Abstract

The phase noise of two low noise, high quality factor actively modelocked lasers is investigated. It is found that increasing the quality factor of a laser can increase the phase noise relative to the RF source used to modelock the laser, even though the absolute noise of the laser is decreased. The filtering of phase noise from the modelocking source that causes both the increase in relative noise and the decrease in absolute noise is exploited to reveal phase noise information otherwise obscured in a high quality factor laser.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-mode beat phase noise of actively modelocked lasers

Sangyoun Gee, Franklyn Quinlan, Sarper Ozharar, and Peter J. Delfyett
Opt. Express 13(11) 3977-3982 (2005)

Spurious mode reduction in dual injection-locked optoelectronic oscillators

O. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, and M. Horowitz
Opt. Express 19(7) 5839-5854 (2011)

Measurement of mode-locked laser timing jitter by use of phase-encoded optical sampling

Paul W. Juodawlkis, Jonathan C. Twichell, Jeffrey L. Wasserman, Gary E. Betts, and Richard C. Williamson
Opt. Lett. 26(5) 289-291 (2001)

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali, P. Kelkar, and V. Saxena, “Photonic arbitrary waveform generator,” in IEEE/LEOS 2001 Annual Meeting Conference Proceedings, (2001), pp. 253–254
  2. J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Holberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett.41, 2005.
    [Crossref]
  3. H. Taylor, “An optical analog to digital converter-Design and analysis,” J. Quantum Electron 15, 210–216 (1979).
    [Crossref]
  4. D. von der Linde, “Characterization of the noise in continuously operating modelocked lasers,” Appl. Phys. B 39, 201–217(1986).
    [Crossref]
  5. M. E. Grein, L. A. Jiang, H. A. Haus, and E. P. Ippen, “Observation of quantum-limited timing jitter in an active, harmonically mode-locked fiber laser,” Opt. Lett. 27, 957–959 (2002).
    [Crossref]
  6. L. A. Jiang, M. E. Grein, E. P. Ippen, C. McNeilage, J. Searls, and H. Yokoyama, “Quantum limited noise performance of a mode-locked laser diode,” Opt. Lett. 27, 49–51 (2002).
    [Crossref]
  7. T. Yilmaz, C. M. Depriest, A. Braun, J. Abeles, and P. J. Delfyett, “Noise in fundamental and harmonic modelocked semiconductor lasers: Experiments and simulations,” J. Quantum Electron. 39, 838–849 (2003).
    [Crossref]
  8. S. Gee, F. Quinlan, S. Ozharar, P. J. Delfyett, J. J. Plan, and P. W. Juodawlkis, “Ultra-low noise modelocked optical pulse trains from an external cavity laser based on a slab coupled optical waveguide amplifier (SCOWA),” Opt. Lett. 30, 2742–2744 (2005).
    [Crossref] [PubMed]
  9. J. E. Malowicki, M. L. Fanto, M. J. Hayduk, and P. J. Delfyett“Harmonically mode-locked glass waveguide laser with 21-fs timing jitter,” IEEE Photon. Technol. Lett. 17, 40–42 (2005).
    [Crossref]
  10. W. Ng and Y. M. So, “Characterisations of absolute phase noise in fibre-laser modelocked by sapphire-loaded cavity resonator oscillator at 10 GHz,” Electron. Lett.40, (2004).
    [Crossref]
  11. T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling III, “Phase noise measurements of ultrastable 10GHz harmonically modelocked fibre laser,” Electron. Lett. 35, 720–721 (1999).
    [Crossref]
  12. J. Ye, J. L. Hall, and S. A. Diddams, “Precision phase control of an ultrawide-bandwidth femtosecond laser: a network of ultrastable frequency marks across the visible spectrum,” Opt. Lett. 25, 1675–1677 (2000).
    [Crossref]
  13. D. J. Derickson, A. Mar, and J. E. Bowers, “Residual and absolute timing jitter in actively mode-locked semiconductor lasers,” Electron. Lett. 26, 2026–2028 (1990).
    [Crossref]
  14. C. M. DePriest, T. Yilmaz, A. Braun, J. Abeles, and P. J. Delfyett, “High-quality photonics sampling streams from a semiconductor diode ring laser,” J. Quantum Electron.,  38, 380–389 (2002).
    [Crossref]
  15. D. J. Jones, K. W. Holman, M. Notcutt, J. Ye, J. Chandalia, L. A. Jiang, E. P. Ippen, and H. Yokoyama, “Ultralow-jitter, 1550-nm mode-locked semiconductor laser synchronized to a visible optical frequency standard,” Opt. Lett. 28, 813–815 (2003).
    [Crossref] [PubMed]
  16. G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley & Sons, 2002), Chap. 10
    [Crossref]
  17. D. R. Hjelme and A. R. Mickelson, “Theory of timing jitter in actively modelocked lasers,” J. Quantum Electron. 28, 1594–1605 (1992).
    [Crossref]
  18. N. Yu, E. Salik, and L. Maleki, “Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration,” Opt. Lett. 30, 1231–1233 (2005).
    [Crossref] [PubMed]
  19. A. L. Lance, W. D. Seal, and F. Labaar, “Phase noise and AM noise measurements in the frequency domain,” Infrared and Millimeter Waves,  11, 239–289 (1984)

