Abstract

A theoretical study of optimized single mode Er-doped MOFs designed for high efficiency amplification at 1550nm is carried out, deriving benefit from the demonstrated very low decrease of the overlap factor versus wavelength. In spite of this potential advantage, classical single mode MOFs are first shown to be less efficient than usual Er-doped step index fibers (SIF). However, novel single mode large core MOFs (LCMOFs) are designed, providing overlap factors higher than 0.9 at both the pump and the signal wavelengths. To obtain the same gain, the necessary length of LCMOF is reduced by up to 40% compared to that of Er-doped SIF. Such a highly efficient amplifying fiber is attractive for short pulse and soliton amplification.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-frequency-shifted solitons in a polarization-maintaining, very-large-mode area, Er-doped fiber amplifier

J. W. Nicholson, A. Desantolo, W. Kaenders, and A. Zach
Opt. Express 24(20) 23396-23402 (2016)

High-power long-period-grating-assisted erbium-doped fiber amplifier

Galina Nemova and Raman Kashyap
J. Opt. Soc. Am. B 25(8) 1322-1327 (2008)

References

  • View by:
  • |
  • |
  • |

  1. E. Desurvire, Erbium-Doped Fibre Amplifiers-Principles and Applications (Wiley-Interscience, New York, 1994).
  2. G. P. Agrawal, Nonlinear Fibre Optics 3rd edition (Academic Press, San Diego, 2003).
  3. G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double-cladding Er3+-Yb3+ -codoped fiber amplifier,” IEEE Photon. Technol. Lett. 15, 801–803 (2003).
    [Crossref]
  4. V. Philippov, C. Codemard, Y. Jeong, C. Alegria, J. K. Sahu, J. Nilsson, and G. N. Pearson, “High-energy in-fiber pulse amplification for coherent lidar applications,” Opt. Lett. 29, 2590–2592 (2004).
    [Crossref] [PubMed]
  5. P. Leproux, P. Roy, D. Pagnoux, B. Kerrinckx, and J. Marcou, “Theoretical and experimental study of loss at splices between standard single-mode fibres and Er-doped fibres versus direction,” Opt. Commun. 174, 419–425 (2000).
    [Crossref]
  6. P. Russell, “Photonic crystal fibres,” Science 299, 358–362 (2003).
    [Crossref] [PubMed]
  7. T. A. Birks, J.C. Knight, and P. St. Russell, “Endlessly single-mode photonic crystal fibre,” Opt. Lett. 22, 961–963 (1997).
    [Crossref] [PubMed]
  8. D. Pagnoux, A. Peyrilloux, P. Roy, S. Fevrier, L. Labonté, and S. Hilaire, “Microstructured air-silica fibres: recent developments in modelling, manufacturing and experiment,” Ann. Telecommun. 58, 1238–1274 (2003).
  9. F. Bréchet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibres, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
    [Crossref]
  10. B. Bourliaguet, C. Paré, F. Emond, A. Croteau, A. Proulx, and R. Vallée, “Microstructured fiber splicing,” Opt. Express 11, 3412–3417 (2003).
    [PubMed]
  11. O. Frazão, J. P. Carvalho, and H. M. Salgado, “Low-loss splice in a microstructured fibre using a conventional fusion splicer,” Microwave and Opt. Technol. Lett. 46, 172–174 (2005).
    [Crossref]
  12. T. P. White, R. C. McPhedran, and C. M. de Sterke, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26, 1660–1662 (2001).
    [Crossref]
  13. A. Shirakawa, J. Ota, M. Musha, K. Nakagawa, K. Ueda, J. R. Folkenberg, and J. Broeng, “Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 μm,” Opt. Express 13,1221–1227 (2005).
    [Crossref] [PubMed]
  14. A. Galvanauskas and M. E. Fermann, “High-power scaling of femtosecond fiber lasers using large-core Yb fibers,” LEOS Newsletter 14 (2000).

