Abstract

We report what is believed to be the first example of phase shifted bandpass filter written on the fiber Bragg grating (FBG) through CO2 laser irradiation. The filter is realized by fiber residual stress relaxation effect. The induced phase shifts in different position can produce multiple narrow passbands within the stopband of the FBG. The produced filter is compact, stable, cost effective, and its bandpass profile is easy to control.

©2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wide-passband, temperature-insensitive, and compact π-phase-shifted long-period gratings in endlessly single-mode photonic crystal fiber

Yinian Zhu, Ping Shum, Hui-Wen Bay, Xiaoyan Chen, Ching-Hwee Tan, and Chao Lu
Opt. Lett. 29(22) 2608-2610 (2004)

Resonance-temperature-insensitive phase-shifted long-period fiber gratings induced by surface deformation with anomalous strain characteristics

Yinian Zhu, Ping Shum, Xiaoyan Chen, Ching-Hwee Tan, and Chao Lu
Opt. Lett. 30(14) 1788-1790 (2005)

Effect of CO2 laser irradiation on the refractive-index change in optical fibers

Bok Hyeon Kim, Tae-Jung Ahn, Dug Young Kim, Byeong Ha Lee, Youngjoo Chung, Un-Chul Paek, and Won-Taek Han
Appl. Opt. 41(19) 3809-3815 (2002)

References

  • View by:
  • |
  • |
  • |

  1. G.P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997, (1994).
    [Crossref]
  2. P. W. Baumeister, “Design of a coarse WDM bandpass filter using the Thelen bandpass design method,” Opt. Express 9, 652–657 (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-12-652
    [Crossref] [PubMed]
  3. I. C. M. Littler, M. Rochette, and B. J. Eggleton, “Adjustable bandwidth dispersionless bandpass FBG optical filter,” Opt. Express 13, 3397–3407 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3397
    [Crossref] [PubMed]
  4. Scott Foster, “Spatial Mode Structure of the Distributed Feedback fiber laser,” IEEE J. Quantum Electronics 40, 884–892, (2004).
    [Crossref]
  5. M. LeBlanc, S.T. Vohra, T.E. Tsai, and E.J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt.Lett. 24, 1091–1093, (1999).
    [Crossref]
  6. R. KashYap, P.F. Mckee, and D. Armes, “UV written reflection grating structures in photosensitive optical fibres using phase shifted phase masks,” Electron. Lett. 30, 1977–1978, (1994).
    [Crossref]
  7. J. Canning and M.G. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30, 1344–1345, (1994).
    [Crossref]
  8. S. Gupta, T. Mizunami, and T. Shimomura, “Computer control of fiber Bragg gratings spectral characteristics using a thermal head,” J.Lightwave Technol. 15, 1925–1928, (1997).
    [Crossref]
  9. C.J.S. de Matos, P. Torres, L.C.G. Valente, W. Margulis, and R. Stubbe, “Fiber grating characterization and shaping by local pressure,” J. Lightwave Technol. 19, 1206–1211, (2001).
    [Crossref]
  10. Hyung Suk Ryu, Yongwoo Park, Seong Tae Oh, Yongjoo Chung, and Dug Young Kim, “Effect of asymmetric stress relaxation on the polarization-dependent transmission characteristics of a CO2 laser-written long-period fiber grating,” Opt. Lett. 28, 155–157, (2003).
    [Crossref] [PubMed]
  11. Yinian Zhu, Ping Shum, Hui-wen Bay, Min Yan, Xia Yu, Juanjuan Hu, Jianzhong Hao, and Chao Lu, “Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber,” Opt. Lett. 30, .367–369, (2005).
    [Crossref] [PubMed]
  12. Bok Hyeon Kim, Tae-Jung Ahn, Dug Young Kim, Byeong Ha Lee, Yongjoo Chung, Un-Chul Paek, and Won-Taek Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Applied Optics 41, 3809–3815, (2002).
    [Crossref] [PubMed]
  13. Yicheng Lai, W. Zhang, L. Zhang, J.A.R. Williams, and I. Bennion, “Optically tunable fiber grating transmission filters,” Opt. Lett. 28, 2446–2448, (2003).
    [Crossref] [PubMed]
  14. Y. Yoshikuri and G. Motosugi, “Multielectrode distributed feedback laser for pure frequency modulation and chirping suppressed amplitude modulation,” J. Lighwave Technol. LT -5, 516–522, (1987).
    [Crossref]

2005 (2)

2004 (1)

Scott Foster, “Spatial Mode Structure of the Distributed Feedback fiber laser,” IEEE J. Quantum Electronics 40, 884–892, (2004).
[Crossref]

2003 (2)

2002 (1)

Bok Hyeon Kim, Tae-Jung Ahn, Dug Young Kim, Byeong Ha Lee, Yongjoo Chung, Un-Chul Paek, and Won-Taek Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Applied Optics 41, 3809–3815, (2002).
[Crossref] [PubMed]

