Abstract

We have proposed and demonstrated a high-power C+L-band erbium amplified spontaneous emission source using an optical circulator with double-pass and bi-directional configuration, which can provide a high output power of 177.8 mW with a ripple of 5 dB and a wide line width of 81.0 nm (1525.1–1606.1 nm) without adding any external spectra-flattening components. This designed configuration is also considered relaxing resonant lasing for averaged power stability with ±0.013 dB, allowing high pumping efficiency of 32.8%.

©2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stable and wideband L-band erbium superfluorescent fiber source using improved bidirectional pumping configuration

Wencai Huang, Xiulin Wang, Benrui Zheng, Huiying Xu, Chenchun Ye, and Zhiping Cai
Opt. Express 15(15) 9778-9783 (2007)

Resonantly pumped high power flat L-band erbium-doped superfluorescent fiber source

Sheng-Ping Chen, Ze-Jin Liu, Yi-Gang Li, Ke-Cheng Lu, and Shou-Huan Zhou
Opt. Express 16(1) 207-212 (2008)

Watt-level L band superfluorescent fiber source

Sheng-Ping Chen, Yi-Gang Li, Jian-Ping Zhu, Hua Wang, Yun Zhang, Tuan-Wei Xu, Ru Guo, and Ke-Cheng Lu
Opt. Express 13(5) 1531-1536 (2005)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE Photon. Technol. Lett. 5, 1458–1461 (2002).
    [Crossref]
  2. Y. K. Chen, C. H Chang, Y. L. Yang, I. Y. Kuo, and T. C. Liang, “Mach-Zehnder fiber-grating-based fixed and reconfigurable multichannel optical add-drop multiplexers for DWDM networks,” Opt. Comms. 169, 245–262 (1999).
    [Crossref]
  3. S. Yamashita and M. Nishihara, “Widely tunable erbium-doped fiber ring laser covering C-band and L-band,” IEEE J. Select. Topics Quantum Electron. 7, 41–43 (2001).
    [Crossref]
  4. P. F. Wysocki, M. J. F. Digonnet, and B. Y. Kim, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
    [Crossref]
  5. M. Zirngibl, C. R. Doerr, and L. W. Stulz, “Study of spectral slicing for local access applications,” IEEE Photon. Technol. Lett. 8, 721–723 (1996).
    [Crossref]
  6. L. A. Wang and C. D. Chen, “Stable and broadband Er-doped superfluorescent fiber sources using double-pass backward configuration,” Electron. Lett. 33, 1815–1817 (1996).
    [Crossref]
  7. H. J. Patrick, A. D. Kersey, W. K. Burns, and R. P. Moeller, “Erbium-doped superfluorescent fiber source with long-period fiber grating wavelength stabilization,” Electron. Lett. 33, 2061–2063 (1997).
    [Crossref]
  8. S. C. Tsai, T. C. Tsai, P. C. Law, and Y. K. Chen, “High pumping-efficiency L-band erbium-doped fiber ASE source using double-pass bidirectional-pumping configuration,” IEEE Photon. Technol. Lett. 15, 197–199 (2003).
    [Crossref]
  9. R. P. Espindola, G. Ales, J. Park, and T. A. Strasser, “80nm spectral flattened, high power erbium amplified spontaneous emission fiber source,” Electron. Lett. 36, 1263–1265 (2000).
    [Crossref]
  10. W. C. Huang, A. D. Kersey, W. K. Burns, and R. P. Moeller, “One-stage erbium ASE source with 80 nm bandwidth and low ripples,” Electron. Lett. 38, 2061–2063 (2002).
    [Crossref]

2003 (1)

S. C. Tsai, T. C. Tsai, P. C. Law, and Y. K. Chen, “High pumping-efficiency L-band erbium-doped fiber ASE source using double-pass bidirectional-pumping configuration,” IEEE Photon. Technol. Lett. 15, 197–199 (2003).
[Crossref]

2002 (2)

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE Photon. Technol. Lett. 5, 1458–1461 (2002).
[Crossref]

W. C. Huang, A. D. Kersey, W. K. Burns, and R. P. Moeller, “One-stage erbium ASE source with 80 nm bandwidth and low ripples,” Electron. Lett. 38, 2061–2063 (2002).
[Crossref]

2001 (1)

S. Yamashita and M. Nishihara, “Widely tunable erbium-doped fiber ring laser covering C-band and L-band,” IEEE J. Select. Topics Quantum Electron. 7, 41–43 (2001).
[Crossref]

