ 2 + K 2 + N 2 2 ρ 2
{ K = A am ( 0 ) A am ( 90 ) cos 2 ( φ am ( 90 ) φ am ( 0 ) ) β = arctan ( N K )
A cs ( ρ , θ ) = A cm ( 0 ) ( ρ , θ ) + A cm ( 180 ) ( ρ , θ ) 2
= P 2 + Q 2 cos ( θ + φ cm ( 0 ) + γ ) 2 ρ 3
{ P = A cm ( 0 ) + A cm ( 180 ) cos ( φ cm ( 180 ) φ cm ( 0 ) ) Q = A cm ( 180 ) sin ( φ cm ( 180 ) φ cm ( 0 ) ) γ = arctan ( Q P )
A cw ( ρ , θ ) = A cm ( 0 ) ( ρ , θ ) A cm ( 180 ) ( ρ , θ ) 2
= T 2 + Q 2 cos ( θ + φ cm ( 0 ) ε ) 2 ρ 3
{ T = A cm ( 0 ) A cm ( 180 ) cos ( φ cm ( 180 ) φ cm ( 0 ) ) ε = arctan ( Q T )

Metrics