Abstract

Optimal absorption method for improving the sensitivity of bolometric detection is explored. We show that, in addition to its role in conventional conducting-film detection, the application of plasmon resonance absorption offers highly promising characteristics for efficient far-field thermal detection and imaging. These characteristics include good frequency sensitivity, intrinsic spatial (angle) selectivity without focusing lenses, wide tunability over both infrared and visible light domains, high responsivity and miniaturization capabilities. In this context, we examine the well-known surface plasmon resonance (SPR) regime, but also report on a new type of plasmon resonance excitation, the cavity plasmon resonance (CPR), which offers more flexibility over wide ranges of wavelengths, bandwidths, and device dimensions. Both CPR and SPR occur in metallic films, which are characterized by high thermal diffusivity essential for fast bolometric response.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-spectral frequency selective mid-infrared microbolometers

Alireza Safaei, Sushrut Modak, Jonathan Lee, Sayan Chandra, Daniel Franklin, Abraham Vázquez-Guardado, and Debashis Chanda
Opt. Express 26(25) 32931-32940 (2018)

Investigation on an application of silver substrates for sensitive surface plasmon resonance imaging detection

Seung Ho Choi and Kyung Min Byun
J. Opt. Soc. Am. A 27(10) 2229-2236 (2010)

Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera

Joseph A. Shaw, Paul W. Nugent, Nathan J. Pust, Brentha Thurairajah, and Kohei Mizutani
Opt. Express 13(15) 5807-5817 (2005)

References

  • View by:
  • |
  • |
  • |

  1. 1. P. W. Kruse and D. D. Skatrud, editors, Uncooled infrared imaging arrays and systems, (San Diego; Tokyo: Academic Press, 1997).
  2. P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1 (1994).
    [Crossref]
  3. L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, I. A. Khrebtov, V. G. Malyarov, and H. Neff, “Modeling and performance of vanadium-oxide transition edge microbolometers,” Appl. Phys. Lett. 85, 3605 (2004).
    [Crossref]
  4. N. S. Nishioka, P. L. Richards, and D. P. Woody, “Composite bolometers for submillimeter waves,” Appl. Opt. 17, 1562 (1978).
    [Crossref] [PubMed]
  5. J. A. Shaw, P. W. Nugent, N. J. Pust, B. Thurairajah, and K. Mizutani, “Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera,” Opt. Express 13, 5807 (2005).
    [Crossref] [PubMed]
  6. S. H. Moseley, J. C. Mather, and D. McCammon, “Thermal detectors as x-ray spectrometers,” J. Appl. Phys. 56, 1257 (1984).
    [Crossref]
  7. K. K. Choi, K. M. Leung, T. Tamir, and C. Monroy, “Light coupling characteristics of corrugated quantum-well infrared photodetectors,” IEEE J. Quantum Electron.,  40, 130 (2004).
    [Crossref]
  8. K. K. Choi, C. Monroy, A. Goldberg, G. Dang, M. Jhabvala, A. La, T. Tamir, K. M. Leung, A. Majumdar, J. J. Li, and D. C. Tsui, “Designs and applications of corrugated QWIPs,” Infr. Phys. Technol. 47, 76 (2005).
    [Crossref]
  9. E. A. Smith and R. M. Corn, “Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format,” Appl. Spectrosc. 57, 320A (2003).
    [Crossref] [PubMed]
  10. M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. H¤nsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476 (1992).
    [Crossref] [PubMed]
  11. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127 (2005).
    [Crossref] [PubMed]
  12. I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by the surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
    [Crossref] [PubMed]
  13. S. Maruo, O. Nakamura, and S. Kawata, “Evanescent-wave holography by use of surface-plasmon resonance,” Appl. Opt. 36, 2343 (1997).
    [Crossref] [PubMed]
  14. R. A. Innes and J. R. Sambles, “Simple thermal detection of surface plasmon-polaritons,” Solid State Commun. 55, 493 (1985).
    [Crossref]
  15. S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun. 255, 51 (2005).
    [Crossref]
  16. B. Carli and D. Iorio-Fili, “Absorption of composite bolometers,” J. Opt. Soc. Am. 71 (1981).
    [Crossref]
  17. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed., (Cambridge University Press, Cambridge, 1999).
  18. D. Razansky, P. D. Einziger, and D. R. Adam, “Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films,” Phys. Rev. Lett. 95, 018101 (2005).
    [Crossref] [PubMed]
  19. P. D. Einziger, L. M. Livshitz, and J. Mizrahi, “Rigorous image-series expansions of quasi-static Green's functions for regions with planar stratification,” IEEE Trans. Antennas Propag. 50, 1813 (2002).
    [Crossref]
  20. D. Razansky, P. D. Einziger, and D. R. Adam, “Optimal dispersion relations for enhanced electromagnetic power deposition in dissipative slabs,” Phys. Rev. Lett. 93, 083902 (2004).
    [Crossref] [PubMed]
  21. M. J. Weber, ed., Handbook of Optical Materials, (CRC Press, Boca Raton, 2003).