2000 (1)

R. P. Espindola, G. Ales, J. Park, and T. A. Strasser, “80nm spectral flattened, high power erbium amplified spontaneous emission fiber source,” Electron. Lett. 36, 1263–1265 (2000).
[Crossref]

1999 (1)

Y. K. Chen, C. H Chang, Y. L. Yang, I. Y. Kuo, and T. C. Liang, “Mach-Zehnder fiber-grating-based fixed and reconfigurable multichannel optical add-drop multiplexers for DWDM networks,” Opt. Comms. 169, 245–262 (1999).
[Crossref]

1997 (1)

H. J. Patrick, A. D. Kersey, W. K. Burns, and R. P. Moeller, “Erbium-doped superfluorescent fiber source with long-period fiber grating wavelength stabilization,” Electron. Lett. 33, 2061–2063 (1997).
[Crossref]

1996 (2)

M. Zirngibl, C. R. Doerr, and L. W. Stulz, “Study of spectral slicing for local access applications,” IEEE Photon. Technol. Lett. 8, 721–723 (1996).
[Crossref]

L. A. Wang and C. D. Chen, “Stable and broadband Er-doped superfluorescent fiber sources using double-pass backward configuration,” Electron. Lett. 33, 1815–1817 (1996).
[Crossref]

1994 (1)

P. F. Wysocki, M. J. F. Digonnet, and B. Y. Kim, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[Crossref]

Ales, G.

R. P. Espindola, G. Ales, J. Park, and T. A. Strasser, “80nm spectral flattened, high power erbium amplified spontaneous emission fiber source,” Electron. Lett. 36, 1263–1265 (2000).
[Crossref]

Burns, W. K.

W. C. Huang, A. D. Kersey, W. K. Burns, and R. P. Moeller, “One-stage erbium ASE source with 80 nm bandwidth and low ripples,” Electron. Lett. 38, 2061–2063 (2002).
[Crossref]

H. J. Patrick, A. D. Kersey, W. K. Burns, and R. P. Moeller, “Erbium-doped superfluorescent fiber source with long-period fiber grating wavelength stabilization,” Electron. Lett. 33, 2061–2063 (1997).
[Crossref]

Chang, C. H

Y. K. Chen, C. H Chang, Y. L. Yang, I. Y. Kuo, and T. C. Liang, “Mach-Zehnder fiber-grating-based fixed and reconfigurable multichannel optical add-drop multiplexers for DWDM networks,” Opt. Comms. 169, 245–262 (1999).
[Crossref]

Chen, C. D.

L. A. Wang and C. D. Chen, “Stable and broadband Er-doped superfluorescent fiber sources using double-pass backward configuration,” Electron. Lett. 33, 1815–1817 (1996).
[Crossref]

Chen, Y. K.

S. C. Tsai, T. C. Tsai, P. C. Law, and Y. K. Chen, “High pumping-efficiency L-band erbium-doped fiber ASE source using double-pass bidirectional-pumping configuration,” IEEE Photon. Technol. Lett. 15, 197–199 (2003).
[Crossref]

Y. K. Chen, C. H Chang, Y. L. Yang, I. Y. Kuo, and T. C. Liang, “Mach-Zehnder fiber-grating-based fixed and reconfigurable multichannel optical add-drop multiplexers for DWDM networks,” Opt. Comms. 169, 245–262 (1999).
[Crossref]

Chung, Y. C.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE Photon. Technol. Lett. 5, 1458–1461 (2002).
[Crossref]

DiGiovanni, D. J.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE Photon. Technol. Lett. 5, 1458–1461 (2002).
[Crossref]

Digonnet, M. J. F.

P. F. Wysocki, M. J. F. Digonnet, and B. Y. Kim, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[Crossref]

Doerr, C. R.

M. Zirngibl, C. R. Doerr, and L. W. Stulz, “Study of spectral slicing for local access applications,” IEEE Photon. Technol. Lett. 8, 721–723 (1996).
[Crossref]

Espindola, R. P.

R. P. Espindola, G. Ales, J. Park, and T. A. Strasser, “80nm spectral flattened, high power erbium amplified spontaneous emission fiber source,” Electron. Lett. 36, 1263–1265 (2000).
[Crossref]

Huang, W. C.

