Abstract

Acoustic measurements are the obvious target of acoustic investigations in this paper, using an opto-mechanical frequency analyzer. This proposed sensor is designed using micro-optical dielectric sensors based on whispering gallery modes (WGMs). This phenomenon, commonly referred to as WGM, is excited by evanescently coupling light from a tunable laser diode using a tapered single-mode optical fiber. A measurement arrangement can typically be separated into source and receiver components. The receiver component consists of a sound level meter or sound analyzer that we call an opto-mechanical frequency analyzer, which displays the total sound level in frequency-dependent data. It can also produce results such as spectra or impulse responses. Furthermore, measurements are based on special measurement environments that allow several reference sound fields to be created. The proposed design is composed of a tuner that consists of slots with different geometries with dielectric beams placed on each one. These beams are made from polydimethylsiloxane. The spherical optical polymeric resonators are mechanically coupled to the dielectric beams placed at each slot. The tuner has a different resonant frequency at each slot, which depends on the effective length of the beam. Sound waves deform the polymeric cavity, causing a shift in its transmission spectrum. A technique based on signal cross-correlation is used to calculate that shift, which is known as WGM shift. An analysis and calibration are carried out along with preliminary designs and experiments. Results prove that the proposed technique can be used as a very high-resolution frequency analyzer due to the high quality factor (Q-factor) of the resonators, which is 106 compared to the typical electrical frequency analyzer that has a Q-factor up to 102. Similar to an optical prism, this device can be used to split sound into its constituent frequencies.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical and experimental research of lossy mode resonance-based high-sensitivity optical fiber refractive index sensors

Wan-Ming Zhao, Qi Wang, Xue-Zhou Wang, Xiang Li, Jian-Ying Jing, and Hong-Zhi Sun
J. Opt. Soc. Am. B 36(8) 2069-2078 (2019)

Performance analysis of distributed optical fiber acoustic sensors based on φ-OTDR

Mengmeng Chen, Ali Masoudi, and Gilberto Brambilla
Opt. Express 27(7) 9684-9695 (2019)

Diaphragm-based optical fiber sensor array for multipoint acoustic detection

Jingyi Wang, Fan Ai, Qizhen Sun, Tao Liu, Hao Li, Zhijun Yan, and Deming Liu
Opt. Express 26(19) 25293-25304 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Ioppolo, U. Ayaz, and V. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105, 013535 (2009).
    [Crossref]
  2. T. Ioppolo, M. Kozhevnikov, V. Stepaniuk, V. Ötügen, and V. Sheverev, “A micro-optical force sensor concept based on whispering gallery mode resonators,” Appl. Opt. 47, 3009–3014 (2008).
    [Crossref]
  3. T. Ioppolo and V. Ötügen, “Pressure tuning of whispering gallery mode resonators,” J. Opt. Soc. Am. B 24, 2721–2726 (2007).
    [Crossref]
  4. G. Guan, S. Arnold, and V. Ötügen, “Temperature measurements using a micro-optical sensor based on whispering gallery modes,” AIAA J. 44, 2385–2389 (2006).
    [Crossref]
  5. Q. Ma, T. Rossmann, and Z. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D 41, 245111 (2008).
    [Crossref]
  6. A. Ali and T. Ioppolo, “Effect of angular velocity on sensors based on morphology dependent resonances,” Sensors 14, 7041–7048 (2014).
    [Crossref]
  7. T. Ioppolo, V. Ötügen, and K. Marcis, “Magnetic field-induced excitation and optical detection of mechanical modes of micro-spheres,” J. Appl. Phys. 107, 123115 (2010).
    [Crossref]
  8. T. Ioppolo and V. Ötügen, “Magnetorheological polydimethylsiloxane micro-optical resonator,” Opt. Lett. 35, 2037–2039 (2010).
    [Crossref]
  9. E. Rubino and T. Ioppolo, “Dynamical behavior of magnetic polarizable microsphere using whispering gallery mode,” J. Polym. Sci. Part B 56, 598–603 (2018).
    [Crossref]
  10. T. Ioppolo, U. K. Ayaz, and M. V. Ötügen, “Tuning of whispering gallery modes of spherical resonators using an external electric field,” Opt. Express 17, 16465–16479 (2009).
    [Crossref]
  11. F. Vollmer, D. Brown, A. Libchaber, M. Khoshima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
    [Crossref]
  12. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
    [Crossref]
  13. K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, “Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis,” Anal. Chem. 71, 5430–5435 (1999).
    [Crossref]
  14. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
    [Crossref]
  15. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics,” Interplanetary Netw. Prog. Rep. 42-162, 1–51 (2005).
  16. D. Haronian and N. C. MacDonald, “Microelectromechanics-based frequency signature sensor,” U.S. patent5, 856, 722, 5Jan.1999.
  17. D. Haronian and N. C. MacDonald, “A microelectromechanics-based frequency-signature sensor,” Sens. Actuators A Phys. 53, 288–298 (1996).
    [Crossref]
  18. T. Xu, M. Bachman, F. G. Zeng, and G. P. Li, “Polymeric micro-cantilever array for auditory front-end processing,” Sens. Actuators A Phys. 114, 176–182 (2004).
    [Crossref]
  19. A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
    [Crossref]
  20. M. C. Bélanger and Y. Marois, “Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review,” J. Biomed. Mater. Res. 58, 467–477 (2001).
    [Crossref]
  21. G. M. Whitesides and S. K. Tang, “Fluidic optics,” Proc. SPIE 6329, 63290A (2006).
    [Crossref]
  22. A. Ali, T. Ioppolo, V. Ötügen, M. Christensen, and D. MacFarlane, “Photonic electric field sensor based on polymeric microspheres,” J. Polym. Sci. B Polym. Phys. 52, 276–279 (2014).
    [Crossref]
  23. S. Rao, Mechanical Vibrations (Addison-Wesley Longman, 1986).
  24. L. Meirovitch, Fundamentals of Vibrations (McGraw-Hill, 2001).
  25. W. Thomson, Theory of Vibration with Applications (Simon & Schuster, 1993).
  26. S. R. Singiresu, Vibration of Continuous Systems (Wiley, 2007).
  27. A. Ali, Principles of Sensing Based on Micro-Optical Whispering Gallery Modes: Physics, Design, and Applications (Lambert Academic Publishing, 2017).
  28. A. R. Ali, A. N. Afifi, and H. Taha, “Optical signal processing and tracking of whispering gallery modes in real-time for sensing applications,” Proc. SPIE 10249, 102490E (2017).
    [Crossref]

