Abstract

We present a curve fitting method for measuring the spectral distribution of femtosecond laser pulses with Young’s double-pair interference. The method is applicable to cancel the influence of the mutual coherent portion in the spectrum measurement.

©2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Absolute determination of the wavelength and spectrum of an extreme-ultraviolet beam by a Young’s double-slit measurement

R. A. Bartels, A. Paul, M. M. Murnane, H. C. Kapteyn, S. Backus, Y. Liu, and D. T. Attwood
Opt. Lett. 27(9) 707-709 (2002)

Ultra-broad and coherent white light generation in silica glass by focused femtosecond pulses at 1.5 μm

A. Saliminia, S. L. Chin, and R. Vallée
Opt. Express 13(15) 5731-5738 (2005)

Wigner distribution measurements of the spatial coherence properties of the free-electron laser FLASH

Tobias Mey, Bernd Schäfer, Klaus Mann, Barbara Keitel, Marion Kuhlmann, and Elke Plönjes
Opt. Express 22(13) 16571-16584 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics, (Cambridge University Press, 1999).
  2. R. Netz and T. Feurer, “Diffraction of ultrashort laser pulses and applications for measuring pulse front distortion and pulse width,” Appl. Phys. B 70, 813 (2000).
    [Crossref]
  3. R. A. Bartels, A. Paul, M. M. Murnane, H. C. Kapteyn, S. Backus, Y. Liu, and D. T. Attwood, “Absolute determination of the wavelength and spectrum of an extreme-ultraviolet beam by a Young’s double-slit measurement,” Opt. Lett. 27, 707 (2002).
    [Crossref]

2002 (1)

2000 (1)

R. Netz and T. Feurer, “Diffraction of ultrashort laser pulses and applications for measuring pulse front distortion and pulse width,” Appl. Phys. B 70, 813 (2000).
[Crossref]

Attwood, D. T.

Backus, S.

Bartels, R. A.

Born, M.

M. Born and E. Wolf, Principles of Optics, (Cambridge University Press, 1999).

Feurer, T.

R. Netz and T. Feurer, “Diffraction of ultrashort laser pulses and applications for measuring pulse front distortion and pulse width,” Appl. Phys. B 70, 813 (2000).
[Crossref]

Kapteyn, H. C.

Liu, Y.

Murnane, M. M.

Netz, R.

R. Netz and T. Feurer, “Diffraction of ultrashort laser pulses and applications for measuring pulse front distortion and pulse width,” Appl. Phys. B 70, 813 (2000).
[Crossref]

Paul, A.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, (Cambridge University Press, 1999).

Appl. Phys. B (1)

R. Netz and T. Feurer, “Diffraction of ultrashort laser pulses and applications for measuring pulse front distortion and pulse width,” Appl. Phys. B 70, 813 (2000).
[Crossref]

Opt. Lett. (1)

Other (1)

M. Born and E. Wolf, Principles of Optics, (Cambridge University Press, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Experimental setup for the measurement of a pure spectral profile.
Fig. 2.
Fig. 2. Measured experimental data.
Fig. 3.
Fig. 3. Curve-fitting results for (i) |U 1|2+|U 2|2, (ii) |U 1|2, and (iii) |U 2|2.
Fig. 4.
Fig. 4. (a) Fourier transform of the experimental result by canceling the mutual coherence portion. (b) Extracted spectral profile of the incident laser beam shown in Fig. 4(a).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I CCD = E out ( t ) 2 dt ,
I CCD = 1 2 π E out ( ω ) 2 = 1 2 π E in ( ω ) 2 U ( ω ) 2 ,
U ( ω ) 2 = U 1 ( ω ) 2 + U 1 ( ω ) 2 + 2 U 1 ( ω ) U 2 ( ω ) cos ( xd cz ω ) ,
I CCD = [ U 1 ( ω 0 ) 2 + U 2 ( ω 0 ) 2 ] E in ( ω ) 2 + 2 U 1 ( ω 0 ) E in ( ω ) 2 cos ( xd cz ω ) .
I s = I CCD U 1 ( ω 0 ) 2 + U 2 ( ω 0 ) 2 E in ( ω ) 2 U 1 ( ω 0 ) U 2 ( ω 0 ) = 2 E in ( ω ) 2 cos ( ωd cz x ) .
F [ I s ] = E in ( f x + d λ 0 z ) 2 + E in ( f x d λ 0 z ) 2 ,
U j ( ω 0 ) 2 = I j 0 [ 2 J 1 ( a ( x α j d 2 ) ωβ 2 cz ) ( a ( x α j d 2 ) ωβ 2 cz ) ] 2 + α 2 ,

Metrics