Abstract

The damage morphology produced by high-power, short-pulse lasers on multilayer dielectric (MLD) gratings has been closely examined. An unusual ripple formation arises under specific laser-fluence conditions and produces a bright diffractive effect. A single irradiation does not produce this morphology, proving that it is a cumulative effect requiring multiple laser shots on a test site. The period of this microstructure is found to be between 2.0 and 2.4 μm. The ripple orientation varies across the test site. Varying several experimental conditions such as pulse length, beam polarization and angle of incidence still produces this periodic microstructure, though not always efficiently. This morphology is not seen on MLD stacks or other homogeneous samples.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of electric field on laser induced damage threshold of multilayer dielectric gratings

J. Neauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer
Opt. Express 15(19) 12508-12522 (2007)

High reflection mirrors for pulse compression gratings

S. Palmier, J. Neauport, N. Baclet, E. Lavastre, and G. Dupuy
Opt. Express 17(22) 20430-20439 (2009)

Mixed metal dielectric gratings for pulse compression

J. Neauport, N. Bonod, S. Hocquet, S. Palmier, and G. Dupuy
Opt. Express 18(23) 23776-23783 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, M. D. Perry, and L. Li, “High-efficiency metallic diffraction gratings for laser applications,” Appl. Opt. 34, 1697–1706 (1995).
    [Crossref] [PubMed]
  2. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, and E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20, 940–942 (1995).
    [Crossref] [PubMed]
  3. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
    [Crossref] [PubMed]
  4. M. Lenzner, “Femtosecond laser-induced damage of dielectrics,” Int. J. Mod. Phys. B 13, 1559–1578 (1999).
    [Crossref]
  5. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
    [Crossref] [PubMed]
  6. M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, and K. Starke, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
    [Crossref]
  7. W.-J. Kong, Z. C. Shen, J. Shen, J.-D. Shao, and Z.-X. Fan, “Investigation of laser-induced damage on multi-layer dielectric gratings,” Chin. Phys. Lett. 22, 1757–1760 (2005).
    [Crossref]
  8. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36, 3688–3689 (1965).
    [Crossref]
  9. P. E. Dyer and R. J. Farley, “Dynamics of laser-induced periodic surface structures in excimer laser ablation of polymers,” J. Appl. Phys. 74, 1442–1444 (1993).
    [Crossref]
  10. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155–1172 (1983).
    [Crossref]
  11. D. Bäuerle, Laser processing and chemistry, 3rd rev. enl. ed. (Springer, Berlin, 2000).
  12. Y. T. Mazurenko, S. E. Putilin, A. G. Spiro, A. G. Beliaev, V. E. Yashin, and S. A. Chizhov, “Ultrafast time-to-space conversion of phase by the method of spectral nonlinear optics,” Opt. Lett. 21, 1753–1755 (1996).
    [Crossref] [PubMed]
  13. Spiricon LBA-PC Operator’s Manual, Version 4.xx, Laser Beam Analyzer, Doc. No. 10654-001, Rev. 4.00, Spiricon, Inc., Logan, UT 84341.
  14. I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrum. 75, 5193–5202 (2004).
    [Crossref]
  15. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant Grating Waveguide Structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
    [Crossref]

2005 (2)

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, and K. Starke, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[Crossref]

W.-J. Kong, Z. C. Shen, J. Shen, J.-D. Shao, and Z.-X. Fan, “Investigation of laser-induced damage on multi-layer dielectric gratings,” Chin. Phys. Lett. 22, 1757–1760 (2005).
[Crossref]

2004 (2)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref] [PubMed]

I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrum. 75, 5193–5202 (2004).
[Crossref]

1999 (1)

M. Lenzner, “Femtosecond laser-induced damage of dielectrics,” Int. J. Mod. Phys. B 13, 1559–1578 (1999).
[Crossref]

1997 (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant Grating Waveguide Structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[Crossref]

1996 (1)

1995 (3)

1993 (1)

P. E. Dyer and R. J. Farley, “Dynamics of laser-induced periodic surface structures in excimer laser ablation of polymers,” J. Appl. Phys. 74, 1442–1444 (1993).
[Crossref]

1983 (1)

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155–1172 (1983).
[Crossref]

1965 (1)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36, 3688–3689 (1965).
[Crossref]

Barty, C. P. J.