2005 (6)

J. A. Shaw, P. W. Nugent, N. J. Pust, B. Thurairajah, and K. Mizutani, “Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera,” Opt. Express 13, 5807 (2005).
[Crossref] [PubMed]

K. K. Choi, C. Monroy, A. Goldberg, G. Dang, M. Jhabvala, A. La, T. Tamir, K. M. Leung, A. Majumdar, J. J. Li, and D. C. Tsui, “Designs and applications of corrugated QWIPs,” Infr. Phys. Technol. 47, 76 (2005).
[Crossref]

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127 (2005).
[Crossref] [PubMed]

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by the surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
[Crossref] [PubMed]

S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun. 255, 51 (2005).
[Crossref]

D. Razansky, P. D. Einziger, and D. R. Adam, “Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films,” Phys. Rev. Lett. 95, 018101 (2005).
[Crossref] [PubMed]

2004 (3)

K. K. Choi, K. M. Leung, T. Tamir, and C. Monroy, “Light coupling characteristics of corrugated quantum-well infrared photodetectors,” IEEE J. Quantum Electron.,  40, 130 (2004).
[Crossref]

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, I. A. Khrebtov, V. G. Malyarov, and H. Neff, “Modeling and performance of vanadium-oxide transition edge microbolometers,” Appl. Phys. Lett. 85, 3605 (2004).
[Crossref]

D. Razansky, P. D. Einziger, and D. R. Adam, “Optimal dispersion relations for enhanced electromagnetic power deposition in dissipative slabs,” Phys. Rev. Lett. 93, 083902 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (1)

P. D. Einziger, L. M. Livshitz, and J. Mizrahi, “Rigorous image-series expansions of quasi-static Green's functions for regions with planar stratification,” IEEE Trans. Antennas Propag. 50, 1813 (2002).
[Crossref]

1999 (1)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed., (Cambridge University Press, Cambridge, 1999).

1997 (1)

1994 (1)

P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1 (1994).
[Crossref]

1992 (1)

M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. H¤nsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476 (1992).
[Crossref] [PubMed]

1985 (1)

R. A. Innes and J. R. Sambles, “Simple thermal detection of surface plasmon-polaritons,” Solid State Commun. 55, 493 (1985).
[Crossref]

1984 (1)

S. H. Moseley, J. C. Mather, and D. McCammon, “Thermal detectors as x-ray spectrometers,” J. Appl. Phys. 56, 1257 (1984).
[Crossref]

1981 (1)

B. Carli and D. Iorio-Fili, “Absorption of composite bolometers,” J. Opt. Soc. Am. 71 (1981).
[Crossref]

1978 (1)

Adam, D. R.

D. Razansky, P. D. Einziger, and D. R. Adam, “Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films,” Phys. Rev. Lett. 95, 018101 (2005).
[Crossref] [PubMed]

D. Razansky, P. D. Einziger, and D. R. Adam, “Optimal dispersion relations for enhanced electromagnetic power deposition in dissipative slabs,” Phys. Rev. Lett. 93, 083902 (2004).
[Crossref] [PubMed]

Blaikie, R. J.

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed., (Cambridge University Press, Cambridge, 1999).

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun. 255, 51 (2005).
[Crossref]

Carli, B.

