P. Kowalczyk, M. Wiktor, and M. Mrozowski, “Efficient finite difference analysis of microstructured optical fibers,” Opt. Express 13, 10349–10359 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-25-10349.

[Crossref]
[PubMed]

E.M. Kartchevski, A.I. Nosich, and G.W. Hanson, “Mathematical Analysis of the Generalized Natural Modes of an Inhomogeneous Optical Fiber,” J. Appl. Math. 65, 2033 – 2048 (2005).

H.P. Uranus and H.J.W.M. Hoekstra, “Modeling of microstructured waveguides using a finite-element-based vectorial mode solver with transparent boundary conditions,” Opt. Express 12, 2795–2809 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2795.

[Crossref]
[PubMed]

Shangping Guo, Feng Wu, Sacharia Albin, Hsiang Tai, and Robert S. Rogowski,“Loss and dispersion analysis of microstructured fibers by finite-difference method,” Opt. Express 12, 3341–3352 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3341.

[Crossref]
[PubMed]

H. Rogier and D. De Zutter, “Berenger and Leaky Modes in Optical Fibers Terminated with a Perfectly Matched Layer,” J. Lightw. Technol., 20, 1141 – 1148 (2002).

[Crossref]

T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, R. Ranversez, C.M. de Sterke, L.C. Botten, and M.J. Steel, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).

[Crossref]

Z. Zhu and T.G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10, 853–864 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-853.

[PubMed]

H. Rogier and D. De Zutter, “Berenger and Leaky Modes in Microstrip Substrates Terminated by a Perfectly Matched Layer,” IEEE Trans. Microwave Theory Tech. 49, 712–715 (2001).

[Crossref]

N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech. 45, 1645–1649 (1997).

[Crossref]

J.P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[Crossref]

G.R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron., 28, 363–370 (1992).

[Crossref]

J.P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[Crossref]

T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, R. Ranversez, C.M. de Sterke, L.C. Botten, and M.J. Steel, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).

[Crossref]

G.R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron., 28, 363–370 (1992).

[Crossref]

A. Taflove and S.C. Hagness, “Computational electrodynamics: the finite-difference time-domain method,” Artech House, Boston (2005), 3rd edn.

E.M. Kartchevski, A.I. Nosich, and G.W. Hanson, “Mathematical Analysis of the Generalized Natural Modes of an Inhomogeneous Optical Fiber,” J. Appl. Math. 65, 2033 – 2048 (2005).

N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech. 45, 1645–1649 (1997).

[Crossref]

N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech. 45, 1645–1649 (1997).

[Crossref]

N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech. 45, 1645–1649 (1997).

[Crossref]

E.M. Kartchevski, A.I. Nosich, and G.W. Hanson, “Mathematical Analysis of the Generalized Natural Modes of an Inhomogeneous Optical Fiber,” J. Appl. Math. 65, 2033 – 2048 (2005).

T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, R. Ranversez, C.M. de Sterke, L.C. Botten, and M.J. Steel, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).

[Crossref]

T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, R. Ranversez, C.M. de Sterke, L.C. Botten, and M.J. Steel, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).

[Crossref]

T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, R. Ranversez, C.M. de Sterke, L.C. Botten, and M.J. Steel, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).

[Crossref]

C.D. Meyer, “Matrix analysis and applied linear algebra”, SIAM, Philadelphia (2000).

E.M. Kartchevski, A.I. Nosich, and G.W. Hanson, “Mathematical Analysis of the Generalized Natural Modes of an Inhomogeneous Optical Fiber,” J. Appl. Math. 65, 2033 – 2048 (2005).

T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, R. Ranversez, C.M. de Sterke, L.C. Botten, and M.J. Steel, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).

[Crossref]

H. Rogier and D. De Zutter, “Berenger and Leaky Modes in Optical Fibers Terminated with a Perfectly Matched Layer,” J. Lightw. Technol., 20, 1141 – 1148 (2002).

[Crossref]

H. Rogier and D. De Zutter, “Berenger and Leaky Modes in Microstrip Substrates Terminated by a Perfectly Matched Layer,” IEEE Trans. Microwave Theory Tech. 49, 712–715 (2001).

[Crossref]

T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, R. Ranversez, C.M. de Sterke, L.C. Botten, and M.J. Steel, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).

[Crossref]

T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, R. Ranversez, C.M. de Sterke, L.C. Botten, and M.J. Steel, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).

[Crossref]

A. Taflove and S.C. Hagness, “Computational electrodynamics: the finite-difference time-domain method,” Artech House, Boston (2005), 3rd edn.

T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, R. Ranversez, C.M. de Sterke, L.C. Botten, and M.J. Steel, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).

[Crossref]

H. Rogier and D. De Zutter, “Berenger and Leaky Modes in Optical Fibers Terminated with a Perfectly Matched Layer,” J. Lightw. Technol., 20, 1141 – 1148 (2002).

[Crossref]

H. Rogier and D. De Zutter, “Berenger and Leaky Modes in Microstrip Substrates Terminated by a Perfectly Matched Layer,” IEEE Trans. Microwave Theory Tech. 49, 712–715 (2001).

[Crossref]

G.R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron., 28, 363–370 (1992).

[Crossref]

H. Rogier and D. De Zutter, “Berenger and Leaky Modes in Microstrip Substrates Terminated by a Perfectly Matched Layer,” IEEE Trans. Microwave Theory Tech. 49, 712–715 (2001).

[Crossref]

N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech. 45, 1645–1649 (1997).

[Crossref]

E.M. Kartchevski, A.I. Nosich, and G.W. Hanson, “Mathematical Analysis of the Generalized Natural Modes of an Inhomogeneous Optical Fiber,” J. Appl. Math. 65, 2033 – 2048 (2005).

J.P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[Crossref]

H. Rogier and D. De Zutter, “Berenger and Leaky Modes in Optical Fibers Terminated with a Perfectly Matched Layer,” J. Lightw. Technol., 20, 1141 – 1148 (2002).

[Crossref]

T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, R. Ranversez, C.M. de Sterke, L.C. Botten, and M.J. Steel, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).

[Crossref]

H.P. Uranus and H.J.W.M. Hoekstra, “Modeling of microstructured waveguides using a finite-element-based vectorial mode solver with transparent boundary conditions,” Opt. Express 12, 2795–2809 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2795.

[Crossref]
[PubMed]

Shangping Guo, Feng Wu, Sacharia Albin, Hsiang Tai, and Robert S. Rogowski,“Loss and dispersion analysis of microstructured fibers by finite-difference method,” Opt. Express 12, 3341–3352 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3341.

[Crossref]
[PubMed]

P. Kowalczyk, M. Wiktor, and M. Mrozowski, “Efficient finite difference analysis of microstructured optical fibers,” Opt. Express 13, 10349–10359 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-25-10349.

[Crossref]
[PubMed]

Z. Zhu and T.G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10, 853–864 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-853.

[PubMed]

C.D. Meyer, “Matrix analysis and applied linear algebra”, SIAM, Philadelphia (2000).

A. Taflove and S.C. Hagness, “Computational electrodynamics: the finite-difference time-domain method,” Artech House, Boston (2005), 3rd edn.