Abstract

We demonstrate for the first time that up to 0.45 µJ pulses can be obtained from a cavity-dumped Ti: sapphire oscillator stably operating in the positive dispersion regime. The output pulse can be compressed to 60 fs and used to generate a white light continuum through self-filamentation in a thin sapphire plate.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cavity-dumped femtosecond Kerr-lens mode-locked Ti:Al2O3 laser

M. Ramaswamy, M. Ulman, J. Paye, and J. G. Fujimoto
Opt. Lett. 18(21) 1822-1824 (1993)

Low-cost cavity-dumped femtosecond Cr:LiSAF laser producing >100 nJ pulses

Umit Demirbas, Kyung-Han Hong, James G. Fujimoto, Alphan Sennaroglu, and Franz X. Kärtner
Opt. Lett. 35(4) 607-609 (2010)

Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked Ti:Al2O3 laser operating with net positive and negative  intracavity  dispersion

S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, and W. H. Knox
Opt. Lett. 26(8) 560-562 (2001)

References

  • View by:
  • |
  • |
  • |

  1. M. Ramaswamy, M. Ulman, J. Paye, and J. G. Fujimoto, “Cavity-dumped femtosecond Kerr-lens mode-locked Ti: Al2O3 laser,” Opt. Lett. 18, 1822–1824 (1993).
    [Crossref] [PubMed]
  2. M. S. Pshenichnikov, W. P. Deboeij, and D. A. Wiersma, “Generation of 13-fs, 5-MW pulses from a cavity-dumped Ti: sapphire laser,” Opt. Lett. 19, 572–574 (1994).
    [Crossref] [PubMed]
  3. G. N. Gibson, R. Klank, F. Gibson, and B. E. Bouma, “Electro-optically cavity-dumped ultrashort-pulse Ti: sapphire oscillator,” Opt. Lett. 21, 1055–1057 (1996).
    [Crossref] [PubMed]
  4. A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
    [Crossref]
  5. A. Killi, U. Morgner, M. J. Lederer, and D. Kopf, “Diode-pumped femtosecond laser oscillator with cavity dumping,” Opt. Lett. 29, 1288–1290 (2004).
    [Crossref] [PubMed]
  6. A. Killi, A. Steinmann, J. Dorring, U. Morgner, M. J. Lederer, D. Kopf, and C. Fallnich, “High-peak-power pulses from a cavity-dumped Yb : KY(WO4)2 oscillator,” Opt. Lett. 30, 1891–1893 (2005).
    [Crossref] [PubMed]
  7. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett. 30, 1060–1062 (2005).
    [Crossref] [PubMed]
  8. A. Killi, A. Steinmann, G. Palmer, U. Morgner, H. Bartelt, and J. Kobelke, “Megahertz optical parametric amplifier pumped by a femtosecond oscillator,” Opt. Lett. 31, 125–127 (2006).
    [Crossref] [PubMed]
  9. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16, 637–650 (1999).
    [Crossref]
  10. S. H. Cho, B. E. Bouma, E. P. Ippen, and J. G. Fujimoto, “Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti: Al2O3 laser with a multiple-pass cavity,” Opt. Lett. 24, 417–419 (1999).
    [Crossref]
  11. A. R. Libertun, R. Shelton, H. C. Kapteyn, and M. M. Murnane, “A 36 nJ - 15.5 MHz extended-cavity Ti:Sapphire Oscillator,” in CLEO 1999 Technical Digest: Optical Society of America, 1999.
  12. S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, and W. H. Knox, “Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked Ti : Al2O3 laser operating with net positive and negative intracavity dispersion,” Opt. Lett. 26, 560–562 (2001).
    [Crossref]
  13. A. M. Kowalevicz, A. T. Zare, F. X. Kärtner, J. G. Fujimoto, S. Dewald, U. Morgner, V. Scheuer, and G. Angelow, “Generation of 150-nJ pulses from a multiple-pass cavity Kerr-lens mode-locked Ti : Al2O3 oscillator,” Opt. Lett. 28, 1597–1599 (2003).
    [Crossref] [PubMed]
  14. A. Fernandez, T. Fuji, A. Poppe, A. Furbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett. 29, 1366–1368 (2004).
    [Crossref] [PubMed]
  15. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. A. Krausz, and A, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
    [Crossref]
  16. V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
    [Crossref]
  17. B. Proctor, E. Westwig, and F. Wise, “Characterization of a Kerr-lens mode-locked Ti-sapphire laser with positive group-velocity dispersion,” Opt. Lett. 18, 1654–1656 (1993).
    [Crossref] [PubMed]
  18. S. Backus, C. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
    [Crossref]
  19. S. Dewald, T. Lang, C. D. Schröeter, R. Moshammer, J. Ullrich, M. Siegel, and U. Morgner, “Ionization of noble gases with pulses directly from a laser oscillator,” Opt. Lett. 31, 2072–2074 (2006).
    [Crossref] [PubMed]
  20. S. Backus, R. Bartels, S. Thompson, R. Dollinger, H. C. Kapteyn, and M. M. Murnane, “High-efficiency, single-stage 7-kHz high-average-power ultrafast laser system,” Opt. Lett. 26, 465–467 (2001).
    [Crossref]
  21. R. Huber, F. Adler, A. Leitenstorfer, M. Beutter, P. Baum, and E. Riedle, “12-fs pulses from a continuous-wave-pumped 200-nJ Ti : sapphire amplifier at a variable repetition rate as high as 4 MHz,” Opt. Lett. 28, 2118–2120 (2003).
    [Crossref] [PubMed]