B. Carli and D. Iorio-Fili, “Absorption of composite bolometers,” J. Opt. Soc. Am. 71 (1981).
[Crossref]

Choi, K. K.

K. K. Choi, C. Monroy, A. Goldberg, G. Dang, M. Jhabvala, A. La, T. Tamir, K. M. Leung, A. Majumdar, J. J. Li, and D. C. Tsui, “Designs and applications of corrugated QWIPs,” Infr. Phys. Technol. 47, 76 (2005).
[Crossref]

K. K. Choi, K. M. Leung, T. Tamir, and C. Monroy, “Light coupling characteristics of corrugated quantum-well infrared photodetectors,” IEEE J. Quantum Electron.,  40, 130 (2004).
[Crossref]

Corn, R. M.

Dang, G.

K. K. Choi, C. Monroy, A. Goldberg, G. Dang, M. Jhabvala, A. La, T. Tamir, K. M. Leung, A. Majumdar, J. J. Li, and D. C. Tsui, “Designs and applications of corrugated QWIPs,” Infr. Phys. Technol. 47, 76 (2005).
[Crossref]

Davis, C. C.

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by the surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
[Crossref] [PubMed]

de Almeida, L. A. L.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, I. A. Khrebtov, V. G. Malyarov, and H. Neff, “Modeling and performance of vanadium-oxide transition edge microbolometers,” Appl. Phys. Lett. 85, 3605 (2004).
[Crossref]

Deep, G. S.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, I. A. Khrebtov, V. G. Malyarov, and H. Neff, “Modeling and performance of vanadium-oxide transition edge microbolometers,” Appl. Phys. Lett. 85, 3605 (2004).
[Crossref]

Einziger, P. D.

D. Razansky, P. D. Einziger, and D. R. Adam, “Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films,” Phys. Rev. Lett. 95, 018101 (2005).
[Crossref] [PubMed]

D. Razansky, P. D. Einziger, and D. R. Adam, “Optimal dispersion relations for enhanced electromagnetic power deposition in dissipative slabs,” Phys. Rev. Lett. 93, 083902 (2004).
[Crossref] [PubMed]

P. D. Einziger, L. M. Livshitz, and J. Mizrahi, “Rigorous image-series expansions of quasi-static Green's functions for regions with planar stratification,” IEEE Trans. Antennas Propag. 50, 1813 (2002).
[Crossref]

Elliott, J.

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by the surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
[Crossref] [PubMed]

Goldberg, A.

K. K. Choi, C. Monroy, A. Goldberg, G. Dang, M. Jhabvala, A. La, T. Tamir, K. M. Leung, A. Majumdar, J. J. Li, and D. C. Tsui, “Designs and applications of corrugated QWIPs,” Infr. Phys. Technol. 47, 76 (2005).
[Crossref]

H¤nsch, T. W.

M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. H¤nsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476 (1992).
[Crossref] [PubMed]

Heckl, W. M.

M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. H¤nsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476 (1992).
[Crossref] [PubMed]

Innes, R. A.

R. A. Innes and J. R. Sambles, “Simple thermal detection of surface plasmon-polaritons,” Solid State Commun. 55, 493 (1985).
[Crossref]

Iorio-Fili, D.

B. Carli and D. Iorio-Fili, “Absorption of composite bolometers,” J. Opt. Soc. Am. 71 (1981).
[Crossref]

Jhabvala, M.

K. K. Choi, C. Monroy, A. Goldberg, G. Dang, M. Jhabvala, A. La, T. Tamir, K. M. Leung, A. Majumdar, J. J. Li, and D. C. Tsui, “Designs and applications of corrugated QWIPs,” Infr. Phys. Technol. 47, 76 (2005).
[Crossref]

Kawata, S.

Khrebtov, I. A.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, I. A. Khrebtov, V. G. Malyarov, and H. Neff, “Modeling and performance of vanadium-oxide transition edge microbolometers,” Appl. Phys. Lett. 85, 3605 (2004).
[Crossref]

La, A.

