Abstract

We propose an optimised fiber design for obtaining spectrally flat, high power supercontinuum (SC) source covering C+L band of optical communication. The design is based on the principle of controlled expansion of SC bandwidth, in the absence of soliton decay, so that a high output power alongwith smooth spectral profile can be achieved. A detailed optimisation has been carried out with respect to fiber dispersion profile, pulse width and fiber length, and the physical mechanism for each case has been emphasised. Numerical simulations show that single mode output with > 30 dBm (± 0.5 dB) optical power is attainable over 90-nm bandwidth with ~ 16 pJ of input pulse energy.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-flat supercontinuum generated from high-power, picosecond telecommunication fiber laser source

Ruoyu Liao, Youjian Song, Xiaokang Zhou, Lu Chai, Chingyue Wang, and Minglie Hu
Appl. Opt. 55(33) 9384-9388 (2016)

Ultrahigh-brightness, spectrally-flat, short-wave infrared supercontinuum source for long-range atmospheric applications

Ke Yin, Rongzhen Zhu, Bin Zhang, Tian Jiang, Shengping Chen, and Jing Hou
Opt. Express 24(18) 20010-20020 (2016)

Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy

Mbaye Diouf, Amine Ben Salem, Rim Cherif, Hamed Saghaei, and Ahmadou Wague
Appl. Opt. 56(2) 163-169 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola,“Enhanced bandwidth of supercontinuum generated in microstructured fibers,” Opt. Express 12, 3471–34802004.
    [Crossref] [PubMed]
  2. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [Crossref]
  3. T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Opt. Express 12, 317–33242004.
    [Crossref] [PubMed]
  4. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola,“Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Opt. Express 10, 1083–10982002.
    [PubMed]
  5. T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum. Electron.,  5, 1385–13911999.
    [Crossref]
  6. K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
    [Crossref]
  7. Kunihiko Mori, Hidehiko Takara, and Satoki Kawanishi, “Analysis and design of supercontinuum pulse generation in a single-mode optical fiber,” J. Opt. Soc. Am. B 18, 1780–1792 (2001).
    [Crossref]
  8. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
    [Crossref]
  9. G.P. Agrawal, Nonlinear Fiber Optics, (Academic, New York, 2001).
  10. Ajoy Ghatak and K. Thyagarajan, “Introduction to Fiber Optics,” (Cambridge, U.K., 1998).
  11. M.R. Shenoy, K. Thyagarajan, and A. K. Ghatak, “Numerical analysis of optical fibers using matrix approach,” J. Lightwave Technol.,  6, 1285–12911988.
    [Crossref]
  12. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12, 124–1352003.
    [Crossref]

2004 (2)

2003 (1)

2002 (1)

2001 (1)

2000 (2)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[Crossref]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[Crossref]

1999 (1)

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum. Electron.,  5, 1385–13911999.
[Crossref]

1997 (1)

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[Crossref]

1988 (1)

M.R. Shenoy, K. Thyagarajan, and A. K. Ghatak, “Numerical analysis of optical fibers using matrix approach,” J. Lightwave Technol.,  6, 1285–12911988.
[Crossref]

Abe, M.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[Crossref]

Agrawal, G.P.

G.P. Agrawal, Nonlinear Fiber Optics, (Academic, New York, 2001).

Birks, T. A.

Broeng, J.

Cristiani, I.

Degiorgio, V.

Genty, G.

Ghatak, A. K.

M.R. Shenoy, K. Thyagarajan, and A. K. Ghatak, “Numerical analysis of optical fibers using matrix approach,” J. Lightwave Technol.,  6, 1285–12911988.
[Crossref]

Ghatak, Ajoy

Ajoy Ghatak and K. Thyagarajan, “Introduction to Fiber Optics,” (Cambridge, U.K., 1998).

Goto, T.

Hori, T.

Inoue, Y.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[Crossref]

Ishikawa, S.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum. Electron.,  5, 1385–13911999.
[Crossref]

Kaivola, M.

Kashiwada, T.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum. Electron.,  5, 1385–13911999.
[Crossref]

Kawanishi, S.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[Crossref]

Kawanishi, Satoki

Lehtonen, M.

Ludvigsen, H.

Mori, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[Crossref]

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[Crossref]

Mori, Kunihiko

Morioka, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[Crossref]

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[Crossref]

Nishimura, M.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum. Electron.,  5, 1385–13911999.
[Crossref]

Nishizawa, N.

Ohara, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[Crossref]

Okuno, T.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum. Electron.,  5, 1385–13911999.
[Crossref]

Onishi, M.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum. Electron.,  5, 1385–13911999.
[Crossref]

Russell, P. St. J.

Saruwatari, M.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[Crossref]

Sato, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[Crossref]

Sato, K-I.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[Crossref]

Shenoy, M.R.

M.R. Shenoy, K. Thyagarajan, and A. K. Ghatak, “Numerical analysis of optical fibers using matrix approach,” J. Lightwave Technol.,  6, 1285–12911988.
[Crossref]

Shibata, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[Crossref]

Takara, H.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[Crossref]

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[Crossref]

Takara, Hidehiko

Takayanagi, J.

Tartara, L.

Tediosi, R.

Thyagarajan, K.

M.R. Shenoy, K. Thyagarajan, and A. K. Ghatak, “Numerical analysis of optical fibers using matrix approach,” J. Lightwave Technol.,  6, 1285–12911988.
[Crossref]

Ajoy Ghatak and K. Thyagarajan, “Introduction to Fiber Optics,” (Cambridge, U.K., 1998).

Wadsworth, W. J.

Yamada, E.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[Crossref]

Electron. Lett. (2)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[Crossref]

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum. Electron. (1)

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum. Electron.,  5, 1385–13911999.
[Crossref]

J. Lightwave Technol. (1)

M.R. Shenoy, K. Thyagarajan, and A. K. Ghatak, “Numerical analysis of optical fibers using matrix approach,” J. Lightwave Technol.,  6, 1285–12911988.
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Lett. (1)

Other (2)

G.P. Agrawal, Nonlinear Fiber Optics, (Academic, New York, 2001).

Ajoy Ghatak and K. Thyagarajan, “Introduction to Fiber Optics,” (Cambridge, U.K., 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Refractive index profile of a dispersion-flattened W-fiber
Fig. 2.
Fig. 2. Evolution of SC spectrum for β 3 = 8x10-4 ps3/km
Fig. 3.
Fig. 3. Evolution of SC spectrum for β 3 = 1x10-2 ps3/km
Fig. 4.
Fig. 4. Dispersion profiles of the designed dispersion-flattened W-fiber for different scaling ratios
Fig. 5.
Fig. 5. SC spectra for different input pulse widths
Fig. 6.
Fig. 6. Optimised supercontinuum spectrum
Fig. 7.
Fig. 7. SC spectra for different peak dispersion coefficients
Fig. 8.
Fig. 8. SC spectra with different input pulse peak power

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A z + α 2 A + m = 1 6 β m m ! m A t m = ( 1 + i ω 0 t ) ( A z t R ( t ) A z t t 2 dt )

Metrics