Abstract

Recent work has shown the significance of a nonlocal dielectric response and surface correction for nanometer-length-scale plasmonic structures. In this paper, we propose a new surface hydrodynamic model which incorporates such nonlocality and surface correction. Our approach, which is based on the hydrodynamic model, uses a numerical approach based on full-wave numerical computation and thus enables calculation of surface plasmon polariton (SPP) fields. The model also introduces a discontinuity in the normal component of the electric displacement at the interface by taking into account the change in the electron distribution at the interface. The method makes use of the Feibelman d parameter approach for the surface correction by equating the corrected Fresnel reflection of a p-polarized incident field across a planar interface. To demonstrate our method, we first examine numerical calculation of SPP propagation at a single interface structure; this work is then followed by a demonstration for a set of more complex thin-film structures. The latter demonstrates that our method is suitable for use in numerical modeling of complex nanophotonic structures.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Classification of scalar and dyadic nonlocal optical response models

M. Wubs
Opt. Express 23(24) 31296-31312 (2015)

Nonlocal propagation and tunnelling of surface plasmons in metallic hourglass waveguides

Aeneas Wiener, Antonio I. Fernández-Domínguez, J. B. Pendry, Andrew P. Horsfield, and Stefan A. Maier
Opt. Express 21(22) 27509-27518 (2013)

Hydrodynamic acoustic plasmon resonances in semiconductor nanowires and their dimers

Tahereh Golestanizadeh, Abbas Zarifi, Tahmineh Jalali, Johan R. Maack, and Martijn Wubs
J. Opt. Soc. Am. B 36(10) 2712-2720 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription