M. A. Bartlett and H. Jiang, “Effect of refractive index on the measurement of optical properties in turbid media,” Appl. Opt. 40, 1735–1741 (2001).

[Crossref]

B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry for finite-element image reconstruction,” Appl. Opt. 40, 588–600 (2001).

[Crossref]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,“ Photochem. and Photobiol. 70, 87–94 (1999).

[Crossref]

R. H. Mayer, J. S. Reynolds, and E. M. Sevick-Muraca, “Measurement of the fluorescent lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).

[Crossref]

R. Roy and E. M. Sevick-Muraca, “Truncated Newton’s optimization scheme for absorption and fluorescence optical tomography: Part I Theory and Formulation” Opt. Express 4, 353–371 (1999). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-10-353.

[Crossref]
[PubMed]

R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A. 12, 2532–2539 (1995).

[Crossref]

A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).

[Crossref]
[PubMed]

C. L. Hutchinson, J. R. Lakowicz, and E. M. Sevick-Muraca, “Fluorescence life-time based sensing in tissues: A computational study,” Biophys. J. 68, 1574–1582 (1995).

[Crossref]
[PubMed]

E. M. Sevick and C. L. Burch, “Origin of phosphorescence signals reemitted from tissues.” Opt. Lett. 19, 1928–1930 (1994).

[Crossref]

M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).

[Crossref]
[PubMed]

D. J. Durian, “Influence of boundary reflection and refraction on diffusive photon transport,” Phys. Rev. E 50, 857–866 (1994).

[Crossref]

R. C. Haskell, L. O. Scassand, T-T. Tsay, T-C. Feng, M. S. Mc Adams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A. 11, 2727–2741 (1994).

[Crossref]

R. Aronson, “Extrapolation distance for diffusion of light,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance. and R. Alfano, Proc. Soc. Photo-Opt. Instrum. Eng. 1888, 297–305 (1993).

R. Aronson, “Extrapolation distance for diffusion of light,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance. and R. Alfano, Proc. Soc. Photo-Opt. Instrum. Eng. 1888, 297–305 (1993).

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 9, 879–888 (1992).

[Crossref]

R. Aronson, “Extrapolation distance for diffusion of light,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance. and R. Alfano, Proc. Soc. Photo-Opt. Instrum. Eng. 1888, 297–305 (1993).

R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A. 12, 2532–2539 (1995).

[Crossref]

R. Aronson, “Extrapolation distance for diffusion of light,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance. and R. Alfano, Proc. Soc. Photo-Opt. Instrum. Eng. 1888, 297–305 (1993).

K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison-Wesley, Massachusetts, 1967).

R. Aronson, “Extrapolation distance for diffusion of light,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance. and R. Alfano, Proc. Soc. Photo-Opt. Instrum. Eng. 1888, 297–305 (1993).

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,“ Photochem. and Photobiol. 70, 87–94 (1999).

[Crossref]

J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).

D. J. Durian, “Influence of boundary reflection and refraction on diffusive photon transport,” Phys. Rev. E 50, 857–866 (1994).

[Crossref]

W. G. Egan and T. W. Hilgeman, Optical properties of inhomogeneous materials (Academic, New York, 1979).

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, near-infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets,” Proc. of Natl. Acad. Science2002 (accepted).

[Crossref]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 9, 879–888 (1992).

[Crossref]

R. C. Haskell, L. O. Scassand, T-T. Tsay, T-C. Feng, M. S. Mc Adams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A. 11, 2727–2741 (1994).

[Crossref]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, near-infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets,” Proc. of Natl. Acad. Science2002 (accepted).

[Crossref]

J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).

R. C. Haskell, L. O. Scassand, T-T. Tsay, T-C. Feng, M. S. Mc Adams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A. 11, 2727–2741 (1994).

[Crossref]

D. J. Hawrysz, Bayesian approach to the inverse problem in contrast-enhanced, three-dimensional, biomedical optical imaging using frequency domain photon migration, PhD Thesis, Purdue University, May 2001.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, near-infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets,” Proc. of Natl. Acad. Science2002 (accepted).