W. C. Huang, A. D. Kersey, W. K. Burns, and R. P. Moeller, “One-stage erbium ASE source with 80 nm bandwidth and low ripples,” Electron. Lett. 38, 2061–2063 (2002).
[Crossref]

Kersey, A. D.

W. C. Huang, A. D. Kersey, W. K. Burns, and R. P. Moeller, “One-stage erbium ASE source with 80 nm bandwidth and low ripples,” Electron. Lett. 38, 2061–2063 (2002).
[Crossref]

H. J. Patrick, A. D. Kersey, W. K. Burns, and R. P. Moeller, “Erbium-doped superfluorescent fiber source with long-period fiber grating wavelength stabilization,” Electron. Lett. 33, 2061–2063 (1997).
[Crossref]

Kim, B. Y.

P. F. Wysocki, M. J. F. Digonnet, and B. Y. Kim, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[Crossref]

Kuo, I. Y.

Y. K. Chen, C. H Chang, Y. L. Yang, I. Y. Kuo, and T. C. Liang, “Mach-Zehnder fiber-grating-based fixed and reconfigurable multichannel optical add-drop multiplexers for DWDM networks,” Opt. Comms. 169, 245–262 (1999).
[Crossref]

Law, P. C.

S. C. Tsai, T. C. Tsai, P. C. Law, and Y. K. Chen, “High pumping-efficiency L-band erbium-doped fiber ASE source using double-pass bidirectional-pumping configuration,” IEEE Photon. Technol. Lett. 15, 197–199 (2003).
[Crossref]

Lee, J. S.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE Photon. Technol. Lett. 5, 1458–1461 (2002).
[Crossref]

Liang, T. C.

Y. K. Chen, C. H Chang, Y. L. Yang, I. Y. Kuo, and T. C. Liang, “Mach-Zehnder fiber-grating-based fixed and reconfigurable multichannel optical add-drop multiplexers for DWDM networks,” Opt. Comms. 169, 245–262 (1999).
[Crossref]

Moeller, R. P.

W. C. Huang, A. D. Kersey, W. K. Burns, and R. P. Moeller, “One-stage erbium ASE source with 80 nm bandwidth and low ripples,” Electron. Lett. 38, 2061–2063 (2002).
[Crossref]

H. J. Patrick, A. D. Kersey, W. K. Burns, and R. P. Moeller, “Erbium-doped superfluorescent fiber source with long-period fiber grating wavelength stabilization,” Electron. Lett. 33, 2061–2063 (1997).
[Crossref]

Nishihara, M.

S. Yamashita and M. Nishihara, “Widely tunable erbium-doped fiber ring laser covering C-band and L-band,” IEEE J. Select. Topics Quantum Electron. 7, 41–43 (2001).
[Crossref]

Park, J.

R. P. Espindola, G. Ales, J. Park, and T. A. Strasser, “80nm spectral flattened, high power erbium amplified spontaneous emission fiber source,” Electron. Lett. 36, 1263–1265 (2000).
[Crossref]

Patrick, H. J.

H. J. Patrick, A. D. Kersey, W. K. Burns, and R. P. Moeller, “Erbium-doped superfluorescent fiber source with long-period fiber grating wavelength stabilization,” Electron. Lett. 33, 2061–2063 (1997).
[Crossref]

Strasser, T. A.

R. P. Espindola, G. Ales, J. Park, and T. A. Strasser, “80nm spectral flattened, high power erbium amplified spontaneous emission fiber source,” Electron. Lett. 36, 1263–1265 (2000).
[Crossref]

Stulz, L. W.

M. Zirngibl, C. R. Doerr, and L. W. Stulz, “Study of spectral slicing for local access applications,” IEEE Photon. Technol. Lett. 8, 721–723 (1996).
[Crossref]

Tsai, S. C.

S. C. Tsai, T. C. Tsai, P. C. Law, and Y. K. Chen, “High pumping-efficiency L-band erbium-doped fiber ASE source using double-pass bidirectional-pumping configuration,” IEEE Photon. Technol. Lett. 15, 197–199 (2003).
[Crossref]

Tsai, T. C.

S. C. Tsai, T. C. Tsai, P. C. Law, and Y. K. Chen, “High pumping-efficiency L-band erbium-doped fiber ASE source using double-pass bidirectional-pumping configuration,” IEEE Photon. Technol. Lett. 15, 197–199 (2003).
[Crossref]

Wang, L. A.

