Abstract

We show all-optical time domain add-drop multiplexing for a phase modulated OTDM signal for the first time, to our knowledge. The add-drop multiplexer is constructed of a Kerr shutter consisting of a 375 m long highly nonlinear fiber (HNLF), γ=20 W-1km-1. Successful time domain add-drop multiplexing is shown for 80 Gb/s RZ-DPSK OTDM signals with a 10 Gb/s base rate.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All fiber-based 160-Gbit/s add/drop multiplexer incorporating a 1-m-long Bismuth Oxide-based ultra-high nonlinearity fiber

Ju Han Lee, Kazuro Kikuchi, Tatsuo Nagashima, Tomoharu Hasegawa, Seiki Ohara, and Naoki Sugimoto
Opt. Express 13(18) 6864-6869 (2005)

Orthogonal tributary channel exchange of 160-Gbit/s pol-muxed DPSK signal

Jian Wang, Omer F. Yilmaz, Scott R. Nuccio, Xiaoxia Wu, and Alan E. Willner
Opt. Express 18(16) 16995-17008 (2010)

Pulsed pump wavelength exchange for high speed signal de-multiplexing

C. H. Kwok, Bill P. P. Kuo, and Kenneth K. Y. Wong
Opt. Express 16(15) 10894-10899 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. Gnauck and P. Winzer, “Optical Phase-Shift-Keyed Transmission,” J. Lightwave Technol. 23, 115–130 (2005).
    [Crossref]
  2. K. Croussore, I. Kim, Y. Han, C. Kim, and G. Li, “Demonstration of phase-regeneration of DPSK signals based on phase-sensitive amplification,” Opt. Express 13, 3945–3950 (2005).
    [Crossref] [PubMed]
  3. E. J. M. Verdurmen, Y. Zhao, E. Tangdiongga, J. P. Turkiewicz, G. D. Khoe, and H. de Waardt, “Error-free all-optical add-drop multiplexing using HNLF in a NOLM at 160 Gbit/s,” Electron. Lett. 41, 349–350 (2005).
    [Crossref]
  4. J. H. Lee, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “All fiber-based 160-Gbit/s add/drop multiplexer incorporating a 1-m-long Bismuth Oxide-based ultra-high nonlinearity fiber,” Opt. Express 13, 6864–6869 (2005).
    [Crossref] [PubMed]
  5. L. Rau, S. Rangarajan, W. Wei, and D. J. Blumenthal, “All-optical add-drop of an OTDM channel using an ultra-fast fiber based wavelength converter,” in OFC 2002 Proceedings, pp. 259–261 (2002).
  6. J. Li, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, “OTDM Add-Drop Multiplexer Based XPM-Induced Wavelength Shifting in Highly Nonlinear Fiber,” J. Lightwave Technol. 23, 2654–2661 (2005).
    [Crossref]
  7. C. Schubert, C. Schmidt-Langhorst, K. Schulze, V. Marembert, and H. Weber, “Time division Add-Drop Multiplexing up to 320 Gbit/s,” in OFC 2005 Proceedings, vol. 4 (2005). OThN2.
  8. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2001).

2005 (5)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2001).

Andrekson, P. A.

Blumenthal, D. J.

L. Rau, S. Rangarajan, W. Wei, and D. J. Blumenthal, “All-optical add-drop of an OTDM channel using an ultra-fast fiber based wavelength converter,” in OFC 2002 Proceedings, pp. 259–261 (2002).

Croussore, K.

de Waardt, H.

E. J. M. Verdurmen, Y. Zhao, E. Tangdiongga, J. P. Turkiewicz, G. D. Khoe, and H. de Waardt, “Error-free all-optical add-drop multiplexing using HNLF in a NOLM at 160 Gbit/s,” Electron. Lett. 41, 349–350 (2005).
[Crossref]

Gnauck, A.

Han, Y.

Hasegawa, T.

Karlsson, M.

Khoe, G. D.

E. J. M. Verdurmen, Y. Zhao, E. Tangdiongga, J. P. Turkiewicz, G. D. Khoe, and H. de Waardt, “Error-free all-optical add-drop multiplexing using HNLF in a NOLM at 160 Gbit/s,” Electron. Lett. 41, 349–350 (2005).
[Crossref]

Kikuchi, K.

Kim, C.

Kim, I.

Lee, J. H.

Li, G.

Li, J.

Marembert, V.

C. Schubert, C. Schmidt-Langhorst, K. Schulze, V. Marembert, and H. Weber, “Time division Add-Drop Multiplexing up to 320 Gbit/s,” in OFC 2005 Proceedings, vol. 4 (2005). OThN2.

Nagashima, T.

Ohara, S.

Olsson, B.-E.

Rangarajan, S.

L. Rau, S. Rangarajan, W. Wei, and D. J. Blumenthal, “All-optical add-drop of an OTDM channel using an ultra-fast fiber based wavelength converter,” in OFC 2002 Proceedings, pp. 259–261 (2002).

Rau, L.

L. Rau, S. Rangarajan, W. Wei, and D. J. Blumenthal, “All-optical add-drop of an OTDM channel using an ultra-fast fiber based wavelength converter,” in OFC 2002 Proceedings, pp. 259–261 (2002).