I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrum. 75, 5193–5202 (2004).
[Crossref]

Bäuerle, D.

D. Bäuerle, Laser processing and chemistry, 3rd rev. enl. ed. (Springer, Berlin, 2000).

Beliaev, A. G.

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36, 3688–3689 (1965).
[Crossref]

Boyd, R. D.

Britten, J. A.

Brown, C.

I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrum. 75, 5193–5202 (2004).
[Crossref]

Carr, C. W.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref] [PubMed]

Chizhov, S. A.

Clapp, B.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, and K. Starke, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[Crossref]

Decker, D.

Decker, D. E.

Demos, S. G.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref] [PubMed]

Dyer, P. E.

P. E. Dyer and R. J. Farley, “Dynamics of laser-induced periodic surface structures in excimer laser ablation of polymers,” J. Appl. Phys. 74, 1442–1444 (1993).
[Crossref]

Fan, Z.-X.

W.-J. Kong, Z. C. Shen, J. Shen, J.-D. Shao, and Z.-X. Fan, “Investigation of laser-induced damage on multi-layer dielectric gratings,” Chin. Phys. Lett. 22, 1757–1760 (2005).
[Crossref]

Farley, R. J.

P. E. Dyer and R. J. Farley, “Dynamics of laser-induced periodic surface structures in excimer laser ablation of polymers,” J. Appl. Phys. 74, 1442–1444 (1993).
[Crossref]

Feit, M. D.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref] [PubMed]

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant Grating Waveguide Structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[Crossref]

Jasapara, J. C.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, and K. Starke, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[Crossref]

Jovanovic, I.

I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrum. 75, 5193–5202 (2004).
[Crossref]

Kong, W.-J.

W.-J. Kong, Z. C. Shen, J. Shen, J.-D. Shao, and Z.-X. Fan, “Investigation of laser-induced damage on multi-layer dielectric gratings,” Chin. Phys. Lett. 22, 1757–1760 (2005).
[Crossref]

Lenzner, M.

M. Lenzner, “Femtosecond laser-induced damage of dielectrics,” Int. J. Mod. Phys. B 13, 1559–1578 (1999).
[Crossref]

Li, L.

Mazurenko, Y. T.

Mero, M.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, and K. Starke, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[Crossref]

Molander, W.

I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrum. 75, 5193–5202 (2004).
[Crossref]

Nielsen, N.

I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrum. 75, 5193–5202 (2004).
[Crossref]

Pennington, D.

I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrum. 75, 5193–5202 (2004).
[Crossref]

Perry, M. D.

Preston, J. S.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155–1172 (1983).
[Crossref]

Putilin, S. E.

Radousky, H. B.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref] [PubMed]

Ristau, D.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, and K. Starke, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[Crossref]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant Grating Waveguide Structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[Crossref]

Rubenchik, A. M.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref] [PubMed]

Rudolph, W.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, and K. Starke, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[Crossref]

Shannon, C.

Shao, J.-D.

W.-J. Kong, Z. C. Shen, J. Shen, J.-D. Shao, and Z.-X. Fan, “Investigation of laser-induced damage on multi-layer dielectric gratings,” Chin. Phys. Lett. 22, 1757–1760 (2005).
[Crossref]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant Grating Waveguide Structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[Crossref]

Shen, J.

W.-J. Kong, Z. C. Shen, J. Shen, J.-D. Shao, and Z.-X. Fan, “Investigation of laser-induced damage on multi-layer dielectric gratings,” Chin. Phys. Lett. 22, 1757–1760 (2005).
[Crossref]

Shen, Z. C.

W.-J. Kong, Z. C. Shen, J. Shen, J.-D. Shao, and Z.-X. Fan, “Investigation of laser-induced damage on multi-layer dielectric gratings,” Chin. Phys. Lett. 22, 1757–1760 (2005).
[Crossref]

Shore, B. W.

Shults, E.

Sipe, J. E.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155–1172 (1983).
[Crossref]

Spiro, A. G.

Starke, K.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, and K. Starke, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[Crossref]

Stuart, B.