L. A. Wang and C. D. Chen, “Stable and broadband Er-doped superfluorescent fiber sources using double-pass backward configuration,” Electron. Lett. 33, 1815–1817 (1996).
[Crossref]

Wysocki, P. F.

P. F. Wysocki, M. J. F. Digonnet, and B. Y. Kim, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[Crossref]

Yamashita, S.

S. Yamashita and M. Nishihara, “Widely tunable erbium-doped fiber ring laser covering C-band and L-band,” IEEE J. Select. Topics Quantum Electron. 7, 41–43 (2001).
[Crossref]

Yang, Y. L.

Y. K. Chen, C. H Chang, Y. L. Yang, I. Y. Kuo, and T. C. Liang, “Mach-Zehnder fiber-grating-based fixed and reconfigurable multichannel optical add-drop multiplexers for DWDM networks,” Opt. Comms. 169, 245–262 (1999).
[Crossref]

Zirngibl, M.

M. Zirngibl, C. R. Doerr, and L. W. Stulz, “Study of spectral slicing for local access applications,” IEEE Photon. Technol. Lett. 8, 721–723 (1996).
[Crossref]

Electron. Lett. (4)

L. A. Wang and C. D. Chen, “Stable and broadband Er-doped superfluorescent fiber sources using double-pass backward configuration,” Electron. Lett. 33, 1815–1817 (1996).
[Crossref]

H. J. Patrick, A. D. Kersey, W. K. Burns, and R. P. Moeller, “Erbium-doped superfluorescent fiber source with long-period fiber grating wavelength stabilization,” Electron. Lett. 33, 2061–2063 (1997).
[Crossref]

R. P. Espindola, G. Ales, J. Park, and T. A. Strasser, “80nm spectral flattened, high power erbium amplified spontaneous emission fiber source,” Electron. Lett. 36, 1263–1265 (2000).
[Crossref]

W. C. Huang, A. D. Kersey, W. K. Burns, and R. P. Moeller, “One-stage erbium ASE source with 80 nm bandwidth and low ripples,” Electron. Lett. 38, 2061–2063 (2002).
[Crossref]

IEEE J. Select. Topics Quantum Electron. (1)

S. Yamashita and M. Nishihara, “Widely tunable erbium-doped fiber ring laser covering C-band and L-band,” IEEE J. Select. Topics Quantum Electron. 7, 41–43 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (3)

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE Photon. Technol. Lett. 5, 1458–1461 (2002).
[Crossref]

S. C. Tsai, T. C. Tsai, P. C. Law, and Y. K. Chen, “High pumping-efficiency L-band erbium-doped fiber ASE source using double-pass bidirectional-pumping configuration,” IEEE Photon. Technol. Lett. 15, 197–199 (2003).
[Crossref]

M. Zirngibl, C. R. Doerr, and L. W. Stulz, “Study of spectral slicing for local access applications,” IEEE Photon. Technol. Lett. 8, 721–723 (1996).
[Crossref]

J. Lightwave Technol. (1)

P. F. Wysocki, M. J. F. Digonnet, and B. Y. Kim, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[Crossref]

Opt. Comms. (1)

Y. K. Chen, C. H Chang, Y. L. Yang, I. Y. Kuo, and T. C. Liang, “Mach-Zehnder fiber-grating-based fixed and reconfigurable multichannel optical add-drop multiplexers for DWDM networks,” Opt. Comms. 169, 245–262 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Proposed double-pass and bi-directional configuration for high-power C+L-band ASE source
Fig. 2.
Fig. 2. Optimum C+L-band ASE spectra for different 980 nm and 1480 nm pumping powers.
Fig. 3.
Fig. 3. C+L-band ASE spectra generated by two 980 nm LDs with 250 mW each incorporating different 1480 nm pumping powers.
Fig. 4.
Fig. 4. C+L-band ASE spectra generated by two 980 nm LDs with 100 mW each incorporating different 1480 nm pumping powers.
Fig. 5.
Fig. 5. Measured characteristics of output power and power ripple against 980 nm and 1480 nm pumping power.
Fig. 6.
Fig. 6. Measured characteristics of pumping efficiency and linewidth against 980 nm and 1480 nm pumping power.
Fig. 7.
Fig. 7. Measured stability of output power in the temperature cycle of 20–30 °C.

Tables (1)

Tables Icon

Table.1. Summarized table of optimum pumping powers for proposed configuration

Metrics