Abstract

We experimentally report on the preservation of transverse spatial coherence in the storage of double light pulses by using a solid. Under electromagnetically induced transparency, two probe pulses are stored into atomic coherence between ground-state levels and later retrieved. By analyzing the Young-type spatial interference patterns formed by two probe fields before and after the storage, we demonstrate that transverse spatial coherence of the probe fields is preserved in the storage process. This demonstration can be used for image processing and multiple information manipulation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic generation of robust and controlled beating signals in an asymmetric procedure of light storage and retrieval

Qian-Qian Bao, Jin-Wei Gao, Cui-Li Cui, Gang Wang, Yan Xue, and Jin-Hui Wu
Opt. Express 19(12) 11832-11840 (2011)

Optical information transfer between two light channels in a Pr3+:Y2SiO5 crystal

Hai-Hua Wang, Xiao-Gang Wei, Lei Wang, Ya-Juan Li, Dun-Mao Du, Jin-Hui Wu, Zhi-Hui Kang, Yun Jiang, and Jin-Yue Gao
Opt. Express 15(24) 16044-16050 (2007)

Coherent generation and efficient manipulation of dual-channel robust stationary light pulses in ultracold atoms

Yan Zhang, Qian-Qian Bao, Nuo Ba, Cui-Li Cui, and Jin-Hui Wu
J. Opt. Soc. Am. B 30(8) 2333-2339 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischhauer and A. Imamoglu, “Electromagnetically induced transparency: optics in coherent medium,” Rev. Mod. Phys. 77, 633–673 (2005).
    [Crossref]
  2. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
    [Crossref]
  3. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [Crossref]
  4. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
    [Crossref]
  5. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
    [Crossref]
  6. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
    [Crossref]
  7. L. Karpa, F. Vewinger, and M. Weitz, “Resonance beating of light stored using atomic spinor polaritons,” Phys. Rev. Lett. 101, 170406 (2008).
    [Crossref]
  8. A. MacRae, G. Campbell, and A. I. Lvovsky, “Matched slow pulses using double electromagnetically induced transparency,” Opt. Lett. 33, 2659–2661 (2008).
    [Crossref]
  9. H. H. Wang, Y. F. Fan, R. Wang, L. Wang, D. M. Du, Z. H. Kang, Y. Jiang, J. H. Wu, and J. Y. Gao, “Slowing and storage of double light pulses in a Pr3+:Y2SiO5 crystal,” Opt. Lett. 34, 2596–2598 (2008).
    [Crossref]
  10. M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriasov, K. F. Chang, H. W. Cho, G. Juzeliunas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
    [Crossref]
  11. D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multimode image memory based on a cold atomic ensemble,” Phys. Rev. A 87, 013835 (2013).
    [Crossref]
  12. R. A. de Oliveira, D. Felinto, and J. W. R. Tabosa, “Nonlinear coupling between two Zeeman coherence gratings stored in cold atoms,” Phys. Rev. A 88, 023844 (2013).
    [Crossref]
  13. M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100, 223601 (2008).
    [Crossref]
  14. G. Heinze, A. Rudolf, F. Beil, and T. Halfmann, “Storage of images in atomic coherences in a rare-earth-ion-doped solid,” Phys. Rev. A 81, 011401 (2010).
    [Crossref]
  15. P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Elimination of the diffraction of arbitrary images imprinted on slow light,” Phys. Rev. Lett. 100, 123903 (2008).
    [Crossref]
  16. D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).
  17. D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multiple image storage and frequency conversion in a cold atomic ensemble,” Phys. Rev. A 87, 053830 (2013).
    [Crossref]
  18. A. Grodecka-Grad, E. Zeuthen, and A. S. Sorensen, “High-capacity spatial multimode quantum memories based on atomic ensembles,” Phys. Rev. Lett. 109, 133601 (2012).
    [Crossref]
  19. Y. W. Cho, J. E. Oh, and Y. H. Kim, “Diffusion-free image storage in hot atomic vapor,” Phys. Rev. A 86, 013844 (2012).
    [Crossref]
  20. Y. F. Chen, Y. C. Liu, Z. H. Tsai, S. H. Wang, and I. A. Yu, “Beat-note interferometer for direct phase measurement of photonic information,” Phys. Rev. A 72, 033812 (2005).
    [Crossref]
  21. J. C. Lee, K. K. Park, Y. W. Cho, and Y. H. Kim, “Preservation of spatial coherence of an optical pulse in atomic vapor quantum memory,” Phys. Rev. A 88, 043824 (2013).
    [Crossref]
  22. R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
    [Crossref]
  23. Z. H. Zhai, Z. X. Li, J. J. Xu, and G. Q. Zhang, “Transfer and computation of optical topological charges via light pulse buffer memory in an electromagnetically-induced-transparency solid,” Phys. Rev. A 88, 035807 (2013).
    [Crossref]
  24. M. Nilsson, L. Rippe, and S. Kroll, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214116 (2004).
    [Crossref]
  25. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
    [Crossref]
  26. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
    [Crossref]
  27. G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
    [Crossref]
  28. H. H. Wang, X. G. Wei, L. Wang, Y. J. Li, D. M. Du, J. H. Wu, Z. H. Kang, Y. Jiang, and J. Y. Gao, “Optical information transfer between two light channels in a Pr3+:Y2SiO5 crystal,” Opt. Express 15, 16044–16050 (2007).
    [Crossref]
  29. Y. S. Kim, O. Kwon, S. M. Lee, J. C. Lee, H. Kim, S. K. Choi, H. S. Park, and Y. H. Kim, “Observation of Young’s double-slit interference with the three-photon NooN state,” Opt. Express 19, 24957–24966 (2011).
    [Crossref]
  30. B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Frequency-selective time-domain optical data storage by electromagnetically induced transparency in a rare-earth-doped solid,” Opt. Lett. 22, 1849–1851 (1997).
    [Crossref]
  31. F. Beil, J. Klein, G. Nikoghosyan, and T. Halfmann, “Electromagnetically induced transparency and retrieval of light pulses in a ∧-type and a ∨-type level scheme in Pr3+:Y2SiO5,” J. Phys. B 41, 074001 (2008).
    [Crossref]

