Abstract

We present a novel scheme to increase the THz-bandwidth fast light effect in semiconductor optical amplifiers and increase the number of advanced pulses. By introducing a linear chirp to the input pulses before the SOA and recompressing at the output with an opposite chirp, the advance-bandwidth product reached 3.5 at room temperature, 1.55 µm wavelength. This is the largest number reported, to the best of our knowledge, for a semiconductor slow/fast light device.

©2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Greatly enhanced slow and fast light in chirped-pulse semiconductor optical amplifiers: Theory and experiments

Bala Pesala, Forrest Sedgwick, Alexander V. Uskov, and Connie Chang-Hasnain
Opt. Express 17(4) 2188-2197 (2009)

Ultrahigh-bandwidth electrically tunable fast and slow light in semiconductor optical amplifiers [Invited]

Bala Pesala, Forrest Sedgwick, Alexander Uskov, and Connie Chang-Hasnain
J. Opt. Soc. Am. B 25(12) C46-C54 (2008)

THz-bandwidth tunable slow light in semiconductor optical amplifiers

F. G. Sedgwick, Bala Pesala, Jui-Yen Lin, Wai Son Ko, Xiaoxue Zhao, and C. J. Chang-Hasnain
Opt. Express 15(2) 747-753 (2007)

References

  • View by:
  • |
  • |
  • |

  1. C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 9, 1884–1897 (2003).
    [Crossref]
  2. S. Sarkar, Y. Guo, and Hailin Wang, “Tunable optical delay via carrier induced exciton dephasing in semiconductor quantum wells,” Opt. Express 14, 2845–2850 (2006).
    [Crossref] [PubMed]
  3. B. Pesala, F. G. Sedgwick, A. V. Uskov, and C. Chang-Hasnain, “Tunable slow light and fast light of ultrashort pulses in semiconductor optical amplifiers,” presented at the 2nd Annual Optical Society of America Topical Meeting on Slow and Fast Light, Salt Lake City, USA, 8–11 July 2007.
  4. F. G. Sedgwick, B. Pesala, J.-Y. Lin, W.-S. Ko, X. Zhao, and C. J. Chang-Hasnain, “THz-bandwidth tunable slow light in semiconductor optical amplifiers,” Opt. Express 15, 747–753 (2007).
    [Crossref] [PubMed]
  5. F. G. Sedgwick, B. Pesala, A. V. Uskov, and C. J. Chang-Hasnain, “THz-bandwidth fast light in semiconductor optical amplifiers for two pulses in rapid succession,” 2007 International Nano-Optoelectronics Workshop (iNOW), Beijing/Lanzhou, China, (Institute of Electrical and Electronics Engineers, 2007).
  6. M. van der Poel, J. Mørk, and J. M. Hvam, “Controllable delay of ultrashort pulses in a quantum dot optical amplifier,” Opt. Express 13, 8032–8037, (2005).
    [Crossref] [PubMed]
  7. A. V. Uskov and C. J. Chang-Hasnain, “Slow And superluminal light in semiconductor optical amplifiers,” Electron. Lett. 41, 922–924 (2005).
    [Crossref]
  8. H. Su and S. L. Chuang, “Room-temperature slow light with semiconductor quantum dot devices,” Opt. Lett. 31, 271–273 (2006).
    [Crossref] [PubMed]
  9. H. Su, P. Kondratko, and S. L. Chuang, “Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers,” Opt. Express 14, 4800–4807 (2006).
    [Crossref] [PubMed]
  10. J. Mørk, R. Kjaer, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at GHz frequencies,” Opt. Express 13, 8136–8145 (2005).
    [Crossref] [PubMed]
  11. K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” Opt. Commun. 111, 589–612 (1994).
    [Crossref]
  12. A. V. Uskov, J. Mørk, and J. Mark, “Wave mixing in semiconductor-laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769–1781 (1994).
    [Crossref]
  13. A. V. Uskov, F. G. Sedgwick, B. Pesala, and C. J. Chang-Hasnain, Dept. of Electrical Engineering and Computer Sciences at the University of California, Berkeley, Berkeley, CA 94702 have submitted a manuscript entitled “Ultrafast Nonlinear Group Index and Fast Light in Semiconductor Optical Amplifiers,” to Optics Lett.
  14. Z. Dutton, M. Bashkansky, M. Steiner, and J. Reintjes, “Analysis and optimization of channelization architecture for wideband slow light in atomic vapors,” Opt. Express 14, 4978–4990 (2006).
    [Crossref] [PubMed]
  15. O. Eduardo Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6 µm region,” IEEE J. Quantum Electron. QE-23, 59–64 (1987).
    [Crossref]
  16. SOA-NL-OED-1550 nonlinear SOA from CI Photonics.
  17. B. Pesala, F. G. Sedgwick, A. V. Uskov, and C. J. Chang-Hasnain, “Polarization dependence of THz bandwidth fast light in semiconductor optical amplifiers,” 2007 International Nano-Optoelectronics Workshop (iNOW), Beijing/Lanzhou, China, (Institute of Electrical and Electronics Engineers, 2007).
  18. E. T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, 2003), Appendix C.
    [Crossref]
  19. G. P. Agrawal, Fiber-Optic Communications Systems, 3rd ed. (Wiley-Interscience2002), Appendix C.
    [Crossref]