[Crossref]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnosis,” Appl. Opt. 37, 3586–3593 (1998).

[Crossref]

A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).

[Crossref]
[PubMed]

W. G. Egan and T. W. Hilgeman, Optical properties of inhomogeneous materials (Academic, New York, 1979).

C. L. Hutchinson, J. R. Lakowicz, and E. M. Sevick-Muraca, “Fluorescence life-time based sensing in tissues: A computational study,” Biophys. J. 68, 1574–1582 (1995).

[Crossref]
[PubMed]

A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).

[Crossref]
[PubMed]

A. Kienle and M. S. Patterson, “Improved solution of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A. 14, 246–254 (1997).

[Crossref]

C. L. Hutchinson, J. R. Lakowicz, and E. M. Sevick-Muraca, “Fluorescence life-time based sensing in tissues: A computational study,” Biophys. J. 68, 1574–1582 (1995).

[Crossref]
[PubMed]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,“ Photochem. and Photobiol. 70, 87–94 (1999).

[Crossref]

R. H. Mayer, J. S. Reynolds, and E. M. Sevick-Muraca, “Measurement of the fluorescent lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).

[Crossref]

R. C. Haskell, L. O. Scassand, T-T. Tsay, T-C. Feng, M. S. Mc Adams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A. 11, 2727–2741 (1994).

[Crossref]

E. M. Sevick-Muraca and D. Y. Paithankar, “Fluorescence imaging system and measurement,” U. S. Patent No. 5,865,754 (2 February 1999).

A. Kienle and M. S. Patterson, “Improved solution of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A. 14, 246–254 (1997).

[Crossref]

M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).

[Crossref]
[PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 9, 879–888 (1992).

[Crossref]

M. S. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).

[Crossref]
[PubMed]

B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry for finite-element image reconstruction,” Appl. Opt. 40, 588–600 (2001).

[Crossref]

M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).

[Crossref]
[PubMed]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,“ Photochem. and Photobiol. 70, 87–94 (1999).

[Crossref]

R. H. Mayer, J. S. Reynolds, and E. M. Sevick-Muraca, “Measurement of the fluorescent lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).

[Crossref]

R. C. Haskell, L. O. Scassand, T-T. Tsay, T-C. Feng, M. S. Mc Adams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A. 11, 2727–2741 (1994).

[Crossref]

R. H. Mayer, J. S. Reynolds, and E. M. Sevick-Muraca, “Measurement of the fluorescent lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).

[Crossref]

R. Roy and E. M. Sevick-Muraca, “Truncated Newton’s optimization scheme for absorption and fluorescence optical tomography: Part I Theory and Formulation” Opt. Express 4, 353–371 (1999). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-10-353.

[Crossref]
[PubMed]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,“ Photochem. and Photobiol. 70, 87–94 (1999).

[Crossref]

C. L. Hutchinson, J. R. Lakowicz, and E. M. Sevick-Muraca, “Fluorescence life-time based sensing in tissues: A computational study,” Biophys. J. 68, 1574–1582 (1995).

[Crossref]
[PubMed]

E. M. Sevick-Muraca and D. Y. Paithankar, “Fluorescence imaging system and measurement,” U. S. Patent No. 5,865,754 (2 February 1999).

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, near-infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets,” Proc. of Natl. Acad. Science2002 (accepted).

[Crossref]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,“ Photochem. and Photobiol. 70, 87–94 (1999).

[Crossref]

O. C. Zeinkiewicz and R. L. Taylor. The finite element methods in engineering science (McGraw-Hill, New York, 1989).

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,“ Photochem. and Photobiol. 70, 87–94 (1999).

[Crossref]

A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).

[Crossref]
[PubMed]

R. C. Haskell, L. O. Scassand, T-T. Tsay, T-C. Feng, M. S. Mc Adams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A. 11, 2727–2741 (1994).