2018 (1)

E. Rubino and T. Ioppolo, “Dynamical behavior of magnetic polarizable microsphere using whispering gallery mode,” J. Polym. Sci. Part B 56, 598–603 (2018).
[Crossref]

2017 (1)

A. R. Ali, A. N. Afifi, and H. Taha, “Optical signal processing and tracking of whispering gallery modes in real-time for sensing applications,” Proc. SPIE 10249, 102490E (2017).
[Crossref]

2014 (2)

A. Ali, T. Ioppolo, V. Ötügen, M. Christensen, and D. MacFarlane, “Photonic electric field sensor based on polymeric microspheres,” J. Polym. Sci. B Polym. Phys. 52, 276–279 (2014).
[Crossref]

A. Ali and T. Ioppolo, “Effect of angular velocity on sensors based on morphology dependent resonances,” Sensors 14, 7041–7048 (2014).
[Crossref]

2010 (2)

T. Ioppolo, V. Ötügen, and K. Marcis, “Magnetic field-induced excitation and optical detection of mechanical modes of micro-spheres,” J. Appl. Phys. 107, 123115 (2010).
[Crossref]

T. Ioppolo and V. Ötügen, “Magnetorheological polydimethylsiloxane micro-optical resonator,” Opt. Lett. 35, 2037–2039 (2010).
[Crossref]

2009 (2)

T. Ioppolo, U. K. Ayaz, and M. V. Ötügen, “Tuning of whispering gallery modes of spherical resonators using an external electric field,” Opt. Express 17, 16465–16479 (2009).
[Crossref]

T. Ioppolo, U. Ayaz, and V. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105, 013535 (2009).
[Crossref]

2008 (2)

2007 (1)

2006 (2)

G. Guan, S. Arnold, and V. Ötügen, “Temperature measurements using a micro-optical sensor based on whispering gallery modes,” AIAA J. 44, 2385–2389 (2006).
[Crossref]

G. M. Whitesides and S. K. Tang, “Fluidic optics,” Proc. SPIE 6329, 63290A (2006).
[Crossref]

2005 (2)

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref]

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics,” Interplanetary Netw. Prog. Rep. 42-162, 1–51 (2005).