Schmidt-Langhorst, C.

C. Schubert, C. Schmidt-Langhorst, K. Schulze, V. Marembert, and H. Weber, “Time division Add-Drop Multiplexing up to 320 Gbit/s,” in OFC 2005 Proceedings, vol. 4 (2005). OThN2.

Schubert, C.

C. Schubert, C. Schmidt-Langhorst, K. Schulze, V. Marembert, and H. Weber, “Time division Add-Drop Multiplexing up to 320 Gbit/s,” in OFC 2005 Proceedings, vol. 4 (2005). OThN2.

Schulze, K.

C. Schubert, C. Schmidt-Langhorst, K. Schulze, V. Marembert, and H. Weber, “Time division Add-Drop Multiplexing up to 320 Gbit/s,” in OFC 2005 Proceedings, vol. 4 (2005). OThN2.

Sugimoto, N.

Tangdiongga, E.

E. J. M. Verdurmen, Y. Zhao, E. Tangdiongga, J. P. Turkiewicz, G. D. Khoe, and H. de Waardt, “Error-free all-optical add-drop multiplexing using HNLF in a NOLM at 160 Gbit/s,” Electron. Lett. 41, 349–350 (2005).
[Crossref]

Turkiewicz, J. P.

E. J. M. Verdurmen, Y. Zhao, E. Tangdiongga, J. P. Turkiewicz, G. D. Khoe, and H. de Waardt, “Error-free all-optical add-drop multiplexing using HNLF in a NOLM at 160 Gbit/s,” Electron. Lett. 41, 349–350 (2005).
[Crossref]

Verdurmen, E. J. M.

E. J. M. Verdurmen, Y. Zhao, E. Tangdiongga, J. P. Turkiewicz, G. D. Khoe, and H. de Waardt, “Error-free all-optical add-drop multiplexing using HNLF in a NOLM at 160 Gbit/s,” Electron. Lett. 41, 349–350 (2005).
[Crossref]

Weber, H.

C. Schubert, C. Schmidt-Langhorst, K. Schulze, V. Marembert, and H. Weber, “Time division Add-Drop Multiplexing up to 320 Gbit/s,” in OFC 2005 Proceedings, vol. 4 (2005). OThN2.

Wei, W.

L. Rau, S. Rangarajan, W. Wei, and D. J. Blumenthal, “All-optical add-drop of an OTDM channel using an ultra-fast fiber based wavelength converter,” in OFC 2002 Proceedings, pp. 259–261 (2002).

Winzer, P.

Zhao, Y.

E. J. M. Verdurmen, Y. Zhao, E. Tangdiongga, J. P. Turkiewicz, G. D. Khoe, and H. de Waardt, “Error-free all-optical add-drop multiplexing using HNLF in a NOLM at 160 Gbit/s,” Electron. Lett. 41, 349–350 (2005).
[Crossref]

Electron. Lett. (1)

E. J. M. Verdurmen, Y. Zhao, E. Tangdiongga, J. P. Turkiewicz, G. D. Khoe, and H. de Waardt, “Error-free all-optical add-drop multiplexing using HNLF in a NOLM at 160 Gbit/s,” Electron. Lett. 41, 349–350 (2005).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (2)

Other (3)

L. Rau, S. Rangarajan, W. Wei, and D. J. Blumenthal, “All-optical add-drop of an OTDM channel using an ultra-fast fiber based wavelength converter,” in OFC 2002 Proceedings, pp. 259–261 (2002).

C. Schubert, C. Schmidt-Langhorst, K. Schulze, V. Marembert, and H. Weber, “Time division Add-Drop Multiplexing up to 320 Gbit/s,” in OFC 2005 Proceedings, vol. 4 (2005). OThN2.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagram of the 80 Gb/s RZ-DPSK OTDM transmitter. OBPF: Optical Band Pass Filter, PC: Polarization Controller, EDFA: Erbium Doped Fiber Amplifier, PM: Phase Modulator, MUX: Multiplexer, HNLF: Highly Nonlinear Fiber, PBS: Polarization Beam Splitter, τ: tuneable optical delay line.
Fig. 2.
Fig. 2. Schematic diagram of the 80 Gb/s add-drop node. MZI: Mach-Zehnder interferometer, EAM: electroabsorption modulator, VA: variable attenuator. The inset show the in-and output spectrum of the HNLF.
Fig. 3.
Fig. 3. Two consecutive EAMs serve as demultiplexer from 80 to 10 Gb/s.
Fig. 4.
Fig. 4. Characteristics of the Kerr shutter.
Fig. 5.
Fig. 5. Eye diagrams of the optical add-drop node at 80 Gb/s RZ-DPSK OTDM.
Fig. 6.
Fig. 6. BER measurement of the 80 Gb/s RZ-DPSK OTDM add-drop node.

Tables (1)

Tables Icon

Table 1. Summary of the penalty contributions relative to the back-to-back BER curve.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T PBS 1 = 1 4 1 exp ( i Δ ϕ ) 2 = sin 2 ( Δϕ 2 )
T PBS 2 = cos 2 ( Δϕ 2 )

Metrics