I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrum. 75, 5193–5202 (2004).
[Crossref]

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref] [PubMed]

R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, M. D. Perry, and L. Li, “High-efficiency metallic diffraction gratings for laser applications,” Appl. Opt. 34, 1697–1706 (1995).
[Crossref] [PubMed]

van Driel, H. M.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155–1172 (1983).
[Crossref]

Wattellier, B.

I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrum. 75, 5193–5202 (2004).
[Crossref]

Yashin, V. E.

Young, J. F.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155–1172 (1983).
[Crossref]

Appl. Opt. (1)

Chin. Phys. Lett. (1)

W.-J. Kong, Z. C. Shen, J. Shen, J.-D. Shao, and Z.-X. Fan, “Investigation of laser-induced damage on multi-layer dielectric gratings,” Chin. Phys. Lett. 22, 1757–1760 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant Grating Waveguide Structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[Crossref]

Int. J. Mod. Phys. B (1)

M. Lenzner, “Femtosecond laser-induced damage of dielectrics,” Int. J. Mod. Phys. B 13, 1559–1578 (1999).
[Crossref]

J. Appl. Phys. (2)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36, 3688–3689 (1965).
[Crossref]

P. E. Dyer and R. J. Farley, “Dynamics of laser-induced periodic surface structures in excimer laser ablation of polymers,” J. Appl. Phys. 74, 1442–1444 (1993).
[Crossref]

Opt. Eng. (1)

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, and K. Starke, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[Crossref]

Opt. Lett. (2)

Phys. Rev. B (1)

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155–1172 (1983).
[Crossref]

Phys. Rev. Lett. (2)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref] [PubMed]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrum. 75, 5193–5202 (2004).
[Crossref]

Other (2)

D. Bäuerle, Laser processing and chemistry, 3rd rev. enl. ed. (Springer, Berlin, 2000).

Spiricon LBA-PC Operator’s Manual, Version 4.xx, Laser Beam Analyzer, Doc. No. 10654-001, Rev. 4.00, Spiricon, Inc., Logan, UT 84341.

Supplementary Material (1)

» Media 1: MOV (2432 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Damage testing setup. The beam profile in the sample optical plane at the standard f = 2-m-mirror configuration with a 360-μm beam diameter is shown.
Fig. 2.
Fig. 2. Figure showing sample orientation and the incident beam. The x-axis is parallel to the grating grooves. The beam is incident at θi, and the first and zero diffraction orders are given by θd and θ0. For a classical mount, ϕ = 0 and the incident beam is parallel to the grating vector, k. When ϕ ≠ 0 the grating is in a conical mount.
Fig. 3.
Fig. 3. A test site irradiated with a large, low-quality beam profile still produced a brilliant glint. (Stereo microscope at 400× magnification.) [Media 1]
Fig. 4.
Fig. 4. The damage morphology from repeated irradiation (n-on-1 testing) was studied with both (a) a polarizing microscope (500× magnification) and (b) an atomic force microscope. The square in (a) indicated the region depicted in the AFM micrograph. The grating pillars extend from the top left to the bottom right corners. Four full “ripples” are formed as material is removed from the pillars to form ~200 nm troughs.
Fig. 5.
Fig. 5. Ripples at the middle of the site are designated to have position “0”, and they are typically oriented perpendicular to the grating pillar (angle = 0). The tilt angle of the next 10 to 20 subsequent ripples increases linearly and then starts to asymptote. The tilt of the ripples is larger at the bottom of the test site.
Fig. 6.
Fig. 6. Both the ripple tilt and spacing vary with incident angle in a similar fashion. The surface fluence for ripple formation initially decreases with angle, but resonance-like behavior is seen at 53° and 45°.
Fig. 7.
Fig. 7. When the incident angle in a conical mount is varied from (-15° to +5°), the ripple period is different on each half of the test site. The side impinged upon first always has a period greater than 2 μm and an increased tilt angle. The ripple period and tilt angle on the farther side always decrease from the value for normal incidence. The site shown has been tested at +5°. The ripple spacing and tilt angle are 2.3μm and 6.8° on the left side and 1.7 μm and 4.7° on the right side.

Metrics