2005 (2)

O. Frazão, J. P. Carvalho, and H. M. Salgado, “Low-loss splice in a microstructured fibre using a conventional fusion splicer,” Microwave and Opt. Technol. Lett. 46, 172–174 (2005).
[Crossref]

A. Shirakawa, J. Ota, M. Musha, K. Nakagawa, K. Ueda, J. R. Folkenberg, and J. Broeng, “Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 μm,” Opt. Express 13,1221–1227 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (4)

P. Russell, “Photonic crystal fibres,” Science 299, 358–362 (2003).
[Crossref] [PubMed]

D. Pagnoux, A. Peyrilloux, P. Roy, S. Fevrier, L. Labonté, and S. Hilaire, “Microstructured air-silica fibres: recent developments in modelling, manufacturing and experiment,” Ann. Telecommun. 58, 1238–1274 (2003).

G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double-cladding Er3+-Yb3+ -codoped fiber amplifier,” IEEE Photon. Technol. Lett. 15, 801–803 (2003).
[Crossref]

B. Bourliaguet, C. Paré, F. Emond, A. Croteau, A. Proulx, and R. Vallée, “Microstructured fiber splicing,” Opt. Express 11, 3412–3417 (2003).
[PubMed]

2001 (1)

2000 (3)

A. Galvanauskas and M. E. Fermann, “High-power scaling of femtosecond fiber lasers using large-core Yb fibers,” LEOS Newsletter 14 (2000).

F. Bréchet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibres, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[Crossref]

P. Leproux, P. Roy, D. Pagnoux, B. Kerrinckx, and J. Marcou, “Theoretical and experimental study of loss at splices between standard single-mode fibres and Er-doped fibres versus direction,” Opt. Commun. 174, 419–425 (2000).
[Crossref]

1997 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fibre Optics 3rd edition (Academic Press, San Diego, 2003).

Alegria, C.

Birks, T. A.

Bourliaguet, B.

Bréchet, F.

F. Bréchet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibres, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[Crossref]

Broeng, J.

Canat, G.

G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double-cladding Er3+-Yb3+ -codoped fiber amplifier,” IEEE Photon. Technol. Lett. 15, 801–803 (2003).
[Crossref]

Carvalho, J. P.

O. Frazão, J. P. Carvalho, and H. M. Salgado, “Low-loss splice in a microstructured fibre using a conventional fusion splicer,” Microwave and Opt. Technol. Lett. 46, 172–174 (2005).
[Crossref]

Codemard, C.

Croteau, A.

de Sterke, C. M.

Debarge, G.

G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double-cladding Er3+-Yb3+ -codoped fiber amplifier,” IEEE Photon. Technol. Lett. 15, 801–803 (2003).
[Crossref]

Desurvire, E.

E. Desurvire, Erbium-Doped Fibre Amplifiers-Principles and Applications (Wiley-Interscience, New York, 1994).

Emond, F.

Fermann, M. E.

A. Galvanauskas and M. E. Fermann, “High-power scaling of femtosecond fiber lasers using large-core Yb fibers,” LEOS Newsletter 14 (2000).

Fevrier, S.

D. Pagnoux, A. Peyrilloux, P. Roy, S. Fevrier, L. Labonté, and S. Hilaire, “Microstructured air-silica fibres: recent developments in modelling, manufacturing and experiment,” Ann. Telecommun. 58, 1238–1274 (2003).

Folkenberg, J. R.

Frazão, O.

O. Frazão, J. P. Carvalho, and H. M. Salgado, “Low-loss splice in a microstructured fibre using a conventional fusion splicer,” Microwave and Opt. Technol. Lett. 46, 172–174 (2005).
[Crossref]

Galvanauskas, A.

A. Galvanauskas and M. E. Fermann, “High-power scaling of femtosecond fiber lasers using large-core Yb fibers,” LEOS Newsletter 14 (2000).

Hilaire, S.

D. Pagnoux, A. Peyrilloux, P. Roy, S. Fevrier, L. Labonté, and S. Hilaire, “Microstructured air-silica fibres: recent developments in modelling, manufacturing and experiment,” Ann. Telecommun. 58, 1238–1274 (2003).

Jaouen, Y.

G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double-cladding Er3+-Yb3+ -codoped fiber amplifier,” IEEE Photon. Technol. Lett. 15, 801–803 (2003).
[Crossref]

Jeong, Y.

Kerrinckx, B.