2001 (2)

1999 (1)

M. LeBlanc, S.T. Vohra, T.E. Tsai, and E.J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt.Lett. 24, 1091–1093, (1999).
[Crossref]

1997 (1)

S. Gupta, T. Mizunami, and T. Shimomura, “Computer control of fiber Bragg gratings spectral characteristics using a thermal head,” J.Lightwave Technol. 15, 1925–1928, (1997).
[Crossref]

1994 (3)

G.P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997, (1994).
[Crossref]

R. KashYap, P.F. Mckee, and D. Armes, “UV written reflection grating structures in photosensitive optical fibres using phase shifted phase masks,” Electron. Lett. 30, 1977–1978, (1994).
[Crossref]

J. Canning and M.G. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30, 1344–1345, (1994).
[Crossref]

1987 (1)

Y. Yoshikuri and G. Motosugi, “Multielectrode distributed feedback laser for pure frequency modulation and chirping suppressed amplitude modulation,” J. Lighwave Technol. LT -5, 516–522, (1987).
[Crossref]

Agrawal, G.P.

G.P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997, (1994).
[Crossref]

Ahn, Tae-Jung

Bok Hyeon Kim, Tae-Jung Ahn, Dug Young Kim, Byeong Ha Lee, Yongjoo Chung, Un-Chul Paek, and Won-Taek Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Applied Optics 41, 3809–3815, (2002).
[Crossref] [PubMed]

Armes, D.

R. KashYap, P.F. Mckee, and D. Armes, “UV written reflection grating structures in photosensitive optical fibres using phase shifted phase masks,” Electron. Lett. 30, 1977–1978, (1994).
[Crossref]

Baumeister, P. W.

Bay, Hui-wen

Bennion, I.

Canning, J.

J. Canning and M.G. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30, 1344–1345, (1994).
[Crossref]

Chung, Yongjoo

Hyung Suk Ryu, Yongwoo Park, Seong Tae Oh, Yongjoo Chung, and Dug Young Kim, “Effect of asymmetric stress relaxation on the polarization-dependent transmission characteristics of a CO2 laser-written long-period fiber grating,” Opt. Lett. 28, 155–157, (2003).
[Crossref] [PubMed]

Bok Hyeon Kim, Tae-Jung Ahn, Dug Young Kim, Byeong Ha Lee, Yongjoo Chung, Un-Chul Paek, and Won-Taek Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Applied Optics 41, 3809–3815, (2002).
[Crossref] [PubMed]

de Matos, C.J.S.

Eggleton, B. J.

Foster, Scott

Scott Foster, “Spatial Mode Structure of the Distributed Feedback fiber laser,” IEEE J. Quantum Electronics 40, 884–892, (2004).
[Crossref]

Friebele, E.J.

M. LeBlanc, S.T. Vohra, T.E. Tsai, and E.J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt.Lett. 24, 1091–1093, (1999).
[Crossref]

Gupta, S.

S. Gupta, T. Mizunami, and T. Shimomura, “Computer control of fiber Bragg gratings spectral characteristics using a thermal head,” J.Lightwave Technol. 15, 1925–1928, (1997).
[Crossref]

Han, Won-Taek

Bok Hyeon Kim, Tae-Jung Ahn, Dug Young Kim, Byeong Ha Lee, Yongjoo Chung, Un-Chul Paek, and Won-Taek Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Applied Optics 41, 3809–3815, (2002).
[Crossref] [PubMed]

Hao, Jianzhong

Hu, Juanjuan

KashYap, R.

R. KashYap, P.F. Mckee, and D. Armes, “UV written reflection grating structures in photosensitive optical fibres using phase shifted phase masks,” Electron. Lett. 30, 1977–1978, (1994).
[Crossref]

Kim, Bok Hyeon

Bok Hyeon Kim, Tae-Jung Ahn, Dug Young Kim, Byeong Ha Lee, Yongjoo Chung, Un-Chul Paek, and Won-Taek Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Applied Optics 41, 3809–3815, (2002).
[Crossref] [PubMed]

Kim, Dug Young

Hyung Suk Ryu, Yongwoo Park, Seong Tae Oh, Yongjoo Chung, and Dug Young Kim, “Effect of asymmetric stress relaxation on the polarization-dependent transmission characteristics of a CO2 laser-written long-period fiber grating,” Opt. Lett. 28, 155–157, (2003).
[Crossref] [PubMed]

Bok Hyeon Kim, Tae-Jung Ahn, Dug Young Kim, Byeong Ha Lee, Yongjoo Chung, Un-Chul Paek, and Won-Taek Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Applied Optics 41, 3809–3815, (2002).
[Crossref] [PubMed]

Lai, Yicheng

LeBlanc, M.