2014 (1)

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriasov, K. F. Chang, H. W. Cho, G. Juzeliunas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
[Crossref]

2013 (7)

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multimode image memory based on a cold atomic ensemble,” Phys. Rev. A 87, 013835 (2013).
[Crossref]

R. A. de Oliveira, D. Felinto, and J. W. R. Tabosa, “Nonlinear coupling between two Zeeman coherence gratings stored in cold atoms,” Phys. Rev. A 88, 023844 (2013).
[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multiple image storage and frequency conversion in a cold atomic ensemble,” Phys. Rev. A 87, 053830 (2013).
[Crossref]

J. C. Lee, K. K. Park, Y. W. Cho, and Y. H. Kim, “Preservation of spatial coherence of an optical pulse in atomic vapor quantum memory,” Phys. Rev. A 88, 043824 (2013).
[Crossref]

Z. H. Zhai, Z. X. Li, J. J. Xu, and G. Q. Zhang, “Transfer and computation of optical topological charges via light pulse buffer memory in an electromagnetically-induced-transparency solid,” Phys. Rev. A 88, 035807 (2013).
[Crossref]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

2012 (2)

A. Grodecka-Grad, E. Zeuthen, and A. S. Sorensen, “High-capacity spatial multimode quantum memories based on atomic ensembles,” Phys. Rev. Lett. 109, 133601 (2012).
[Crossref]

Y. W. Cho, J. E. Oh, and Y. H. Kim, “Diffusion-free image storage in hot atomic vapor,” Phys. Rev. A 86, 013844 (2012).
[Crossref]

2011 (1)

2010 (1)

G. Heinze, A. Rudolf, F. Beil, and T. Halfmann, “Storage of images in atomic coherences in a rare-earth-ion-doped solid,” Phys. Rev. A 81, 011401 (2010).
[Crossref]

2008 (8)

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Elimination of the diffraction of arbitrary images imprinted on slow light,” Phys. Rev. Lett. 100, 123903 (2008).
[Crossref]

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100, 223601 (2008).
[Crossref]

A. MacRae, G. Campbell, and A. I. Lvovsky, “Matched slow pulses using double electromagnetically induced transparency,” Opt. Lett. 33, 2659–2661 (2008).
[Crossref]