P. Leproux, P. Roy, D. Pagnoux, B. Kerrinckx, and J. Marcou, “Theoretical and experimental study of loss at splices between standard single-mode fibres and Er-doped fibres versus direction,” Opt. Commun. 174, 419–425 (2000).
[Crossref]

Knight, J.C.

Kulcsar, G.

G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double-cladding Er3+-Yb3+ -codoped fiber amplifier,” IEEE Photon. Technol. Lett. 15, 801–803 (2003).
[Crossref]

Labonté, L.

D. Pagnoux, A. Peyrilloux, P. Roy, S. Fevrier, L. Labonté, and S. Hilaire, “Microstructured air-silica fibres: recent developments in modelling, manufacturing and experiment,” Ann. Telecommun. 58, 1238–1274 (2003).

Leproux, P.

P. Leproux, P. Roy, D. Pagnoux, B. Kerrinckx, and J. Marcou, “Theoretical and experimental study of loss at splices between standard single-mode fibres and Er-doped fibres versus direction,” Opt. Commun. 174, 419–425 (2000).
[Crossref]

Marcou, J.

P. Leproux, P. Roy, D. Pagnoux, B. Kerrinckx, and J. Marcou, “Theoretical and experimental study of loss at splices between standard single-mode fibres and Er-doped fibres versus direction,” Opt. Commun. 174, 419–425 (2000).
[Crossref]

F. Bréchet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibres, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[Crossref]

McPhedran, R. C.

Musha, M.

Nakagawa, K.

Nilsson, J.

Olmedo, E.

G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double-cladding Er3+-Yb3+ -codoped fiber amplifier,” IEEE Photon. Technol. Lett. 15, 801–803 (2003).
[Crossref]

Ota, J.

Pagnoux, D.

D. Pagnoux, A. Peyrilloux, P. Roy, S. Fevrier, L. Labonté, and S. Hilaire, “Microstructured air-silica fibres: recent developments in modelling, manufacturing and experiment,” Ann. Telecommun. 58, 1238–1274 (2003).

F. Bréchet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibres, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[Crossref]

P. Leproux, P. Roy, D. Pagnoux, B. Kerrinckx, and J. Marcou, “Theoretical and experimental study of loss at splices between standard single-mode fibres and Er-doped fibres versus direction,” Opt. Commun. 174, 419–425 (2000).
[Crossref]

Paré, C.

Pearson, G. N.

Peyrilloux, A.

D. Pagnoux, A. Peyrilloux, P. Roy, S. Fevrier, L. Labonté, and S. Hilaire, “Microstructured air-silica fibres: recent developments in modelling, manufacturing and experiment,” Ann. Telecommun. 58, 1238–1274 (2003).

Philippov, V.

Proulx, A.

Roy, P.

D. Pagnoux, A. Peyrilloux, P. Roy, S. Fevrier, L. Labonté, and S. Hilaire, “Microstructured air-silica fibres: recent developments in modelling, manufacturing and experiment,” Ann. Telecommun. 58, 1238–1274 (2003).

F. Bréchet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibres, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[Crossref]

P. Leproux, P. Roy, D. Pagnoux, B. Kerrinckx, and J. Marcou, “Theoretical and experimental study of loss at splices between standard single-mode fibres and Er-doped fibres versus direction,” Opt. Commun. 174, 419–425 (2000).
[Crossref]

Russell, P.

P. Russell, “Photonic crystal fibres,” Science 299, 358–362 (2003).
[Crossref] [PubMed]

Russell, P. St.

Sahu, J. K.

Salgado, H. M.

O. Frazão, J. P. Carvalho, and H. M. Salgado, “Low-loss splice in a microstructured fibre using a conventional fusion splicer,” Microwave and Opt. Technol. Lett. 46, 172–174 (2005).
[Crossref]

Shirakawa, A.

Ueda, K.

Vallée, R.

White, T. P.

Ann. Telecommun. (1)

D. Pagnoux, A. Peyrilloux, P. Roy, S. Fevrier, L. Labonté, and S. Hilaire, “Microstructured air-silica fibres: recent developments in modelling, manufacturing and experiment,” Ann. Telecommun. 58, 1238–1274 (2003).