2006 (2)

2005 (4)

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. A. Krausz, and A, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

A. Killi, A. Steinmann, J. Dorring, U. Morgner, M. J. Lederer, D. Kopf, and C. Fallnich, “High-peak-power pulses from a cavity-dumped Yb : KY(WO4)2 oscillator,” Opt. Lett. 30, 1891–1893 (2005).
[Crossref] [PubMed]

A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett. 30, 1060–1062 (2005).
[Crossref] [PubMed]

2004 (2)

2003 (2)

2001 (2)

1999 (2)

1998 (1)

S. Backus, C. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[Crossref]

1997 (1)

A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
[Crossref]

1996 (1)

1994 (1)

1993 (2)

A,

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. A. Krausz, and A, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

Adler, F.

Angelow, G.

Apolonski, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

A. Fernandez, T. Fuji, A. Poppe, A. Furbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett. 29, 1366–1368 (2004).
[Crossref] [PubMed]

Backus, S.

Baltuska, A.

A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
[Crossref]

Bartels, R.

Bartelt, H.

Baum, P.

Beutter, M.

Bouma, B. E.

Brodeur, A.

Chernykh, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

Chin, S. L.

Cho, S. H.

Cunningham, J. E.

Deboeij, W. P.

Dewald, S.

Dollinger, R.

Dombi, P.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. A. Krausz, and A, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

Dorring, J.

Durfee, C.

S. Backus, C. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[Crossref]

Fallnich, C.

Fernandez, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. A. Krausz, and A, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

A. Fernandez, T. Fuji, A. Poppe, A. Furbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett. 29, 1366–1368 (2004).
[Crossref] [PubMed]

Fuji, T.

Fujimoto, J. G.

Furbach, A.

Gibson, F.

Gibson, G. N.

Graf, R.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. A. Krausz, and A, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

Huber, R.

Ippen, E. P.

Kalashnikov, V. L.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

Kapteyn, H. C.

S. Backus, R. Bartels, S. Thompson, R. Dollinger, H. C. Kapteyn, and M. M. Murnane, “High-efficiency, single-stage 7-kHz high-average-power ultrafast laser system,” Opt. Lett. 26, 465–467 (2001).
[Crossref]

S. Backus, C. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[Crossref]

A. R. Libertun, R. Shelton, H. C. Kapteyn, and M. M. Murnane, “A 36 nJ - 15.5 MHz extended-cavity Ti:Sapphire Oscillator,” in CLEO 1999 Technical Digest: Optical Society of America, 1999.