K. K. Choi, C. Monroy, A. Goldberg, G. Dang, M. Jhabvala, A. La, T. Tamir, K. M. Leung, A. Majumdar, J. J. Li, and D. C. Tsui, “Designs and applications of corrugated QWIPs,” Infr. Phys. Technol. 47, 76 (2005).
[Crossref]

Leosson, K.

S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun. 255, 51 (2005).
[Crossref]

Leung, K. M.

K. K. Choi, C. Monroy, A. Goldberg, G. Dang, M. Jhabvala, A. La, T. Tamir, K. M. Leung, A. Majumdar, J. J. Li, and D. C. Tsui, “Designs and applications of corrugated QWIPs,” Infr. Phys. Technol. 47, 76 (2005).
[Crossref]

K. K. Choi, K. M. Leung, T. Tamir, and C. Monroy, “Light coupling characteristics of corrugated quantum-well infrared photodetectors,” IEEE J. Quantum Electron.,  40, 130 (2004).
[Crossref]

Li, J. J.

K. K. Choi, C. Monroy, A. Goldberg, G. Dang, M. Jhabvala, A. La, T. Tamir, K. M. Leung, A. Majumdar, J. J. Li, and D. C. Tsui, “Designs and applications of corrugated QWIPs,” Infr. Phys. Technol. 47, 76 (2005).
[Crossref]

Lima, A. M. N.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, I. A. Khrebtov, V. G. Malyarov, and H. Neff, “Modeling and performance of vanadium-oxide transition edge microbolometers,” Appl. Phys. Lett. 85, 3605 (2004).
[Crossref]

Livshitz, L. M.

P. D. Einziger, L. M. Livshitz, and J. Mizrahi, “Rigorous image-series expansions of quasi-static Green's functions for regions with planar stratification,” IEEE Trans. Antennas Propag. 50, 1813 (2002).
[Crossref]

Majumdar, A.

K. K. Choi, C. Monroy, A. Goldberg, G. Dang, M. Jhabvala, A. La, T. Tamir, K. M. Leung, A. Majumdar, J. J. Li, and D. C. Tsui, “Designs and applications of corrugated QWIPs,” Infr. Phys. Technol. 47, 76 (2005).
[Crossref]

Malyarov, V. G.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, I. A. Khrebtov, V. G. Malyarov, and H. Neff, “Modeling and performance of vanadium-oxide transition edge microbolometers,” Appl. Phys. Lett. 85, 3605 (2004).
[Crossref]

Maruo, S.

Mather, J. C.

S. H. Moseley, J. C. Mather, and D. McCammon, “Thermal detectors as x-ray spectrometers,” J. Appl. Phys. 56, 1257 (1984).
[Crossref]

McCammon, D.

S. H. Moseley, J. C. Mather, and D. McCammon, “Thermal detectors as x-ray spectrometers,” J. Appl. Phys. 56, 1257 (1984).
[Crossref]

Melville, D. O. S.

Mizrahi, J.

P. D. Einziger, L. M. Livshitz, and J. Mizrahi, “Rigorous image-series expansions of quasi-static Green's functions for regions with planar stratification,” IEEE Trans. Antennas Propag. 50, 1813 (2002).
[Crossref]

Mizutani, K.

Monroy, C.

K. K. Choi, C. Monroy, A. Goldberg, G. Dang, M. Jhabvala, A. La, T. Tamir, K. M. Leung, A. Majumdar, J. J. Li, and D. C. Tsui, “Designs and applications of corrugated QWIPs,” Infr. Phys. Technol. 47, 76 (2005).
[Crossref]

K. K. Choi, K. M. Leung, T. Tamir, and C. Monroy, “Light coupling characteristics of corrugated quantum-well infrared photodetectors,” IEEE J. Quantum Electron.,  40, 130 (2004).
[Crossref]

Moseley, S. H.

S. H. Moseley, J. C. Mather, and D. McCammon, “Thermal detectors as x-ray spectrometers,” J. Appl. Phys. 56, 1257 (1984).
[Crossref]

Nakamura, O.

Neff, H.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, I. A. Khrebtov, V. G. Malyarov, and H. Neff, “Modeling and performance of vanadium-oxide transition edge microbolometers,” Appl. Phys. Lett. 85, 3605 (2004).
[Crossref]

Nikolajsen, T.