H. H. Wang, Y. F. Fan, R. Wang, L. Wang, D. M. Du, Z. H. Kang, Y. Jiang, J. H. Wu, and J. Y. Gao, “Slowing and storage of double light pulses in a Pr3+:Y2SiO5 crystal,” Opt. Lett. 34, 2596–2598 (2008).
[Crossref]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[Crossref]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

L. Karpa, F. Vewinger, and M. Weitz, “Resonance beating of light stored using atomic spinor polaritons,” Phys. Rev. Lett. 101, 170406 (2008).
[Crossref]

F. Beil, J. Klein, G. Nikoghosyan, and T. Halfmann, “Electromagnetically induced transparency and retrieval of light pulses in a ∧-type and a ∨-type level scheme in Pr3+:Y2SiO5,” J. Phys. B 41, 074001 (2008).
[Crossref]

2007 (2)

2005 (3)

M. Fleischhauer and A. Imamoglu, “Electromagnetically induced transparency: optics in coherent medium,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Y. F. Chen, Y. C. Liu, Z. H. Tsai, S. H. Wang, and I. A. Yu, “Beat-note interferometer for direct phase measurement of photonic information,” Phys. Rev. A 72, 033812 (2005).
[Crossref]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref]

2004 (1)

M. Nilsson, L. Rippe, and S. Kroll, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214116 (2004).
[Crossref]

2001 (3)

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[Crossref]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

2000 (1)

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[Crossref]

1997 (1)

Appel, J.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

Beil, F.

G. Heinze, A. Rudolf, F. Beil, and T. Halfmann, “Storage of images in atomic coherences in a rare-earth-ion-doped solid,” Phys. Rev. A 81, 011401 (2010).
[Crossref]

F. Beil, J. Klein, G. Nikoghosyan, and T. Halfmann, “Electromagnetically induced transparency and retrieval of light pulses in a ∧-type and a ∨-type level scheme in Pr3+:Y2SiO5,” J. Phys. B 41, 074001 (2008).
[Crossref]

Camacho, R. M.

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Elimination of the diffraction of arbitrary images imprinted on slow light,” Phys. Rev. Lett. 100, 123903 (2008).
[Crossref]

Campbell, G.

Chang, K. F.

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriasov, K. F. Chang, H. W. Cho, G. Juzeliunas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
[Crossref]

Chen, Y. F.

Y. F. Chen, Y. C. Liu, Z. H. Tsai, S. H. Wang, and I. A. Yu, “Beat-note interferometer for direct phase measurement of photonic information,” Phys. Rev. A 72, 033812 (2005).
[Crossref]

Cho, H. W.

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriasov, K. F. Chang, H. W. Cho, G. Juzeliunas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
[Crossref]

Cho, Y. W.

J. C. Lee, K. K. Park, Y. W. Cho, and Y. H. Kim, “Preservation of spatial coherence of an optical pulse in atomic vapor quantum memory,” Phys. Rev. A 88, 043824 (2013).
[Crossref]

Y. W. Cho, J. E. Oh, and Y. H. Kim, “Diffusion-free image storage in hot atomic vapor,” Phys. Rev. A 86, 013844 (2012).
[Crossref]

Choi, K. S.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[Crossref]

Choi, S. K.

Davidson, N.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100, 223601 (2008).
[Crossref]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
[Crossref]

de Oliveira, R. A.

R. A. de Oliveira, D. Felinto, and J. W. R. Tabosa, “Nonlinear coupling between two Zeeman coherence gratings stored in cold atoms,” Phys. Rev. A 88, 023844 (2013).
[Crossref]

Deng, H.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[Crossref]

Ding, D. S.

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multimode image memory based on a cold atomic ensemble,” Phys. Rev. A 87, 013835 (2013).
[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multiple image storage and frequency conversion in a cold atomic ensemble,” Phys. Rev. A 87, 053830 (2013).
[Crossref]

Du, D. M.

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

Fan, Y. F.

Felinto, D.

R. A. de Oliveira, D. Felinto, and J. W. R. Tabosa, “Nonlinear coupling between two Zeeman coherence gratings stored in cold atoms,” Phys. Rev. A 88, 023844 (2013).
[Crossref]

Figueroa, E.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

Firstenberg, O.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100, 223601 (2008).
[Crossref]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
[Crossref]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Fleischhauer, M.

M. Fleischhauer and A. Imamoglu, “Electromagnetically induced transparency: optics in coherent medium,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[Crossref]

Fraval, E.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref]

Gao, J. Y.