2004 (1)

T. Xu, M. Bachman, F. G. Zeng, and G. P. Li, “Polymeric micro-cantilever array for auditory front-end processing,” Sens. Actuators A Phys. 114, 176–182 (2004).
[Crossref]

2003 (1)

2002 (1)

F. Vollmer, D. Brown, A. Libchaber, M. Khoshima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

2001 (1)

M. C. Bélanger and Y. Marois, “Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review,” J. Biomed. Mater. Res. 58, 467–477 (2001).
[Crossref]

1999 (1)

K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, “Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis,” Anal. Chem. 71, 5430–5435 (1999).
[Crossref]

1996 (2)

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[Crossref]

D. Haronian and N. C. MacDonald, “A microelectromechanics-based frequency-signature sensor,” Sens. Actuators A Phys. 53, 288–298 (1996).
[Crossref]

Afifi, A. N.

A. R. Ali, A. N. Afifi, and H. Taha, “Optical signal processing and tracking of whispering gallery modes in real-time for sensing applications,” Proc. SPIE 10249, 102490E (2017).
[Crossref]

Ahn, C.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref]

Ali, A.

A. Ali, T. Ioppolo, V. Ötügen, M. Christensen, and D. MacFarlane, “Photonic electric field sensor based on polymeric microspheres,” J. Polym. Sci. B Polym. Phys. 52, 276–279 (2014).
[Crossref]

A. Ali and T. Ioppolo, “Effect of angular velocity on sensors based on morphology dependent resonances,” Sensors 14, 7041–7048 (2014).
[Crossref]

A. Ali, Principles of Sensing Based on Micro-Optical Whispering Gallery Modes: Physics, Design, and Applications (Lambert Academic Publishing, 2017).

Ali, A. R.

A. R. Ali, A. N. Afifi, and H. Taha, “Optical signal processing and tracking of whispering gallery modes in real-time for sensing applications,” Proc. SPIE 10249, 102490E (2017).
[Crossref]

Arnold, S.

G. Guan, S. Arnold, and V. Ötügen, “Temperature measurements using a micro-optical sensor based on whispering gallery modes,” AIAA J. 44, 2385–2389 (2006).
[Crossref]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref]

F. Vollmer, D. Brown, A. Libchaber, M. Khoshima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Ayaz, U.

T. Ioppolo, U. Ayaz, and V. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105, 013535 (2009).
[Crossref]

Ayaz, U. K.

Bachman, M.

T. Xu, M. Bachman, F. G. Zeng, and G. P. Li, “Polymeric micro-cantilever array for auditory front-end processing,” Sens. Actuators A Phys. 114, 176–182 (2004).
[Crossref]

Bélanger, M. C.

M. C. Bélanger and Y. Marois, “Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review,” J. Biomed. Mater. Res. 58, 467–477 (2001).
[Crossref]

Brown, D.

F. Vollmer, D. Brown, A. Libchaber, M. Khoshima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Cammann, K.

K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, “Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis,” Anal. Chem. 71, 5430–5435 (1999).
[Crossref]

Christensen, M.

A. Ali, T. Ioppolo, V. Ötügen, M. Christensen, and D. MacFarlane, “Photonic electric field sensor based on polymeric microspheres,” J. Polym. Sci. B Polym. Phys. 52, 276–279 (2014).
[Crossref]

Gorodetsky, M. L.

Grawe, F.

K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, “Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis,” Anal. Chem. 71, 5430–5435 (1999).
[Crossref]

Guan, G.

G. Guan, S. Arnold, and V. Ötügen, “Temperature measurements using a micro-optical sensor based on whispering gallery modes,” AIAA J. 44, 2385–2389 (2006).
[Crossref]

Guo, Z.

Q. Ma, T. Rossmann, and Z. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D 41, 245111 (2008).
[Crossref]

Haronian, D.

D. Haronian and N. C. MacDonald, “A microelectromechanics-based frequency-signature sensor,” Sens. Actuators A Phys. 53, 288–298 (1996).
[Crossref]

D. Haronian and N. C. MacDonald, “Microelectromechanics-based frequency signature sensor,” U.S. patent5, 856, 722, 5Jan.1999.

Heineman, W. R.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref]

Holler, S.

Ilchenko, V. S.

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics,” Interplanetary Netw. Prog. Rep. 42-162, 1–51 (2005).

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[Crossref]

Ioppolo, T.