2005 (3)

2003 (2)

T. Yilmaz, C. M. Depriest, A. Braun, J. Abeles, and P. J. Delfyett, “Noise in fundamental and harmonic modelocked semiconductor lasers: Experiments and simulations,” J. Quantum Electron. 39, 838–849 (2003).
[Crossref]

D. J. Jones, K. W. Holman, M. Notcutt, J. Ye, J. Chandalia, L. A. Jiang, E. P. Ippen, and H. Yokoyama, “Ultralow-jitter, 1550-nm mode-locked semiconductor laser synchronized to a visible optical frequency standard,” Opt. Lett. 28, 813–815 (2003).
[Crossref] [PubMed]

2002 (3)

2000 (1)

1999 (1)

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling III, “Phase noise measurements of ultrastable 10GHz harmonically modelocked fibre laser,” Electron. Lett. 35, 720–721 (1999).
[Crossref]

1992 (1)

D. R. Hjelme and A. R. Mickelson, “Theory of timing jitter in actively modelocked lasers,” J. Quantum Electron. 28, 1594–1605 (1992).
[Crossref]

1990 (1)

D. J. Derickson, A. Mar, and J. E. Bowers, “Residual and absolute timing jitter in actively mode-locked semiconductor lasers,” Electron. Lett. 26, 2026–2028 (1990).
[Crossref]

1986 (1)

D. von der Linde, “Characterization of the noise in continuously operating modelocked lasers,” Appl. Phys. B 39, 201–217(1986).
[Crossref]

1984 (1)

A. L. Lance, W. D. Seal, and F. Labaar, “Phase noise and AM noise measurements in the frequency domain,” Infrared and Millimeter Waves,  11, 239–289 (1984)

1979 (1)

H. Taylor, “An optical analog to digital converter-Design and analysis,” J. Quantum Electron 15, 210–216 (1979).
[Crossref]

Abeles, J.

T. Yilmaz, C. M. Depriest, A. Braun, J. Abeles, and P. J. Delfyett, “Noise in fundamental and harmonic modelocked semiconductor lasers: Experiments and simulations,” J. Quantum Electron. 39, 838–849 (2003).
[Crossref]

C. M. DePriest, T. Yilmaz, A. Braun, J. Abeles, and P. J. Delfyett, “High-quality photonics sampling streams from a semiconductor diode ring laser,” J. Quantum Electron.,  38, 380–389 (2002).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley & Sons, 2002), Chap. 10
[Crossref]

Bartels, A.

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Holberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett.41, 2005.
[Crossref]

Bowers, J. E.

D. J. Derickson, A. Mar, and J. E. Bowers, “Residual and absolute timing jitter in actively mode-locked semiconductor lasers,” Electron. Lett. 26, 2026–2028 (1990).
[Crossref]

Braun, A.

T. Yilmaz, C. M. Depriest, A. Braun, J. Abeles, and P. J. Delfyett, “Noise in fundamental and harmonic modelocked semiconductor lasers: Experiments and simulations,” J. Quantum Electron. 39, 838–849 (2003).
[Crossref]

C. M. DePriest, T. Yilmaz, A. Braun, J. Abeles, and P. J. Delfyett, “High-quality photonics sampling streams from a semiconductor diode ring laser,” J. Quantum Electron.,  38, 380–389 (2002).
[Crossref]

Carruthers, T. F.

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling III, “Phase noise measurements of ultrastable 10GHz harmonically modelocked fibre laser,” Electron. Lett. 35, 720–721 (1999).
[Crossref]

Chandalia, J.

Clark, T. R.