Grodecka-Grad, A.

A. Grodecka-Grad, E. Zeuthen, and A. S. Sorensen, “High-capacity spatial multimode quantum memories based on atomic ensembles,” Phys. Rev. Lett. 109, 133601 (2012).
[Crossref]

Guo, G. C.

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multiple image storage and frequency conversion in a cold atomic ensemble,” Phys. Rev. A 87, 053830 (2013).
[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multimode image memory based on a cold atomic ensemble,” Phys. Rev. A 87, 013835 (2013).
[Crossref]

Halfmann, T.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

G. Heinze, A. Rudolf, F. Beil, and T. Halfmann, “Storage of images in atomic coherences in a rare-earth-ion-doped solid,” Phys. Rev. A 81, 011401 (2010).
[Crossref]

F. Beil, J. Klein, G. Nikoghosyan, and T. Halfmann, “Electromagnetically induced transparency and retrieval of light pulses in a ∧-type and a ∨-type level scheme in Pr3+:Y2SiO5,” J. Phys. B 41, 074001 (2008).
[Crossref]

Ham, B. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[Crossref]

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Frequency-selective time-domain optical data storage by electromagnetically induced transparency in a rare-earth-doped solid,” Opt. Lett. 22, 1849–1851 (1997).
[Crossref]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

Heinze, G.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

G. Heinze, A. Rudolf, F. Beil, and T. Halfmann, “Storage of images in atomic coherences in a rare-earth-ion-doped solid,” Phys. Rev. A 81, 011401 (2010).
[Crossref]

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[Crossref]

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Frequency-selective time-domain optical data storage by electromagnetically induced transparency in a rare-earth-doped solid,” Opt. Lett. 22, 1849–1851 (1997).
[Crossref]

Howell, J. C.

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Elimination of the diffraction of arbitrary images imprinted on slow light,” Phys. Rev. Lett. 100, 123903 (2008).
[Crossref]

Hubrich, C.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

Imamoglu, A.

M. Fleischhauer and A. Imamoglu, “Electromagnetically induced transparency: optics in coherent medium,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Jiang, Y.

Juzeliunas, G.

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriasov, K. F. Chang, H. W. Cho, G. Juzeliunas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
[Crossref]

Kang, Z. H.

Karpa, L.

L. Karpa, F. Vewinger, and M. Weitz, “Resonance beating of light stored using atomic spinor polaritons,” Phys. Rev. Lett. 101, 170406 (2008).
[Crossref]

Kim, H.

Kim, M. K.

Kim, Y. H.

J. C. Lee, K. K. Park, Y. W. Cho, and Y. H. Kim, “Preservation of spatial coherence of an optical pulse in atomic vapor quantum memory,” Phys. Rev. A 88, 043824 (2013).
[Crossref]

Y. W. Cho, J. E. Oh, and Y. H. Kim, “Diffusion-free image storage in hot atomic vapor,” Phys. Rev. A 86, 013844 (2012).
[Crossref]

Y. S. Kim, O. Kwon, S. M. Lee, J. C. Lee, H. Kim, S. K. Choi, H. S. Park, and Y. H. Kim, “Observation of Young’s double-slit interference with the three-photon NooN state,” Opt. Express 19, 24957–24966 (2011).
[Crossref]

Kim, Y. S.

Kimble, H. J.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[Crossref]

Klein, J.

F. Beil, J. Klein, G. Nikoghosyan, and T. Halfmann, “Electromagnetically induced transparency and retrieval of light pulses in a ∧-type and a ∨-type level scheme in Pr3+:Y2SiO5,” J. Phys. B 41, 074001 (2008).
[Crossref]

Korystov, D.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

Kroll, S.

M. Nilsson, L. Rippe, and S. Kroll, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214116 (2004).
[Crossref]

Kudriasov, V.

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriasov, K. F. Chang, H. W. Cho, G. Juzeliunas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
[Crossref]

Kwon, O.

Laurat, J.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[Crossref]

Lee, C. Y.

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriasov, K. F. Chang, H. W. Cho, G. Juzeliunas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
[Crossref]

Lee, J. C.