E. Rubino and T. Ioppolo, “Dynamical behavior of magnetic polarizable microsphere using whispering gallery mode,” J. Polym. Sci. Part B 56, 598–603 (2018).
[Crossref]

A. Ali and T. Ioppolo, “Effect of angular velocity on sensors based on morphology dependent resonances,” Sensors 14, 7041–7048 (2014).
[Crossref]

A. Ali, T. Ioppolo, V. Ötügen, M. Christensen, and D. MacFarlane, “Photonic electric field sensor based on polymeric microspheres,” J. Polym. Sci. B Polym. Phys. 52, 276–279 (2014).
[Crossref]

T. Ioppolo, V. Ötügen, and K. Marcis, “Magnetic field-induced excitation and optical detection of mechanical modes of micro-spheres,” J. Appl. Phys. 107, 123115 (2010).
[Crossref]

T. Ioppolo and V. Ötügen, “Magnetorheological polydimethylsiloxane micro-optical resonator,” Opt. Lett. 35, 2037–2039 (2010).
[Crossref]

T. Ioppolo, U. Ayaz, and V. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105, 013535 (2009).
[Crossref]

T. Ioppolo, U. K. Ayaz, and M. V. Ötügen, “Tuning of whispering gallery modes of spherical resonators using an external electric field,” Opt. Express 17, 16465–16479 (2009).
[Crossref]

T. Ioppolo, M. Kozhevnikov, V. Stepaniuk, V. Ötügen, and V. Sheverev, “A micro-optical force sensor concept based on whispering gallery mode resonators,” Appl. Opt. 47, 3009–3014 (2008).
[Crossref]

T. Ioppolo and V. Ötügen, “Pressure tuning of whispering gallery mode resonators,” J. Opt. Soc. Am. B 24, 2721–2726 (2007).
[Crossref]

Katerkamp, A.

K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, “Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis,” Anal. Chem. 71, 5430–5435 (1999).
[Crossref]

Khoshima, M.

F. Vollmer, D. Brown, A. Libchaber, M. Khoshima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Khoshsima, M.

Kozhevnikov, M.

Lee, S. H.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref]

Li, G. P.

T. Xu, M. Bachman, F. G. Zeng, and G. P. Li, “Polymeric micro-cantilever array for auditory front-end processing,” Sens. Actuators A Phys. 114, 176–182 (2004).
[Crossref]

Libchaber, A.

F. Vollmer, D. Brown, A. Libchaber, M. Khoshima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Limbach, P. A.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref]

Ma, Q.

Q. Ma, T. Rossmann, and Z. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D 41, 245111 (2008).
[Crossref]

MacDonald, N. C.

D. Haronian and N. C. MacDonald, “A microelectromechanics-based frequency-signature sensor,” Sens. Actuators A Phys. 53, 288–298 (1996).
[Crossref]

D. Haronian and N. C. MacDonald, “Microelectromechanics-based frequency signature sensor,” U.S. patent5, 856, 722, 5Jan.1999.

MacFarlane, D.

A. Ali, T. Ioppolo, V. Ötügen, M. Christensen, and D. MacFarlane, “Photonic electric field sensor based on polymeric microspheres,” J. Polym. Sci. B Polym. Phys. 52, 276–279 (2014).
[Crossref]

Maleki, L.

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics,” Interplanetary Netw. Prog. Rep. 42-162, 1–51 (2005).

Marcis, K.

T. Ioppolo, V. Ötügen, and K. Marcis, “Magnetic field-induced excitation and optical detection of mechanical modes of micro-spheres,” J. Appl. Phys. 107, 123115 (2010).
[Crossref]

Marois, Y.

M. C. Bélanger and Y. Marois, “Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review,” J. Biomed. Mater. Res. 58, 467–477 (2001).
[Crossref]

Matsko, A. B.

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics,” Interplanetary Netw. Prog. Rep. 42-162, 1–51 (2005).

Meirovitch, L.

L. Meirovitch, Fundamentals of Vibrations (McGraw-Hill, 2001).

Meusel, M.

K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, “Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis,” Anal. Chem. 71, 5430–5435 (1999).
[Crossref]

Nikcevic, I.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref]

Ötügen, M. V.

Ötügen, V.