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling III, “Phase noise measurements of ultrastable 10GHz harmonically modelocked fibre laser,” Electron. Lett. 35, 720–721 (1999).
[Crossref]

Delfyett, P. J.

J. E. Malowicki, M. L. Fanto, M. J. Hayduk, and P. J. Delfyett“Harmonically mode-locked glass waveguide laser with 21-fs timing jitter,” IEEE Photon. Technol. Lett. 17, 40–42 (2005).
[Crossref]

S. Gee, F. Quinlan, S. Ozharar, P. J. Delfyett, J. J. Plan, and P. W. Juodawlkis, “Ultra-low noise modelocked optical pulse trains from an external cavity laser based on a slab coupled optical waveguide amplifier (SCOWA),” Opt. Lett. 30, 2742–2744 (2005).
[Crossref] [PubMed]

T. Yilmaz, C. M. Depriest, A. Braun, J. Abeles, and P. J. Delfyett, “Noise in fundamental and harmonic modelocked semiconductor lasers: Experiments and simulations,” J. Quantum Electron. 39, 838–849 (2003).
[Crossref]

C. M. DePriest, T. Yilmaz, A. Braun, J. Abeles, and P. J. Delfyett, “High-quality photonics sampling streams from a semiconductor diode ring laser,” J. Quantum Electron.,  38, 380–389 (2002).
[Crossref]

Depriest, C. M.

T. Yilmaz, C. M. Depriest, A. Braun, J. Abeles, and P. J. Delfyett, “Noise in fundamental and harmonic modelocked semiconductor lasers: Experiments and simulations,” J. Quantum Electron. 39, 838–849 (2003).
[Crossref]

C. M. DePriest, T. Yilmaz, A. Braun, J. Abeles, and P. J. Delfyett, “High-quality photonics sampling streams from a semiconductor diode ring laser,” J. Quantum Electron.,  38, 380–389 (2002).
[Crossref]

Derickson, D. J.

D. J. Derickson, A. Mar, and J. E. Bowers, “Residual and absolute timing jitter in actively mode-locked semiconductor lasers,” Electron. Lett. 26, 2026–2028 (1990).
[Crossref]

Diddams, S. A.

J. Ye, J. L. Hall, and S. A. Diddams, “Precision phase control of an ultrawide-bandwidth femtosecond laser: a network of ultrastable frequency marks across the visible spectrum,” Opt. Lett. 25, 1675–1677 (2000).
[Crossref]

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Holberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett.41, 2005.
[Crossref]

Duling III, I. N.

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling III, “Phase noise measurements of ultrastable 10GHz harmonically modelocked fibre laser,” Electron. Lett. 35, 720–721 (1999).
[Crossref]

Fanto, M. L.

J. E. Malowicki, M. L. Fanto, M. J. Hayduk, and P. J. Delfyett“Harmonically mode-locked glass waveguide laser with 21-fs timing jitter,” IEEE Photon. Technol. Lett. 17, 40–42 (2005).
[Crossref]

Gee, S.

Grein, M. E.

Hall, J. L.

Haus, H. A.

Hayduk, M. J.

J. E. Malowicki, M. L. Fanto, M. J. Hayduk, and P. J. Delfyett“Harmonically mode-locked glass waveguide laser with 21-fs timing jitter,” IEEE Photon. Technol. Lett. 17, 40–42 (2005).
[Crossref]

Hjelme, D. R.

D. R. Hjelme and A. R. Mickelson, “Theory of timing jitter in actively modelocked lasers,” J. Quantum Electron. 28, 1594–1605 (1992).
[Crossref]

Holberg, L.

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Holberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett.41, 2005.
[Crossref]

Holman, K. W.

Ippen, E. P.

Ivanov, E. N.

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Holberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett.41, 2005.
[Crossref]

Jalali, B.

B. Jalali, P. Kelkar, and V. Saxena, “Photonic arbitrary waveform generator,” in IEEE/LEOS 2001 Annual Meeting Conference Proceedings, (2001), pp. 253–254

Jiang, L. A.

Jones, D. J.

Juodawlkis, P. W.

Kelkar, P.

B. Jalali, P. Kelkar, and V. Saxena, “Photonic arbitrary waveform generator,” in IEEE/LEOS 2001 Annual Meeting Conference Proceedings, (2001), pp. 253–254

Labaar, F.

A. L. Lance, W. D. Seal, and F. Labaar, “Phase noise and AM noise measurements in the frequency domain,” Infrared and Millimeter Waves,  11, 239–289 (1984)

Lance, A. L.