S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun. 255, 51 (2005).
[Crossref]

Nishioka, N. S.

Nugent, P. W.

Pedarnig, J. D.

M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. H¤nsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476 (1992).
[Crossref] [PubMed]

Pust, N. J.

Razansky, D.

D. Razansky, P. D. Einziger, and D. R. Adam, “Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films,” Phys. Rev. Lett. 95, 018101 (2005).
[Crossref] [PubMed]

D. Razansky, P. D. Einziger, and D. R. Adam, “Optimal dispersion relations for enhanced electromagnetic power deposition in dissipative slabs,” Phys. Rev. Lett. 93, 083902 (2004).
[Crossref] [PubMed]

Richards, P. L.

Sambles, J. R.

R. A. Innes and J. R. Sambles, “Simple thermal detection of surface plasmon-polaritons,” Solid State Commun. 55, 493 (1985).
[Crossref]

Shaw, J. A.

Smith, E. A.

Smolyaninov, I. I.

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by the surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
[Crossref] [PubMed]

Specht, M.

M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. H¤nsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476 (1992).
[Crossref] [PubMed]

Tamir, T.

K. K. Choi, C. Monroy, A. Goldberg, G. Dang, M. Jhabvala, A. La, T. Tamir, K. M. Leung, A. Majumdar, J. J. Li, and D. C. Tsui, “Designs and applications of corrugated QWIPs,” Infr. Phys. Technol. 47, 76 (2005).
[Crossref]

K. K. Choi, K. M. Leung, T. Tamir, and C. Monroy, “Light coupling characteristics of corrugated quantum-well infrared photodetectors,” IEEE J. Quantum Electron.,  40, 130 (2004).
[Crossref]

Thurairajah, B.

Tsui, D. C.

K. K. Choi, C. Monroy, A. Goldberg, G. Dang, M. Jhabvala, A. La, T. Tamir, K. M. Leung, A. Majumdar, J. J. Li, and D. C. Tsui, “Designs and applications of corrugated QWIPs,” Infr. Phys. Technol. 47, 76 (2005).
[Crossref]

Weber, M. J.

M. J. Weber, ed., Handbook of Optical Materials, (CRC Press, Boca Raton, 2003).

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed., (Cambridge University Press, Cambridge, 1999).

Woody, D. P.

Zayats, A. V.

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by the surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, I. A. Khrebtov, V. G. Malyarov, and H. Neff, “Modeling and performance of vanadium-oxide transition edge microbolometers,” Appl. Phys. Lett. 85, 3605 (2004).
[Crossref]

Appl. Spectrosc. (1)

IEEE J. Quantum Electron. (1)

K. K. Choi, K. M. Leung, T. Tamir, and C. Monroy, “Light coupling characteristics of corrugated quantum-well infrared photodetectors,” IEEE J. Quantum Electron.,  40, 130 (2004).
[Crossref]

IEEE Trans. Antennas Propag. (1)

P. D. Einziger, L. M. Livshitz, and J. Mizrahi, “Rigorous image-series expansions of quasi-static Green's functions for regions with planar stratification,” IEEE Trans. Antennas Propag. 50, 1813 (2002).
[Crossref]

Infr. Phys. Technol. (1)

K. K. Choi, C. Monroy, A. Goldberg, G. Dang, M. Jhabvala, A. La, T. Tamir, K. M. Leung, A. Majumdar, J. J. Li, and D. C. Tsui, “Designs and applications of corrugated QWIPs,” Infr. Phys. Technol. 47, 76 (2005).
[Crossref]

J. Appl. Phys. (2)

S. H. Moseley, J. C. Mather, and D. McCammon, “Thermal detectors as x-ray spectrometers,” J. Appl. Phys. 56, 1257 (1984).
[Crossref]

P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1 (1994).
[Crossref]

J. Opt. Soc. Am. (1)

B. Carli and D. Iorio-Fili, “Absorption of composite bolometers,” J. Opt. Soc. Am. 71 (1981).
[Crossref]

Opt. Commun. (1)

S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun. 255, 51 (2005).
[Crossref]