J. C. Lee, K. K. Park, Y. W. Cho, and Y. H. Kim, “Preservation of spatial coherence of an optical pulse in atomic vapor quantum memory,” Phys. Rev. A 88, 043824 (2013).
[Crossref]

Y. S. Kim, O. Kwon, S. M. Lee, J. C. Lee, H. Kim, S. K. Choi, H. S. Park, and Y. H. Kim, “Observation of Young’s double-slit interference with the three-photon NooN state,” Opt. Express 19, 24957–24966 (2011).
[Crossref]

Lee, M. J.

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriasov, K. F. Chang, H. W. Cho, G. Juzeliunas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
[Crossref]

Lee, S. M.

Li, Y. J.

Li, Z. X.

Z. H. Zhai, Z. X. Li, J. J. Xu, and G. Q. Zhang, “Transfer and computation of optical topological charges via light pulse buffer memory in an electromagnetically-induced-transparency solid,” Phys. Rev. A 88, 035807 (2013).
[Crossref]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

Liu, Y.

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multimode image memory based on a cold atomic ensemble,” Phys. Rev. A 87, 013835 (2013).
[Crossref]

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multiple image storage and frequency conversion in a cold atomic ensemble,” Phys. Rev. A 87, 053830 (2013).
[Crossref]

Liu, Y. C.

Y. F. Chen, Y. C. Liu, Z. H. Tsai, S. H. Wang, and I. A. Yu, “Beat-note interferometer for direct phase measurement of photonic information,” Phys. Rev. A 72, 033812 (2005).
[Crossref]

Lobino, M.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

Longdell, J. J.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref]

Lukin, M. D.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[Crossref]

Lvovsky, A. I.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

A. MacRae, G. Campbell, and A. I. Lvovsky, “Matched slow pulses using double electromagnetically induced transparency,” Opt. Lett. 33, 2659–2661 (2008).
[Crossref]

MacRae, A.

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Manson, N. B.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[Crossref]

Nikoghosyan, G.

F. Beil, J. Klein, G. Nikoghosyan, and T. Halfmann, “Electromagnetically induced transparency and retrieval of light pulses in a ∧-type and a ∨-type level scheme in Pr3+:Y2SiO5,” J. Phys. B 41, 074001 (2008).
[Crossref]

Nilsson, M.

M. Nilsson, L. Rippe, and S. Kroll, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214116 (2004).
[Crossref]

Oh, J. E.

Y. W. Cho, J. E. Oh, and Y. H. Kim, “Diffusion-free image storage in hot atomic vapor,” Phys. Rev. A 86, 013844 (2012).
[Crossref]

Park, H. S.

Park, K. K.

J. C. Lee, K. K. Park, Y. W. Cho, and Y. H. Kim, “Preservation of spatial coherence of an optical pulse in atomic vapor quantum memory,” Phys. Rev. A 88, 043824 (2013).
[Crossref]

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Pugatch, R.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100, 223601 (2008).
[Crossref]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
[Crossref]

Rippe, L.

M. Nilsson, L. Rippe, and S. Kroll, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214116 (2004).
[Crossref]

Ron, A.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100, 223601 (2008).
[Crossref]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
[Crossref]

Rudolf, A.

G. Heinze, A. Rudolf, F. Beil, and T. Halfmann, “Storage of images in atomic coherences in a rare-earth-ion-doped solid,” Phys. Rev. A 81, 011401 (2010).
[Crossref]

Ruseckas, J.

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriasov, K. F. Chang, H. W. Cho, G. Juzeliunas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
[Crossref]

Sellars, M. J.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[Crossref]

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Frequency-selective time-domain optical data storage by electromagnetically induced transparency in a rare-earth-doped solid,” Opt. Lett. 22, 1849–1851 (1997).
[Crossref]

Shi, B. S.

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multimode image memory based on a cold atomic ensemble,” Phys. Rev. A 87, 013835 (2013).
[Crossref]

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multiple image storage and frequency conversion in a cold atomic ensemble,” Phys. Rev. A 87, 053830 (2013).
[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).

Shuker, M.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100, 223601 (2008).
[Crossref]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
[Crossref]

Sorensen, A. S.

A. Grodecka-Grad, E. Zeuthen, and A. S. Sorensen, “High-capacity spatial multimode quantum memories based on atomic ensembles,” Phys. Rev. Lett. 109, 133601 (2012).
[Crossref]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[Crossref]

Tabosa, J. W. R.