Kärtner, F. X.

Killi, A.

Klank, R.

Knox, W. H.

Kobelke, J.

Kopf, D.

Kowalevicz, A. M.

Krausz, F.

Krausz, F. A.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. A. Krausz, and A, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

Lang, T.

Lederer, M. J.

Leitenstorfer, A.

Libertun, A. R.

A. R. Libertun, R. Shelton, H. C. Kapteyn, and M. M. Murnane, “A 36 nJ - 15.5 MHz extended-cavity Ti:Sapphire Oscillator,” in CLEO 1999 Technical Digest: Optical Society of America, 1999.

Minoshima, K.

Morgner, U.

Moshammer, R.

Murnane, M. M.

S. Backus, R. Bartels, S. Thompson, R. Dollinger, H. C. Kapteyn, and M. M. Murnane, “High-efficiency, single-stage 7-kHz high-average-power ultrafast laser system,” Opt. Lett. 26, 465–467 (2001).
[Crossref]

S. Backus, C. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[Crossref]

A. R. Libertun, R. Shelton, H. C. Kapteyn, and M. M. Murnane, “A 36 nJ - 15.5 MHz extended-cavity Ti:Sapphire Oscillator,” in CLEO 1999 Technical Digest: Optical Society of America, 1999.

Naumov, S.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. A. Krausz, and A, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

Palmer, G.

Paye, J.

Podivilov, E.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

Poppe, A.

Proctor, B.

Pshenichnikov, M. S.

A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
[Crossref]

M. S. Pshenichnikov, W. P. Deboeij, and D. A. Wiersma, “Generation of 13-fs, 5-MW pulses from a cavity-dumped Ti: sapphire laser,” Opt. Lett. 19, 572–574 (1994).
[Crossref] [PubMed]

Ramaswamy, M.

Riedle, E.

Scheuer, V.

Schröeter, C. D.

Sharma, V.

Shelton, R.

A. R. Libertun, R. Shelton, H. C. Kapteyn, and M. M. Murnane, “A 36 nJ - 15.5 MHz extended-cavity Ti:Sapphire Oscillator,” in CLEO 1999 Technical Digest: Optical Society of America, 1999.

Siegel, M.

Steinmann, A.

Szipöcs, R.

A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
[Crossref]

Thompson, S.

Ullrich, J.

Ulman, M.

Wei, Z.

A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
[Crossref]

Westwig, E.

Wiersma, D. A.

A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
[Crossref]

M. S. Pshenichnikov, W. P. Deboeij, and D. A. Wiersma, “Generation of 13-fs, 5-MW pulses from a cavity-dumped Ti: sapphire laser,” Opt. Lett. 19, 572–574 (1994).
[Crossref] [PubMed]

Wise, F.

Zare, A. T.

Appl. Phys. B (1)

A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

New J. Phys. (2)

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. A. Krausz, and A, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

Opt. Lett. (15)

B. Proctor, E. Westwig, and F. Wise, “Characterization of a Kerr-lens mode-locked Ti-sapphire laser with positive group-velocity dispersion,” Opt. Lett. 18, 1654–1656 (1993).
[Crossref] [PubMed]

M. Ramaswamy, M. Ulman, J. Paye, and J. G. Fujimoto, “Cavity-dumped femtosecond Kerr-lens mode-locked Ti: Al2O3 laser,” Opt. Lett. 18, 1822–1824 (1993).
[Crossref] [PubMed]

M. S. Pshenichnikov, W. P. Deboeij, and D. A. Wiersma, “Generation of 13-fs, 5-MW pulses from a cavity-dumped Ti: sapphire laser,” Opt. Lett. 19, 572–574 (1994).
[Crossref] [PubMed]