2007 (1)

2006 (4)

2005 (3)

2003 (1)

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 9, 1884–1897 (2003).
[Crossref]

1994 (2)

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” Opt. Commun. 111, 589–612 (1994).
[Crossref]

A. V. Uskov, J. Mørk, and J. Mark, “Wave mixing in semiconductor-laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769–1781 (1994).
[Crossref]

1987 (1)

O. Eduardo Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6 µm region,” IEEE J. Quantum Electron. QE-23, 59–64 (1987).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communications Systems, 3rd ed. (Wiley-Interscience2002), Appendix C.
[Crossref]

Bashkansky, M.

Chang-Hasnain, C.

B. Pesala, F. G. Sedgwick, A. V. Uskov, and C. Chang-Hasnain, “Tunable slow light and fast light of ultrashort pulses in semiconductor optical amplifiers,” presented at the 2nd Annual Optical Society of America Topical Meeting on Slow and Fast Light, Salt Lake City, USA, 8–11 July 2007.

Chang-Hasnain, C. J.

F. G. Sedgwick, B. Pesala, J.-Y. Lin, W.-S. Ko, X. Zhao, and C. J. Chang-Hasnain, “THz-bandwidth tunable slow light in semiconductor optical amplifiers,” Opt. Express 15, 747–753 (2007).
[Crossref] [PubMed]

A. V. Uskov and C. J. Chang-Hasnain, “Slow And superluminal light in semiconductor optical amplifiers,” Electron. Lett. 41, 922–924 (2005).
[Crossref]

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 9, 1884–1897 (2003).
[Crossref]

F. G. Sedgwick, B. Pesala, A. V. Uskov, and C. J. Chang-Hasnain, “THz-bandwidth fast light in semiconductor optical amplifiers for two pulses in rapid succession,” 2007 International Nano-Optoelectronics Workshop (iNOW), Beijing/Lanzhou, China, (Institute of Electrical and Electronics Engineers, 2007).

B. Pesala, F. G. Sedgwick, A. V. Uskov, and C. J. Chang-Hasnain, “Polarization dependence of THz bandwidth fast light in semiconductor optical amplifiers,” 2007 International Nano-Optoelectronics Workshop (iNOW), Beijing/Lanzhou, China, (Institute of Electrical and Electronics Engineers, 2007).

A. V. Uskov, F. G. Sedgwick, B. Pesala, and C. J. Chang-Hasnain, Dept. of Electrical Engineering and Computer Sciences at the University of California, Berkeley, Berkeley, CA 94702 have submitted a manuscript entitled “Ultrafast Nonlinear Group Index and Fast Light in Semiconductor Optical Amplifiers,” to Optics Lett.

Chuang, S. L.

Darwish, A. M.

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” Opt. Commun. 111, 589–612 (1994).
[Crossref]

Dutton, Z.

Eduardo Martinez, O.

O. Eduardo Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6 µm region,” IEEE J. Quantum Electron. QE-23, 59–64 (1987).
[Crossref]

Guo, Y.