R. A. de Oliveira, D. Felinto, and J. W. R. Tabosa, “Nonlinear coupling between two Zeeman coherence gratings stored in cold atoms,” Phys. Rev. A 88, 023844 (2013).
[Crossref]

Tsai, Z. H.

Y. F. Chen, Y. C. Liu, Z. H. Tsai, S. H. Wang, and I. A. Yu, “Beat-note interferometer for direct phase measurement of photonic information,” Phys. Rev. A 72, 033812 (2005).
[Crossref]

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[Crossref]

Vewinger, F.

L. Karpa, F. Vewinger, and M. Weitz, “Resonance beating of light stored using atomic spinor polaritons,” Phys. Rev. Lett. 101, 170406 (2008).
[Crossref]

Vudyasetu, P. K.

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Elimination of the diffraction of arbitrary images imprinted on slow light,” Phys. Rev. Lett. 100, 123903 (2008).
[Crossref]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Wang, H. H.

Wang, L.

Wang, R.

Wang, S. H.

Y. F. Chen, Y. C. Liu, Z. H. Tsai, S. H. Wang, and I. A. Yu, “Beat-note interferometer for direct phase measurement of photonic information,” Phys. Rev. A 72, 033812 (2005).
[Crossref]

Wei, X. G.

Weitz, M.

L. Karpa, F. Vewinger, and M. Weitz, “Resonance beating of light stored using atomic spinor polaritons,” Phys. Rev. Lett. 101, 170406 (2008).
[Crossref]

Wu, J. H.

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multiple image storage and frequency conversion in a cold atomic ensemble,” Phys. Rev. A 87, 053830 (2013).
[Crossref]

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multimode image memory based on a cold atomic ensemble,” Phys. Rev. A 87, 013835 (2013).
[Crossref]

H. H. Wang, Y. F. Fan, R. Wang, L. Wang, D. M. Du, Z. H. Kang, Y. Jiang, J. H. Wu, and J. Y. Gao, “Slowing and storage of double light pulses in a Pr3+:Y2SiO5 crystal,” Opt. Lett. 34, 2596–2598 (2008).
[Crossref]

H. H. Wang, X. G. Wei, L. Wang, Y. J. Li, D. M. Du, J. H. Wu, Z. H. Kang, Y. Jiang, and J. Y. Gao, “Optical information transfer between two light channels in a Pr3+:Y2SiO5 crystal,” Opt. Express 15, 16044–16050 (2007).
[Crossref]

Xu, J. J.

Z. H. Zhai, Z. X. Li, J. J. Xu, and G. Q. Zhang, “Transfer and computation of optical topological charges via light pulse buffer memory in an electromagnetically-induced-transparency solid,” Phys. Rev. A 88, 035807 (2013).
[Crossref]

Yu, I. A.

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriasov, K. F. Chang, H. W. Cho, G. Juzeliunas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
[Crossref]

Y. F. Chen, Y. C. Liu, Z. H. Tsai, S. H. Wang, and I. A. Yu, “Beat-note interferometer for direct phase measurement of photonic information,” Phys. Rev. A 72, 033812 (2005).
[Crossref]

Zeuthen, E.

A. Grodecka-Grad, E. Zeuthen, and A. S. Sorensen, “High-capacity spatial multimode quantum memories based on atomic ensembles,” Phys. Rev. Lett. 109, 133601 (2012).
[Crossref]

Zhai, Z. H.

Z. H. Zhai, Z. X. Li, J. J. Xu, and G. Q. Zhang, “Transfer and computation of optical topological charges via light pulse buffer memory in an electromagnetically-induced-transparency solid,” Phys. Rev. A 88, 035807 (2013).
[Crossref]

Zhang, G. Q.

Z. H. Zhai, Z. X. Li, J. J. Xu, and G. Q. Zhang, “Transfer and computation of optical topological charges via light pulse buffer memory in an electromagnetically-induced-transparency solid,” Phys. Rev. A 88, 035807 (2013).
[Crossref]

Zhou, Z. Y.

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multimode image memory based on a cold atomic ensemble,” Phys. Rev. A 87, 013835 (2013).
[Crossref]

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multiple image storage and frequency conversion in a cold atomic ensemble,” Phys. Rev. A 87, 053830 (2013).
[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).

Zou, X. B.