A. L. Lance, W. D. Seal, and F. Labaar, “Phase noise and AM noise measurements in the frequency domain,” Infrared and Millimeter Waves,  11, 239–289 (1984)

Maleki, L.

Malowicki, J. E.

J. E. Malowicki, M. L. Fanto, M. J. Hayduk, and P. J. Delfyett“Harmonically mode-locked glass waveguide laser with 21-fs timing jitter,” IEEE Photon. Technol. Lett. 17, 40–42 (2005).
[Crossref]

Mar, A.

D. J. Derickson, A. Mar, and J. E. Bowers, “Residual and absolute timing jitter in actively mode-locked semiconductor lasers,” Electron. Lett. 26, 2026–2028 (1990).
[Crossref]

Matthews, P. J.

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling III, “Phase noise measurements of ultrastable 10GHz harmonically modelocked fibre laser,” Electron. Lett. 35, 720–721 (1999).
[Crossref]

McFerran, J. J.

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Holberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett.41, 2005.
[Crossref]

McNeilage, C.

Mickelson, A. R.

D. R. Hjelme and A. R. Mickelson, “Theory of timing jitter in actively modelocked lasers,” J. Quantum Electron. 28, 1594–1605 (1992).
[Crossref]

Ng, W.

W. Ng and Y. M. So, “Characterisations of absolute phase noise in fibre-laser modelocked by sapphire-loaded cavity resonator oscillator at 10 GHz,” Electron. Lett.40, (2004).
[Crossref]

Notcutt, M.

Oates, C. W.

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Holberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett.41, 2005.
[Crossref]

Ozharar, S.

Plan, J. J.

Quinlan, F.

Salik, E.

Saxena, V.

B. Jalali, P. Kelkar, and V. Saxena, “Photonic arbitrary waveform generator,” in IEEE/LEOS 2001 Annual Meeting Conference Proceedings, (2001), pp. 253–254

Seal, W. D.

A. L. Lance, W. D. Seal, and F. Labaar, “Phase noise and AM noise measurements in the frequency domain,” Infrared and Millimeter Waves,  11, 239–289 (1984)

Searls, J.

So, Y. M.

W. Ng and Y. M. So, “Characterisations of absolute phase noise in fibre-laser modelocked by sapphire-loaded cavity resonator oscillator at 10 GHz,” Electron. Lett.40, (2004).
[Crossref]

Taylor, H.

H. Taylor, “An optical analog to digital converter-Design and analysis,” J. Quantum Electron 15, 210–216 (1979).
[Crossref]

von der Linde, D.

D. von der Linde, “Characterization of the noise in continuously operating modelocked lasers,” Appl. Phys. B 39, 201–217(1986).
[Crossref]

Wilpers, G.

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Holberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett.41, 2005.
[Crossref]

Ye, J.

Yilmaz, T.

T. Yilmaz, C. M. Depriest, A. Braun, J. Abeles, and P. J. Delfyett, “Noise in fundamental and harmonic modelocked semiconductor lasers: Experiments and simulations,” J. Quantum Electron. 39, 838–849 (2003).
[Crossref]

C. M. DePriest, T. Yilmaz, A. Braun, J. Abeles, and P. J. Delfyett, “High-quality photonics sampling streams from a semiconductor diode ring laser,” J. Quantum Electron.,  38, 380–389 (2002).
[Crossref]

Yokoyama, H.

Yu, N.

Appl. Phys. B (1)

D. von der Linde, “Characterization of the noise in continuously operating modelocked lasers,” Appl. Phys. B 39, 201–217(1986).
[Crossref]

Electron. Lett. (2)

D. J. Derickson, A. Mar, and J. E. Bowers, “Residual and absolute timing jitter in actively mode-locked semiconductor lasers,” Electron. Lett. 26, 2026–2028 (1990).
[Crossref]

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling III, “Phase noise measurements of ultrastable 10GHz harmonically modelocked fibre laser,” Electron. Lett. 35, 720–721 (1999).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. E. Malowicki, M. L. Fanto, M. J. Hayduk, and P. J. Delfyett“Harmonically mode-locked glass waveguide laser with 21-fs timing jitter,” IEEE Photon. Technol. Lett. 17, 40–42 (2005).
[Crossref]

Infrared and Millimeter Waves (1)

A. L. Lance, W. D. Seal, and F. Labaar, “Phase noise and AM noise measurements in the frequency domain,” Infrared and Millimeter Waves,  11, 239–289 (1984)