Hall, K. L.

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” Opt. Commun. 111, 589–612 (1994).
[Crossref]

Hvam, J. M.

Ippen, E. P.

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” Opt. Commun. 111, 589–612 (1994).
[Crossref]

Jaynes, E. T.

E. T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, 2003), Appendix C.
[Crossref]

Kim, J.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 9, 1884–1897 (2003).
[Crossref]

Kjaer, R.

Ko, W.-S.

Kondratko, P.

Ku, P. C.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 9, 1884–1897 (2003).
[Crossref]

Lenz, G.

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” Opt. Commun. 111, 589–612 (1994).
[Crossref]

Lin, J.-Y.

Mark, J.

A. V. Uskov, J. Mørk, and J. Mark, “Wave mixing in semiconductor-laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769–1781 (1994).
[Crossref]

Mørk, J.

Pesala, B.

F. G. Sedgwick, B. Pesala, J.-Y. Lin, W.-S. Ko, X. Zhao, and C. J. Chang-Hasnain, “THz-bandwidth tunable slow light in semiconductor optical amplifiers,” Opt. Express 15, 747–753 (2007).
[Crossref] [PubMed]

B. Pesala, F. G. Sedgwick, A. V. Uskov, and C. Chang-Hasnain, “Tunable slow light and fast light of ultrashort pulses in semiconductor optical amplifiers,” presented at the 2nd Annual Optical Society of America Topical Meeting on Slow and Fast Light, Salt Lake City, USA, 8–11 July 2007.

F. G. Sedgwick, B. Pesala, A. V. Uskov, and C. J. Chang-Hasnain, “THz-bandwidth fast light in semiconductor optical amplifiers for two pulses in rapid succession,” 2007 International Nano-Optoelectronics Workshop (iNOW), Beijing/Lanzhou, China, (Institute of Electrical and Electronics Engineers, 2007).

B. Pesala, F. G. Sedgwick, A. V. Uskov, and C. J. Chang-Hasnain, “Polarization dependence of THz bandwidth fast light in semiconductor optical amplifiers,” 2007 International Nano-Optoelectronics Workshop (iNOW), Beijing/Lanzhou, China, (Institute of Electrical and Electronics Engineers, 2007).

A. V. Uskov, F. G. Sedgwick, B. Pesala, and C. J. Chang-Hasnain, Dept. of Electrical Engineering and Computer Sciences at the University of California, Berkeley, Berkeley, CA 94702 have submitted a manuscript entitled “Ultrafast Nonlinear Group Index and Fast Light in Semiconductor Optical Amplifiers,” to Optics Lett.

Reintjes, J.

Sarkar, S.

Sedgwick, F. G.

F. G. Sedgwick, B. Pesala, J.-Y. Lin, W.-S. Ko, X. Zhao, and C. J. Chang-Hasnain, “THz-bandwidth tunable slow light in semiconductor optical amplifiers,” Opt. Express 15, 747–753 (2007).
[Crossref] [PubMed]

F. G. Sedgwick, B. Pesala, A. V. Uskov, and C. J. Chang-Hasnain, “THz-bandwidth fast light in semiconductor optical amplifiers for two pulses in rapid succession,” 2007 International Nano-Optoelectronics Workshop (iNOW), Beijing/Lanzhou, China, (Institute of Electrical and Electronics Engineers, 2007).

B. Pesala, F. G. Sedgwick, A. V. Uskov, and C. Chang-Hasnain, “Tunable slow light and fast light of ultrashort pulses in semiconductor optical amplifiers,” presented at the 2nd Annual Optical Society of America Topical Meeting on Slow and Fast Light, Salt Lake City, USA, 8–11 July 2007.

A. V. Uskov, F. G. Sedgwick, B. Pesala, and C. J. Chang-Hasnain, Dept. of Electrical Engineering and Computer Sciences at the University of California, Berkeley, Berkeley, CA 94702 have submitted a manuscript entitled “Ultrafast Nonlinear Group Index and Fast Light in Semiconductor Optical Amplifiers,” to Optics Lett.