M. LeBlanc, S.T. Vohra, T.E. Tsai, and E.J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt.Lett. 24, 1091–1093, (1999).
[Crossref]

Lee, Byeong Ha

Bok Hyeon Kim, Tae-Jung Ahn, Dug Young Kim, Byeong Ha Lee, Yongjoo Chung, Un-Chul Paek, and Won-Taek Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Applied Optics 41, 3809–3815, (2002).
[Crossref] [PubMed]

Littler, I. C. M.

Lu, Chao

Margulis, W.

Mckee, P.F.

R. KashYap, P.F. Mckee, and D. Armes, “UV written reflection grating structures in photosensitive optical fibres using phase shifted phase masks,” Electron. Lett. 30, 1977–1978, (1994).
[Crossref]

Mizunami, T.

S. Gupta, T. Mizunami, and T. Shimomura, “Computer control of fiber Bragg gratings spectral characteristics using a thermal head,” J.Lightwave Technol. 15, 1925–1928, (1997).
[Crossref]

Motosugi, G.

Y. Yoshikuri and G. Motosugi, “Multielectrode distributed feedback laser for pure frequency modulation and chirping suppressed amplitude modulation,” J. Lighwave Technol. LT -5, 516–522, (1987).
[Crossref]

Oh, Seong Tae

Paek, Un-Chul

Bok Hyeon Kim, Tae-Jung Ahn, Dug Young Kim, Byeong Ha Lee, Yongjoo Chung, Un-Chul Paek, and Won-Taek Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Applied Optics 41, 3809–3815, (2002).
[Crossref] [PubMed]

Park, Yongwoo

Radic, S.

G.P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997, (1994).
[Crossref]

Rochette, M.

Ryu, Hyung Suk

Sceats, M.G.

J. Canning and M.G. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30, 1344–1345, (1994).
[Crossref]

Shimomura, T.

S. Gupta, T. Mizunami, and T. Shimomura, “Computer control of fiber Bragg gratings spectral characteristics using a thermal head,” J.Lightwave Technol. 15, 1925–1928, (1997).
[Crossref]

Shum, Ping

Stubbe, R.

Torres, P.

Tsai, T.E.

M. LeBlanc, S.T. Vohra, T.E. Tsai, and E.J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt.Lett. 24, 1091–1093, (1999).
[Crossref]

Valente, L.C.G.

Vohra, S.T.

M. LeBlanc, S.T. Vohra, T.E. Tsai, and E.J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt.Lett. 24, 1091–1093, (1999).
[Crossref]

Williams, J.A.R.

Yan, Min

Yoshikuri, Y.

Y. Yoshikuri and G. Motosugi, “Multielectrode distributed feedback laser for pure frequency modulation and chirping suppressed amplitude modulation,” J. Lighwave Technol. LT -5, 516–522, (1987).
[Crossref]

Yu, Xia

Zhang, L.

Zhang, W.

Zhu, Yinian

Applied Optics (1)

Bok Hyeon Kim, Tae-Jung Ahn, Dug Young Kim, Byeong Ha Lee, Yongjoo Chung, Un-Chul Paek, and Won-Taek Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Applied Optics 41, 3809–3815, (2002).
[Crossref] [PubMed]

Electron. Lett. (2)

R. KashYap, P.F. Mckee, and D. Armes, “UV written reflection grating structures in photosensitive optical fibres using phase shifted phase masks,” Electron. Lett. 30, 1977–1978, (1994).
[Crossref]

J. Canning and M.G. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30, 1344–1345, (1994).
[Crossref]

IEEE J. Quantum Electronics (1)

Scott Foster, “Spatial Mode Structure of the Distributed Feedback fiber laser,” IEEE J. Quantum Electronics 40, 884–892, (2004).
[Crossref]

IEEE Photon. Technol. Lett. (1)

G.P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997, (1994).
[Crossref]

J. Lightwave Technol. (1)

J. Lighwave Technol. (1)

Y. Yoshikuri and G. Motosugi, “Multielectrode distributed feedback laser for pure frequency modulation and chirping suppressed amplitude modulation,” J. Lighwave Technol. LT -5, 516–522, (1987).
[Crossref]

J.Lightwave Technol. (1)

S. Gupta, T. Mizunami, and T. Shimomura, “Computer control of fiber Bragg gratings spectral characteristics using a thermal head,” J.Lightwave Technol. 15, 1925–1928, (1997).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Opt.Lett. (1)

M. LeBlanc, S.T. Vohra, T.E. Tsai, and E.J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt.Lett. 24, 1091–1093, (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of the experimental setup
Fig. 2.
Fig. 2. Optical micrograph of a PSFBG
Fig. 3.
Fig. 3. The transmission spectrums of FBG and PSFBG
Fig. 4.
Fig. 4. The transmission spectrum of two bandpass peaks
Fig. 5.
Fig. 5. The transmission spectrum of three bandpass peaks
Fig. 6.
Fig. 6. The phase peak shifts in PSFBG
Fig. 7.
Fig. 7. The bandpass profile control of PSFBG.

Metrics