S. H. Cho, B. E. Bouma, E. P. Ippen, and J. G. Fujimoto, “Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti: Al2O3 laser with a multiple-pass cavity,” Opt. Lett. 24, 417–419 (1999).
[Crossref]

G. N. Gibson, R. Klank, F. Gibson, and B. E. Bouma, “Electro-optically cavity-dumped ultrashort-pulse Ti: sapphire oscillator,” Opt. Lett. 21, 1055–1057 (1996).
[Crossref] [PubMed]

S. Backus, R. Bartels, S. Thompson, R. Dollinger, H. C. Kapteyn, and M. M. Murnane, “High-efficiency, single-stage 7-kHz high-average-power ultrafast laser system,” Opt. Lett. 26, 465–467 (2001).
[Crossref]

S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, and W. H. Knox, “Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked Ti : Al2O3 laser operating with net positive and negative intracavity dispersion,” Opt. Lett. 26, 560–562 (2001).
[Crossref]

A. M. Kowalevicz, A. T. Zare, F. X. Kärtner, J. G. Fujimoto, S. Dewald, U. Morgner, V. Scheuer, and G. Angelow, “Generation of 150-nJ pulses from a multiple-pass cavity Kerr-lens mode-locked Ti : Al2O3 oscillator,” Opt. Lett. 28, 1597–1599 (2003).
[Crossref] [PubMed]

R. Huber, F. Adler, A. Leitenstorfer, M. Beutter, P. Baum, and E. Riedle, “12-fs pulses from a continuous-wave-pumped 200-nJ Ti : sapphire amplifier at a variable repetition rate as high as 4 MHz,” Opt. Lett. 28, 2118–2120 (2003).
[Crossref] [PubMed]

A. Killi, U. Morgner, M. J. Lederer, and D. Kopf, “Diode-pumped femtosecond laser oscillator with cavity dumping,” Opt. Lett. 29, 1288–1290 (2004).
[Crossref] [PubMed]

A. Fernandez, T. Fuji, A. Poppe, A. Furbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett. 29, 1366–1368 (2004).
[Crossref] [PubMed]

A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett. 30, 1060–1062 (2005).
[Crossref] [PubMed]

A. Killi, A. Steinmann, J. Dorring, U. Morgner, M. J. Lederer, D. Kopf, and C. Fallnich, “High-peak-power pulses from a cavity-dumped Yb : KY(WO4)2 oscillator,” Opt. Lett. 30, 1891–1893 (2005).
[Crossref] [PubMed]

A. Killi, A. Steinmann, G. Palmer, U. Morgner, H. Bartelt, and J. Kobelke, “Megahertz optical parametric amplifier pumped by a femtosecond oscillator,” Opt. Lett. 31, 125–127 (2006).
[Crossref] [PubMed]

S. Dewald, T. Lang, C. D. Schröeter, R. Moshammer, J. Ullrich, M. Siegel, and U. Morgner, “Ionization of noble gases with pulses directly from a laser oscillator,” Opt. Lett. 31, 2072–2074 (2006).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

S. Backus, C. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[Crossref]

Other (1)

A. R. Libertun, R. Shelton, H. C. Kapteyn, and M. M. Murnane, “A 36 nJ - 15.5 MHz extended-cavity Ti:Sapphire Oscillator,” in CLEO 1999 Technical Digest: Optical Society of America, 1999.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Laser system setup
Fig. 2.
Fig. 2. Spectrum from the cavity-dumped laser in the positive dispersion regime with 6.5 W pump, with the dumper on and off.
Fig. 3.
Fig. 3. Typical microwave spectrum of the intra-cavity modulated pulse train.
Fig. 4.
Fig. 4. Pulse energy, and average power as a function of dumping rate in the PDR, with 6.5 W pump power.
Fig. 5.
Fig. 5. Spectral (a) and time domain (b) profile of prism-recompressed pulse, reconstructed from FROG measurement.
Fig. 6.
Fig. 6. Spectrum of the filament-induced white light. Inset: A digital photograph of the generated white light continuum.

Metrics