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multiple image storage and frequency conversion in a cold atomic ensemble,” Phys. Rev. A 87, 053830 (2013).
[Crossref]

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multimode image memory based on a cold atomic ensemble,” Phys. Rev. A 87, 013835 (2013).
[Crossref]

J. Phys. B (1)

F. Beil, J. Klein, G. Nikoghosyan, and T. Halfmann, “Electromagnetically induced transparency and retrieval of light pulses in a ∧-type and a ∨-type level scheme in Pr3+:Y2SiO5,” J. Phys. B 41, 074001 (2008).
[Crossref]

Nat. Commun. (2)

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriasov, K. F. Chang, H. W. Cho, G. Juzeliunas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).

Nature (2)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (8)

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multiple image storage and frequency conversion in a cold atomic ensemble,” Phys. Rev. A 87, 053830 (2013).
[Crossref]

G. Heinze, A. Rudolf, F. Beil, and T. Halfmann, “Storage of images in atomic coherences in a rare-earth-ion-doped solid,” Phys. Rev. A 81, 011401 (2010).
[Crossref]

D. S. Ding, J. H. Wu, Z. Y. Zhou, Y. Liu, B. S. Shi, X. B. Zou, and G. C. Guo, “Multimode image memory based on a cold atomic ensemble,” Phys. Rev. A 87, 013835 (2013).
[Crossref]

R. A. de Oliveira, D. Felinto, and J. W. R. Tabosa, “Nonlinear coupling between two Zeeman coherence gratings stored in cold atoms,” Phys. Rev. A 88, 023844 (2013).
[Crossref]

Y. W. Cho, J. E. Oh, and Y. H. Kim, “Diffusion-free image storage in hot atomic vapor,” Phys. Rev. A 86, 013844 (2012).
[Crossref]

Y. F. Chen, Y. C. Liu, Z. H. Tsai, S. H. Wang, and I. A. Yu, “Beat-note interferometer for direct phase measurement of photonic information,” Phys. Rev. A 72, 033812 (2005).
[Crossref]

J. C. Lee, K. K. Park, Y. W. Cho, and Y. H. Kim, “Preservation of spatial coherence of an optical pulse in atomic vapor quantum memory,” Phys. Rev. A 88, 043824 (2013).
[Crossref]

Z. H. Zhai, Z. X. Li, J. J. Xu, and G. Q. Zhang, “Transfer and computation of optical topological charges via light pulse buffer memory in an electromagnetically-induced-transparency solid,” Phys. Rev. A 88, 035807 (2013).
[Crossref]

Phys. Rev. B (1)

M. Nilsson, L. Rippe, and S. Kroll, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214116 (2004).
[Crossref]

Phys. Rev. Lett. (11)

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[Crossref]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
[Crossref]

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100, 223601 (2008).
[Crossref]

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Elimination of the diffraction of arbitrary images imprinted on slow light,” Phys. Rev. Lett. 100, 123903 (2008).
[Crossref]

A. Grodecka-Grad, E. Zeuthen, and A. S. Sorensen, “High-capacity spatial multimode quantum memories based on atomic ensembles,” Phys. Rev. Lett. 109, 133601 (2012).
[Crossref]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

L. Karpa, F. Vewinger, and M. Weitz, “Resonance beating of light stored using atomic spinor polaritons,” Phys. Rev. Lett. 101, 170406 (2008).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer and A. Imamoglu, “Electromagnetically induced transparency: optics in coherent medium,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Coupling scheme of Pr ions. Powers of the control, probe-1 and probe-2 fields are 14 mW, 0.5 mW and 0.5 mW, respectively.
Fig. 2.
Fig. 2. Experimental setup of the storage of double light pulses. L, lens; PD, photodiode; BS, beam splitter.
Fig. 3.
Fig. 3. (a) Experimental demonstration of the slowing of two probe pulses. (b) Young’s spatial interference patterns of two probe pulses before the storage. (c) Intensity distribution of the interference patterns.
Fig. 4.
Fig. 4. (a) Storage and retrieval of two probe pulses for a storage time of 6 μs, 12 μs and 18 μs. (b) Young’s spatial interference patterns of two retrieved pulses after the storage and their associated intensity distribution for three different storage times.
Fig. 5.
Fig. 5. (a) Retrieved intensity of two probe pulses versus the storage time. (b) Interference visibility versus the storage time.

Metrics