A. Ali, T. Ioppolo, V. Ötügen, M. Christensen, and D. MacFarlane, “Photonic electric field sensor based on polymeric microspheres,” J. Polym. Sci. B Polym. Phys. 52, 276–279 (2014).
[Crossref]

T. Ioppolo and V. Ötügen, “Magnetorheological polydimethylsiloxane micro-optical resonator,” Opt. Lett. 35, 2037–2039 (2010).
[Crossref]

T. Ioppolo, V. Ötügen, and K. Marcis, “Magnetic field-induced excitation and optical detection of mechanical modes of micro-spheres,” J. Appl. Phys. 107, 123115 (2010).
[Crossref]

T. Ioppolo, U. Ayaz, and V. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105, 013535 (2009).
[Crossref]

T. Ioppolo, M. Kozhevnikov, V. Stepaniuk, V. Ötügen, and V. Sheverev, “A micro-optical force sensor concept based on whispering gallery mode resonators,” Appl. Opt. 47, 3009–3014 (2008).
[Crossref]

T. Ioppolo and V. Ötügen, “Pressure tuning of whispering gallery mode resonators,” J. Opt. Soc. Am. B 24, 2721–2726 (2007).
[Crossref]

G. Guan, S. Arnold, and V. Ötügen, “Temperature measurements using a micro-optical sensor based on whispering gallery modes,” AIAA J. 44, 2385–2389 (2006).
[Crossref]

Piruska, A.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref]

Rao, S.

S. Rao, Mechanical Vibrations (Addison-Wesley Longman, 1986).

Rossmann, T.

Q. Ma, T. Rossmann, and Z. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D 41, 245111 (2008).
[Crossref]

Rubino, E.

E. Rubino and T. Ioppolo, “Dynamical behavior of magnetic polarizable microsphere using whispering gallery mode,” J. Polym. Sci. Part B 56, 598–603 (2018).
[Crossref]

Savchenkov, A. A.

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics,” Interplanetary Netw. Prog. Rep. 42-162, 1–51 (2005).

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[Crossref]

Schult, K.

K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, “Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis,” Anal. Chem. 71, 5430–5435 (1999).
[Crossref]

Seliskar, C. J.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref]

Sheverev, V.

Singiresu, S. R.

S. R. Singiresu, Vibration of Continuous Systems (Wiley, 2007).

Stepaniuk, V.

Strekalov, D.

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics,” Interplanetary Netw. Prog. Rep. 42-162, 1–51 (2005).

Taha, H.

A. R. Ali, A. N. Afifi, and H. Taha, “Optical signal processing and tracking of whispering gallery modes in real-time for sensing applications,” Proc. SPIE 10249, 102490E (2017).
[Crossref]

Tang, S. K.

G. M. Whitesides and S. K. Tang, “Fluidic optics,” Proc. SPIE 6329, 63290A (2006).
[Crossref]

Teraoka, I.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref]

F. Vollmer, D. Brown, A. Libchaber, M. Khoshima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Thomson, W.

W. Thomson, Theory of Vibration with Applications (Simon & Schuster, 1993).

Trau, D.

K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, “Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis,” Anal. Chem. 71, 5430–5435 (1999).
[Crossref]

Vollmer, F.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref]

F. Vollmer, D. Brown, A. Libchaber, M. Khoshima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Whitesides, G. M.

G. M. Whitesides and S. K. Tang, “Fluidic optics,” Proc. SPIE 6329, 63290A (2006).
[Crossref]

Xu, T.

T. Xu, M. Bachman, F. G. Zeng, and G. P. Li, “Polymeric micro-cantilever array for auditory front-end processing,” Sens. Actuators A Phys. 114, 176–182 (2004).
[Crossref]

Zeng, F. G.

T. Xu, M. Bachman, F. G. Zeng, and G. P. Li, “Polymeric micro-cantilever array for auditory front-end processing,” Sens. Actuators A Phys. 114, 176–182 (2004).
[Crossref]

AIAA J. (1)

G. Guan, S. Arnold, and V. Ötügen, “Temperature measurements using a micro-optical sensor based on whispering gallery modes,” AIAA J. 44, 2385–2389 (2006).
[Crossref]

Anal. Chem. (1)

K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, “Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis,” Anal. Chem. 71, 5430–5435 (1999).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. Vollmer, D. Brown, A. Libchaber, M. Khoshima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Interplanetary Netw. Prog. Rep. (1)

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics,” Interplanetary Netw. Prog. Rep. 42-162, 1–51 (2005).