Opt. Express (2)

Phys. Rev. Lett. (4)

D. Razansky, P. D. Einziger, and D. R. Adam, “Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films,” Phys. Rev. Lett. 95, 018101 (2005).
[Crossref] [PubMed]

D. Razansky, P. D. Einziger, and D. R. Adam, “Optimal dispersion relations for enhanced electromagnetic power deposition in dissipative slabs,” Phys. Rev. Lett. 93, 083902 (2004).
[Crossref] [PubMed]

M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. H¤nsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476 (1992).
[Crossref] [PubMed]

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by the surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
[Crossref] [PubMed]

Solid State Commun. (1)

R. A. Innes and J. R. Sambles, “Simple thermal detection of surface plasmon-polaritons,” Solid State Commun. 55, 493 (1985).
[Crossref]

Other (3)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed., (Cambridge University Press, Cambridge, 1999).

1. P. W. Kruse and D. D. Skatrud, editors, Uncooled infrared imaging arrays and systems, (San Diego; Tokyo: Academic Press, 1997).

M. J. Weber, ed., Handbook of Optical Materials, (CRC Press, Boca Raton, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Bolometer configurations.
Fig. 2.
Fig. 2. Optimal absorption paths (solid lines, A to H) for various total absorption cases and intersection points (1 to 7) with some material dispersion [21] curves (dashed-dotted lines) in the complex ��2domain. For the CPR configuration T 4 =0, θ 1 = 0, and n 3 = n 1 while for the SPR configuration ℜ{��4} = 0, n 4=n 3, n 4/n 1 = 0.752, and θ 1 > θ c,4 = sin-1 (n 4/n 1) = 48 754°. Configuration parameters for the intersection points appear in Table 2 (note that intersection number 8 in Table 2 is out of range here).
Fig. 3.
Fig. 3. Power absorption efficiency in the vicinity of various lossy resonances (configuration details are given in Table 2 and material dispersions are taken from [1, 4, 21]). (a) efficiency η versus excitation wavelength λ = c/f ; (b) efficiency η versus angle of incidence θ1. The curve numbers here correspond to the full absorption (intersection) points as appear in Fig. 2 and Table 2 (note that intersection number 8 is out of range in Fig. 2).

Tables (2)

Tables Icon

Table 1. Full absorption (η = 1) conditions for configurations (a) with perfect mirror termination (T 4 =0) and (b ) under total internal reflection (θ 1 > θ c,4).(a)

Tables Icon

Table 2. Configuration parameters for intersection and full absorption points, as depicted in Figs. 2 and 3, respectively.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

η = 1 R 1 2 T 4 2 { N 4 } ,
R q = r q + R q + 1 e i 2 k 0 n q + 1 z q cos θ q + 1 1 + r q R q + 1 e i 2 k 0 n q + 1 z q cos θ q + 1 e i 2 k 0 n q z q cos θ q , R 4 = 0
T q = m = 2 q ( 1 + r m 1 ) e i k 0 ( n m 1 cos θ m 1 n m cos θ m ) z m 1 1 + r m 1 R m e i 2 k 0 n m z m 1 cos θ m , T 1 = 1 ,
N q TE TM = n q n 1 ( cos θ q cos θ 1 ) ± 1 , r q = N q N q + 1 N q + N q + 1 = ( 1 ) q e i ψ q , r 4 = 0 .
R 1 = r 1 + ρ 2 e i 2 k 0 d n 2 cos θ 2 1 + r 1 ρ 2 e i 2 k 0 d n 2 cos θ 2 ,
ρ 2 = N 2 N ˜ 3 N 2 + N ˜ 3 , N ˜ 3 = i N 3 cot ( γ + ψ 3 2 ) , γ = k 0 n 3 cos θ 3 .
δ TE TM = k 0 n 1 d cos ± 1 θ 1 .
N 2 , opt = ( 1 + i ) ( 1 N ˜ 3 ) ( 2 δ ) , for δ 1 ,
N 2 , opt = N ˜ 3 ( 1 + 2 e 2 N ˜ 3 2 N ˜ 3 ) , for δ ~ 1 .

Metrics