B. Pesala, F. G. Sedgwick, A. V. Uskov, and C. J. Chang-Hasnain, “Polarization dependence of THz bandwidth fast light in semiconductor optical amplifiers,” 2007 International Nano-Optoelectronics Workshop (iNOW), Beijing/Lanzhou, China, (Institute of Electrical and Electronics Engineers, 2007).

Steiner, M.

Su, H.

Uskov, A. V.

A. V. Uskov and C. J. Chang-Hasnain, “Slow And superluminal light in semiconductor optical amplifiers,” Electron. Lett. 41, 922–924 (2005).
[Crossref]

A. V. Uskov, J. Mørk, and J. Mark, “Wave mixing in semiconductor-laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769–1781 (1994).
[Crossref]

A. V. Uskov, F. G. Sedgwick, B. Pesala, and C. J. Chang-Hasnain, Dept. of Electrical Engineering and Computer Sciences at the University of California, Berkeley, Berkeley, CA 94702 have submitted a manuscript entitled “Ultrafast Nonlinear Group Index and Fast Light in Semiconductor Optical Amplifiers,” to Optics Lett.

B. Pesala, F. G. Sedgwick, A. V. Uskov, and C. J. Chang-Hasnain, “Polarization dependence of THz bandwidth fast light in semiconductor optical amplifiers,” 2007 International Nano-Optoelectronics Workshop (iNOW), Beijing/Lanzhou, China, (Institute of Electrical and Electronics Engineers, 2007).

F. G. Sedgwick, B. Pesala, A. V. Uskov, and C. J. Chang-Hasnain, “THz-bandwidth fast light in semiconductor optical amplifiers for two pulses in rapid succession,” 2007 International Nano-Optoelectronics Workshop (iNOW), Beijing/Lanzhou, China, (Institute of Electrical and Electronics Engineers, 2007).

B. Pesala, F. G. Sedgwick, A. V. Uskov, and C. Chang-Hasnain, “Tunable slow light and fast light of ultrashort pulses in semiconductor optical amplifiers,” presented at the 2nd Annual Optical Society of America Topical Meeting on Slow and Fast Light, Salt Lake City, USA, 8–11 July 2007.

van der Poel, M.

Wang, Hailin

Yvind, K.

Zhao, X.

Electron. Lett. (1)

A. V. Uskov and C. J. Chang-Hasnain, “Slow And superluminal light in semiconductor optical amplifiers,” Electron. Lett. 41, 922–924 (2005).
[Crossref]

IEEE J. Quantum Electron. (2)

O. Eduardo Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6 µm region,” IEEE J. Quantum Electron. QE-23, 59–64 (1987).
[Crossref]

A. V. Uskov, J. Mørk, and J. Mark, “Wave mixing in semiconductor-laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769–1781 (1994).
[Crossref]

Opt. Commun. (1)

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” Opt. Commun. 111, 589–612 (1994).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Proc. IEEE (1)

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 9, 1884–1897 (2003).
[Crossref]

Other (7)

B. Pesala, F. G. Sedgwick, A. V. Uskov, and C. Chang-Hasnain, “Tunable slow light and fast light of ultrashort pulses in semiconductor optical amplifiers,” presented at the 2nd Annual Optical Society of America Topical Meeting on Slow and Fast Light, Salt Lake City, USA, 8–11 July 2007.

F. G. Sedgwick, B. Pesala, A. V. Uskov, and C. J. Chang-Hasnain, “THz-bandwidth fast light in semiconductor optical amplifiers for two pulses in rapid succession,” 2007 International Nano-Optoelectronics Workshop (iNOW), Beijing/Lanzhou, China, (Institute of Electrical and Electronics Engineers, 2007).

SOA-NL-OED-1550 nonlinear SOA from CI Photonics.

B. Pesala, F. G. Sedgwick, A. V. Uskov, and C. J. Chang-Hasnain, “Polarization dependence of THz bandwidth fast light in semiconductor optical amplifiers,” 2007 International Nano-Optoelectronics Workshop (iNOW), Beijing/Lanzhou, China, (Institute of Electrical and Electronics Engineers, 2007).