IEEE Photon. Technol. Lett. (1)

G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double-cladding Er3+-Yb3+ -codoped fiber amplifier,” IEEE Photon. Technol. Lett. 15, 801–803 (2003).
[Crossref]

LEOS Newsletter (1)

A. Galvanauskas and M. E. Fermann, “High-power scaling of femtosecond fiber lasers using large-core Yb fibers,” LEOS Newsletter 14 (2000).

Microwave and Opt. Technol. Lett. (1)

O. Frazão, J. P. Carvalho, and H. M. Salgado, “Low-loss splice in a microstructured fibre using a conventional fusion splicer,” Microwave and Opt. Technol. Lett. 46, 172–174 (2005).
[Crossref]

Opt. Commun. (1)

P. Leproux, P. Roy, D. Pagnoux, B. Kerrinckx, and J. Marcou, “Theoretical and experimental study of loss at splices between standard single-mode fibres and Er-doped fibres versus direction,” Opt. Commun. 174, 419–425 (2000).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (1)

F. Bréchet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibres, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[Crossref]

Opt. Lett. (3)

Science (1)

P. Russell, “Photonic crystal fibres,” Science 299, 358–362 (2003).
[Crossref] [PubMed]

Other (2)

E. Desurvire, Erbium-Doped Fibre Amplifiers-Principles and Applications (Wiley-Interscience, New York, 1994).

G. P. Agrawal, Nonlinear Fibre Optics 3rd edition (Academic Press, San Diego, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic cross section of a) preform, b) a MOF, with a classical triangular lattice of holes.
Fig. 2.
Fig. 2. a) Triangular grid over the cross section of a MOF, b) zoom on a air hole split into triangular subspaces.
Fig. 3.
Fig. 3. Evolution of overlap factors versus wavelength for the reference Er-SIF (grey curve) and the MOF with Λ=3μm d=0.9μm (black curve). Inset: electric field distribution of the fundamental mode of the MOF at 1550nm.
Fig. 4.
Fig. 4. Evolution of the overlap factor in MOFs at 1550nm versus the ratio d/Λ (Λ=2 to 5μm).
Fig. 5.
Fig. 5. Overlap factors versus wavelength for the reference Er-SIF and the Er-MOF (Λ=6μm, d=2.4μm).
Fig. 6.
Fig. 6. Theoretical gain curves obtained for a typical SIF amplifier, the considered Er-MOF (MOF1) and an idealized Er-MOF (Λ=6μm, d=2.4μm) (MOF2).
Fig. 7.
Fig. 7. Theoretical noise figure curves obtained for a typical SIF amplifier, the considered Er-MOF (MOF1) and an idealized Er-MOF (Λ=6μm, d=2.4μm) (MOF2).
Fig. 8.
Fig. 8. Schematic structure of the preform of a large core MOF (LCMOF) and structure of the final fiber.
Fig. 9.
Fig. 9. Evolution of the overlap factors versus wavelength for the reference Er-SIF (grey curve) and the Er-LCMOF (black curve).
Fig. 10.
Fig. 10. Theoretical gain curves obtained for the considered Er-LCMOF and the typical SIF amplifier.
Fig. 11.
Fig. 11. Theoretical noise figure obtained for the considered Er-LCMOF and the typical SIF amplifier.

Tables (2)

Tables Icon

Table 1. Confinement losses of the fundamental mode and of the first higher order modes for different pitch Λ and hole diameters d; (a) at 980nm, (b) at 1550nm.(a)

Tables Icon

Table 2. Distribution of the electric field of different low order modes with their confinement loss in the designed LCMOF at 980nm and 1550nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d P p ( t , z ) dz = σ a ( λ p ) N 1 ( t , z ) Γ p P p ( t , z )
d P p ( t , z , λ s ) dz = [ σ e ( λ s ) N 2 ( t , z ) σ a ( λ s ) N 1 ( t , z ) ] Γ s ( λ s ) P s ( t , z , λ s )
G ( λ s ) = exp { Γ s ( λ s ) 0 L [ σ e ( λ s ) N 2 ( z ) σ a ( λ s ) N 1 ( z ) ] d z }
Γ x = 0 r d 0 2 π E x 2 ( r ) 0 0 2 π E x 2 ( r ) rdrdφ rdrdφ ( x = s or p )

Metrics