J. Quantum Electron (1)

H. Taylor, “An optical analog to digital converter-Design and analysis,” J. Quantum Electron 15, 210–216 (1979).
[Crossref]

J. Quantum Electron. (3)

T. Yilmaz, C. M. Depriest, A. Braun, J. Abeles, and P. J. Delfyett, “Noise in fundamental and harmonic modelocked semiconductor lasers: Experiments and simulations,” J. Quantum Electron. 39, 838–849 (2003).
[Crossref]

D. R. Hjelme and A. R. Mickelson, “Theory of timing jitter in actively modelocked lasers,” J. Quantum Electron. 28, 1594–1605 (1992).
[Crossref]

C. M. DePriest, T. Yilmaz, A. Braun, J. Abeles, and P. J. Delfyett, “High-quality photonics sampling streams from a semiconductor diode ring laser,” J. Quantum Electron.,  38, 380–389 (2002).
[Crossref]

Opt. Lett. (6)

Other (4)

B. Jalali, P. Kelkar, and V. Saxena, “Photonic arbitrary waveform generator,” in IEEE/LEOS 2001 Annual Meeting Conference Proceedings, (2001), pp. 253–254

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Holberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett.41, 2005.
[Crossref]

W. Ng and Y. M. So, “Characterisations of absolute phase noise in fibre-laser modelocked by sapphire-loaded cavity resonator oscillator at 10 GHz,” Electron. Lett.40, (2004).
[Crossref]

G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley & Sons, 2002), Chap. 10
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Measurement schematic for a frequency discriminator. DUT: device under test; PS: phase shifter; DBM: double balanced mixer; LPF: low pass filter; LNA: low noise amplifier; RFSA: radio frequency spectrum analyzer
Fig. 2.
Fig. 2. Measurement of the noise of a modelocked laser relative to the modelocking source. ML: modelocked laser; PS: phase shifter; DBM double balanced mixer; LPF: low pass filter; LNA: low noise amplifier; RFSA: radio frequency spectrum analyzer
Fig. 3.
Fig. 3. Semiconductor based fiberized ring laser schematic. BPF: bandpass filter; PC: polarization controller; IM: intensity modulator; I: isolator; FD 100 meter fiber delay; SOA: semiconductor optical amplifier
Fig. 4.
Fig. 4. Frequency discriminator measurements of the RF source (i), the semiconductor laser (ii), and the fiber laser (iii). Curve (iv) is the noise floor.
Fig. 5.
Fig. 5. Residual noise measurements using the setup in Fig. 2 of the semiconductor laser (ii), and the fiber laser (iii). The absolute noise of the RF source is shown in curve (i).
Fig. 6.
Fig. 6. “In series” (a) and “in parallel” (b) measurement schematics. The noise of L2 in (a) can be measured relative to either the RF source or L1 depending on the position of the switch.
Fig. 7.
Fig. 7. “In series” phase noise measurements below 1 MHz. (a) Semiconductor laser noise relative to the erbium laser (b) Semiconductor laser noise relative to the RF source
Fig. 8.
Fig. 8. “In series” phase noise measurements above 1 MHz. (a) Semiconductor laser noise relative to the erbium laser, 1 MHz to 10 MHz. (b) Semiconductor laser noise relative to the RF source, 1 MHZ to 10 MHz, where a filtering effect is apparent. (c) Semiconductor laser noise relative to the RF source, 10 MHz to 100 MHz, showing the periodicity of the filtering. The blue dotted line of (c) shows the varying strength of the erbium laser’s supermode spurs.
Fig. 9.
Fig. 9. (a) Lasers “in parallel” measurement and (b) the comparison of the “in parallel” measurement multiplied by the FD transfer function to the FD measurement of the SL. The red curve in (b) is the FD measurement, and the black curve is the lasers “in parallel” measurement multiplied by the FD transfer function.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S ( t ) = V 0 cos [ ω 0 t + ϕ ( t ) ]
R ( t ) = V 0 cos [ ω 0 t + γ ( t ) ]
V ( t ) = ϕ ( t ) γ ( t )
S ϕ , γ ( ω ) = S ϕ ( ω ) + S γ ( ω ) .
S ϕ ( ω ) = S ϕ , γ ( ω ) + S ϕ , σ ( ω ) S σ , γ ( ω ) 2 .
S F D ( ω ) = 2 · S ϕ ( ω ) · ( 1 cos ( ω τ ) )

Metrics