[Crossref]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,“ Photochem. and Photobiol. 70, 87–94 (1999).

[Crossref]

R. C. Haskell, L. O. Scassand, T-T. Tsay, T-C. Feng, M. S. Mc Adams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A. 11, 2727–2741 (1994).

[Crossref]

A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).

[Crossref]
[PubMed]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,“ Photochem. and Photobiol. 70, 87–94 (1999).

[Crossref]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 9, 879–888 (1992).

[Crossref]

M. S. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).

[Crossref]
[PubMed]

O. C. Zeinkiewicz and R. L. Taylor. The finite element methods in engineering science (McGraw-Hill, New York, 1989).

K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison-Wesley, Massachusetts, 1967).

M. A. Bartlett and H. Jiang, “Effect of refractive index on the measurement of optical properties in turbid media,” Appl. Opt. 40, 1735–1741 (2001).

[Crossref]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnosis,” Appl. Opt. 37, 3586–3593 (1998).

[Crossref]

M. S. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).

[Crossref]
[PubMed]

R. H. Mayer, J. S. Reynolds, and E. M. Sevick-Muraca, “Measurement of the fluorescent lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).

[Crossref]

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30, 4507–4514 (1991).

[Crossref]
[PubMed]

R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch, “Scattering and absorption of turbid material determined from reflection measurements. 1. Theory,” Appl. Opt. 22, 2456–2462 (1983).

[Crossref]
[PubMed]

M. Keijzer, W. M. Star, and P. R. Storchi, “Optical diffusion in layered media,” Appl. Opt. 27, 1820–1824 (1988).

[Crossref]
[PubMed]

A. Ishimaru, “Diffusion of light in turbid media,” Appl. Opt. 28, 2210–2215 (1989).

[Crossref]
[PubMed]

M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).

[Crossref]
[PubMed]

M. G. Nichols, E. L. Hull, and T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36, 93–104 (1997).

[Crossref]
[PubMed]

B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry for finite-element image reconstruction,” Appl. Opt. 40, 588–600 (2001).

[Crossref]

C. L. Hutchinson, J. R. Lakowicz, and E. M. Sevick-Muraca, “Fluorescence life-time based sensing in tissues: A computational study,” Biophys. J. 68, 1574–1582 (1995).

[Crossref]
[PubMed]

A. Kienle and M. S. Patterson, “Improved solution of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A. 14, 246–254 (1997).

[Crossref]

R. C. Haskell, L. O. Scassand, T-T. Tsay, T-C. Feng, M. S. Mc Adams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A. 11, 2727–2741 (1994).

[Crossref]

R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A. 12, 2532–2539 (1995).

[Crossref]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 9, 879–888 (1992).

[Crossref]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,“ Photochem. and Photobiol. 70, 87–94 (1999).

[Crossref]

A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).

[Crossref]
[PubMed]

D. J. Durian, “Influence of boundary reflection and refraction on diffusive photon transport,” Phys. Rev. E 50, 857–866 (1994).

[Crossref]

R. Aronson, “Extrapolation distance for diffusion of light,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance. and R. Alfano, Proc. Soc. Photo-Opt. Instrum. Eng. 1888, 297–305 (1993).

W. G. Egan and T. W. Hilgeman, Optical properties of inhomogeneous materials (Academic, New York, 1979).

E. M. Sevick-Muraca and D. Y. Paithankar, “Fluorescence imaging system and measurement,” U. S. Patent No. 5,865,754 (2 February 1999).

K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison-Wesley, Massachusetts, 1967).

J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).

D. J. Hawrysz, Bayesian approach to the inverse problem in contrast-enhanced, three-dimensional, biomedical optical imaging using frequency domain photon migration, PhD Thesis, Purdue University, May 2001.

O. C. Zeinkiewicz and R. L. Taylor. The finite element methods in engineering science (McGraw-Hill, New York, 1989).

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, near-infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets,” Proc. of Natl. Acad. Science2002 (accepted).

[Crossref]