E. T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, 2003), Appendix C.
[Crossref]

G. P. Agrawal, Fiber-Optic Communications Systems, 3rd ed. (Wiley-Interscience2002), Appendix C.
[Crossref]

A. V. Uskov, F. G. Sedgwick, B. Pesala, and C. J. Chang-Hasnain, Dept. of Electrical Engineering and Computer Sciences at the University of California, Berkeley, Berkeley, CA 94702 have submitted a manuscript entitled “Ultrafast Nonlinear Group Index and Fast Light in Semiconductor Optical Amplifiers,” to Optics Lett.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental setup to measure advance and ABP as a function of SOA bias current. A mode-locked fiber laser produces nearly transform-limited pulses of variable with duration ranging from 700 fs to 2.8 ps. The SOA is fiber coupled, and fiber polarization controllers are used to optimize the fast light effect. Temporal shift of the pulses is measured via cross correlation.
Fig. 2.
Fig. 2. Normalized cross-correlation traces of the output pulses of the SOA in system shown in Fig. 1, as SOA bias is swept from near transparency (black curve) to high gain (red curve), for two different pulse durations. Pulse durations were swept by tuning the mode-locked laser, producing nearly transform-limited pulses. Note that actual pulses are narrower than cross-correlation traces. Figure 2(a): input pulse has a full-width half-maximum (FWHM) of 780 fs. and shows an advance of 1.04 ps (ABP=1.34 pulses). Figure 2(b): input pulse has a duration of 2.6 ps (note change in time scale!) and shows and advance of 1.16 ps (ABP=0.44).
Fig. 3.
Fig. 3. (a). Effect of pulse duration on net advance achieved by sweeping SOA current from transparency to maximum. As the pulse bandwidth decreases, net advance increases very slightly. Figure 3(b). ABP vs. pulse duration. For this SOA, the measured spectral hole burning and carrier heating recovery time are 0.83 ps and 3.3 ps, respectively. Despite the slight increase in net advance, the ABP drops as pulse duration increases beyond these times and intraband effects no longer contribute to pulse advance.
Fig. 4.
Fig. 4. Experimental setup for TWDM. Similar to that shown in Fig. 1, except that i) the SOA is free-space coupled and ii) grating-based chirpers at the SOA input and output can be switched into and out of the optical path. Grating-based chirpers preserve the pulse bandwidth and stretch or compress the pulse in time. The input grating delays red components while the output grating is opposite.
Fig. 5.
Fig. 5. Normalized cross-correlation traces of the output pulses of the SOA in system shown in Fig. 4, as SOA bias is swept from near transparency (black curve) to high gain (red curve), for two different chirper configurations. Figure 5(a): input pulse has been chirped out from 700 fs to 2.68 ps while the bandwidth remains equivalent to the original pulse (390 GHz). The “peak” advances by 2.6 ps (ABP=1) Fig. 5(b): the input pulse is the same chirped pulse from Fig. 5(a), but the output has passed through the counter-chirper stage as well. The distortion is removed and the pulse has advanced by 2.2 ps (ABP=3.14).
Fig. 6.
Fig. 6. (a). Auto correlation of incident pulse, RMS width is 320 fs, FWHM is 500 fs (assuming sech squared pulse shape). Figure 6(b). Cross-correlation of output pulse as SOA bias is increased from near transparency to maximum. Pulse advances by 1.76 ps (3.5 pulse widths). RMS width of pulses, calculated by measuring RMS of reference pulses, is less that 1.15 times the original pulse.
Fig. 7.
Fig. 7. (a). ABP vs. SOA bias for 700 fs (black) and 2.68 ps (blue) transform-limited pulses and for chirped. Also shown is the chirped and compensated TWDM pulse (red). ABP saturates with increasing SOA current. The ABP of the 2.68 ps pulse saturates at a much lower value because it is longer than the spectral hole burning and carrier heating recovery times. Different spectral components of the TWDM pulse enter the SOA at different times, allowing more efficient use of the SOA gain spectrum, and an ABP of 3.14. Fig. 7(b). ABP and broadening (relative to the input pulse) of 500 fs TWDM. Chirper and counter-chirper have been optimized for minimal broadening and ABP of 3.5. Average broadening is 8% and never exceeds 33%.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ corr = σ 1 2 + σ 2 2

Metrics