J. Appl. Phys. (2)

T. Ioppolo, V. Ötügen, and K. Marcis, “Magnetic field-induced excitation and optical detection of mechanical modes of micro-spheres,” J. Appl. Phys. 107, 123115 (2010).
[Crossref]

T. Ioppolo, U. Ayaz, and V. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105, 013535 (2009).
[Crossref]

J. Biomed. Mater. Res. (1)

M. C. Bélanger and Y. Marois, “Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review,” J. Biomed. Mater. Res. 58, 467–477 (2001).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

Q. Ma, T. Rossmann, and Z. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D 41, 245111 (2008).
[Crossref]

J. Polym. Sci. B Polym. Phys. (1)

A. Ali, T. Ioppolo, V. Ötügen, M. Christensen, and D. MacFarlane, “Photonic electric field sensor based on polymeric microspheres,” J. Polym. Sci. B Polym. Phys. 52, 276–279 (2014).
[Crossref]

J. Polym. Sci. Part B (1)

E. Rubino and T. Ioppolo, “Dynamical behavior of magnetic polarizable microsphere using whispering gallery mode,” J. Polym. Sci. Part B 56, 598–603 (2018).
[Crossref]

Lab Chip (1)

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (2)

A. R. Ali, A. N. Afifi, and H. Taha, “Optical signal processing and tracking of whispering gallery modes in real-time for sensing applications,” Proc. SPIE 10249, 102490E (2017).
[Crossref]

G. M. Whitesides and S. K. Tang, “Fluidic optics,” Proc. SPIE 6329, 63290A (2006).
[Crossref]

Sens. Actuators A Phys. (2)

D. Haronian and N. C. MacDonald, “A microelectromechanics-based frequency-signature sensor,” Sens. Actuators A Phys. 53, 288–298 (1996).
[Crossref]

T. Xu, M. Bachman, F. G. Zeng, and G. P. Li, “Polymeric micro-cantilever array for auditory front-end processing,” Sens. Actuators A Phys. 114, 176–182 (2004).
[Crossref]

Sensors (1)

A. Ali and T. Ioppolo, “Effect of angular velocity on sensors based on morphology dependent resonances,” Sensors 14, 7041–7048 (2014).
[Crossref]

Other (6)

D. Haronian and N. C. MacDonald, “Microelectromechanics-based frequency signature sensor,” U.S. patent5, 856, 722, 5Jan.1999.

S. Rao, Mechanical Vibrations (Addison-Wesley Longman, 1986).

L. Meirovitch, Fundamentals of Vibrations (McGraw-Hill, 2001).

W. Thomson, Theory of Vibration with Applications (Simon & Schuster, 1993).

S. R. Singiresu, Vibration of Continuous Systems (Wiley, 2007).

A. Ali, Principles of Sensing Based on Micro-Optical Whispering Gallery Modes: Physics, Design, and Applications (Lambert Academic Publishing, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Schematic of the whispering gallery mode sensor shows the ray optics model of light circulation inside sphere; also the typical transmission spectrum for a spherical resonator and a photograph of a finished sphere.
Fig. 2.
Fig. 2. Frequency response curve of the subwoofer.
Fig. 3.
Fig. 3. (a) Schematic and (b) photograph of the opto-mechanical frequency analyzer using polymeric optical resonators.
Fig. 4.
Fig. 4. Schematic of the opto-mechanical frequency analyzer with fixed-fixed beams.
Fig. 5.
Fig. 5. Simulation response for the first mode shape for (a) beam no. 1, (b) beam no. 2, and (c) beam no. 3.
Fig. 6.
Fig. 6. Illustration of the steps in the fabrication process of the PDMS beam fabrication and a photograph of a finished beam.
Fig. 7.
Fig. 7. Schematic and photograph for the opto-electronic setup.
Fig. 8.
Fig. 8. Simulation results for the beam deflection Yr as a function of the distance along beams 1, 2, and 3 from its end.
Fig. 9.
Fig. 9. Simulation response for the second mode shape for (a) beam no. 1, (b) beam no. 2, and (c) beam no. 3.
Fig. 10.
Fig. 10. (a) Results and (b) schematic of beam lengths.
Fig. 11.
Fig. 11. Experimental setup.
Fig. 12.
Fig. 12. Results before normalization.
Fig. 13.
Fig. 13. (a) Results after normalization and (b) schematic of beam lengths.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Q=w0τ=2πv0τ=w0ΔwFWHM,
λm2πrnmform=1,2,3,,
dλλ=drr+dnn.
Δλcorrected=Δλ[ΔλPo×10dB/20×(Po×10dB/20Po×10dBdatum/20)],
wn=βn2EImL4,
cosβ·coshβ=1,
cosβ·coshβ=1.
Yr(x)=sin(βL)xsinh(βL)x(sinβ+sinhβcosβ+coshβ)(cos(βL)xcosh(βL)x),
Yr(x)=sin(βL)xsinh(βL)x(sinβsinhβcosβcoshβ)(cos(βL)xcosh(βL)x),

Metrics