Abstract

In this paper, we present the design of a silicon optoelectronic device capable of speeding up processing capabilities. The data in this device are electronic, while the modulation control is optical. It can be used as a building block for the development of optical data processing by silicon-based processors based on typical microelectronics manufacturing processes. A V-groove-based structure fabricated as part of the device allows obtaining enhanced sensitivity to the polarization of the photonic control signal and thus allows obtaining a polarization-sensitive modulator.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator

Clemens Kieninger, Yasar Kutuvantavida, Delwin L. Elder, Stefan Wolf, Heiner Zwickel, Matthias Blaicher, Juned N. Kemal, Matthias Lauermann, Sebastian Randel, Wolfgang Freude, Larry R. Dalton, and Christian Koos
Optica 5(6) 739-748 (2018)

Novel V-groove structures on silicon

S. Sriram and E. P. Supertzi
Appl. Opt. 24(12) 1784-1787 (1985)

High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25μm silicon-on-insulator waveguides

Ning-Ning Feng, Shirong Liao, Dazeng Feng, Po Dong, Dawei Zheng, Hong Liang, Roshanak Shafiiha, Guoliang Li, John E. Cunningham, Ashok V. Krishnamoorthy, and Mehdi Asghari
Opt. Express 18(8) 7994-7999 (2010)

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi, “Will silicon be the photonic material of the third millennium?” J. Phys. Condens. Matter 15, R1169–R1196 (2003).
    [Crossref]
  2. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
    [Crossref]
  3. J. Faist, “Silicon shines on,” Nature 433, 691–692 (2005).
    [Crossref]
  4. M. Lipson, “Guiding, modulating, and emitting light on silicon—challenges and opportunities,” J. Lightwave Technol. 23, 4222–4238 (2005).
    [Crossref]
  5. J. Mason, “Development of on-chip optical interconnects for future...,” 2008, https://www.smartdatacollective.com/15528/ .
  6. N. Savage, “Linking chips with light,” IEEE Spectrum, 2015, http://spectrum.ieee.org/semiconductors/optoelectronics/linking-chips-with-light .
  7. A. Zev, A. Chelly, A. Karsenty, and Z. Zalevsky, “Development, simulation and characterization of nanoscale silicon on insulator photo-activated modulator (SOIPAM) hybrid device,” in International Conference on Optical MEMS and Nanophotonics (OMN), Jerusalem, Israel, August2–6 (IEEE Photonics Society, 2015).
  8. A. Zev, A. Karsenty, A. Chelly, and Z. Zalevsky, “Nanoscale silicon-on-insulator photo-activated modulator building block for optical communication,” IEEE Photon. Technol. Lett. 28, 569–572 (2016).
    [Crossref]
  9. Y. Mandelbaum, A. Zev, A. Chelly, Z. Zalevsky, and A. Karsenty, “Study of the photo and thermo-activation mechanisms in nanoscale SOI modulator,” J. Sens. 2017, 9581976 (2017).
    [Crossref]
  10. Y. Mandelbaum, I. Gadasi, A. Zev, A. Chelly, Z. Zalevsky, and A. Karsenty, “Small signals’ study of thermal induced current in nanoscale SOI sensor,” J. Sens. 2017, 1961734 (2017).
    [Crossref]
  11. “COMSOL Multiphysics,” https://www.comsol.com/comsol-multiphysics .
  12. N. Ashcroft and N. Mermin, Solid State Physics (Saunders College, 1976).
  13. D. Abraham, Z. Zalevsky, A. Chelly, and J. Shappir, “Fabrication of vertically positioned silicon on insulator photo-activated modulator,” Photon. Nanostr. Fundam. Appl. 7, 190–197 (2009).
    [Crossref]
  14. D. Abraham, A. Chelly, J. Shappir, and Z. Zalevsky, “Hybrid optical and electrical reconfigurable logic gates based on silicon on insulator technology,” Photon. Nanostr. Fundam. Appl. 9, 35–41 (2011).
    [Crossref]
  15. K. Biswas and S. Kal, “Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon,” Microelectron. J. 37, 519–525 (2006).
    [Crossref]
  16. A. Chelly, Y. Cohen, A. Sa’ar, and J. Shappir, “Pyramid-shaped silicon photodetector with subwavelength aperture,” IEEE Trans. Electron Devices 49, 986–990 (2002).
    [Crossref]
  17. D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. (Wiley, 2006).
  18. “Refractive. Index.INFO,” https://refractiveindex.info/?shelf=main&book=Si&page=Aspnes .

2017 (2)

Y. Mandelbaum, A. Zev, A. Chelly, Z. Zalevsky, and A. Karsenty, “Study of the photo and thermo-activation mechanisms in nanoscale SOI modulator,” J. Sens. 2017, 9581976 (2017).
[Crossref]

Y. Mandelbaum, I. Gadasi, A. Zev, A. Chelly, Z. Zalevsky, and A. Karsenty, “Small signals’ study of thermal induced current in nanoscale SOI sensor,” J. Sens. 2017, 1961734 (2017).
[Crossref]

2016 (2)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

A. Zev, A. Karsenty, A. Chelly, and Z. Zalevsky, “Nanoscale silicon-on-insulator photo-activated modulator building block for optical communication,” IEEE Photon. Technol. Lett. 28, 569–572 (2016).
[Crossref]

2011 (1)

D. Abraham, A. Chelly, J. Shappir, and Z. Zalevsky, “Hybrid optical and electrical reconfigurable logic gates based on silicon on insulator technology,” Photon. Nanostr. Fundam. Appl. 9, 35–41 (2011).
[Crossref]

2009 (1)

D. Abraham, Z. Zalevsky, A. Chelly, and J. Shappir, “Fabrication of vertically positioned silicon on insulator photo-activated modulator,” Photon. Nanostr. Fundam. Appl. 7, 190–197 (2009).
[Crossref]

2006 (1)

K. Biswas and S. Kal, “Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon,” Microelectron. J. 37, 519–525 (2006).
[Crossref]

2005 (2)

2003 (1)

L. Pavesi, “Will silicon be the photonic material of the third millennium?” J. Phys. Condens. Matter 15, R1169–R1196 (2003).
[Crossref]

2002 (1)

A. Chelly, Y. Cohen, A. Sa’ar, and J. Shappir, “Pyramid-shaped silicon photodetector with subwavelength aperture,” IEEE Trans. Electron Devices 49, 986–990 (2002).
[Crossref]

Abraham, D.

D. Abraham, A. Chelly, J. Shappir, and Z. Zalevsky, “Hybrid optical and electrical reconfigurable logic gates based on silicon on insulator technology,” Photon. Nanostr. Fundam. Appl. 9, 35–41 (2011).
[Crossref]

D. Abraham, Z. Zalevsky, A. Chelly, and J. Shappir, “Fabrication of vertically positioned silicon on insulator photo-activated modulator,” Photon. Nanostr. Fundam. Appl. 7, 190–197 (2009).
[Crossref]

Ashcroft, N.

N. Ashcroft and N. Mermin, Solid State Physics (Saunders College, 1976).

Biswas, K.

K. Biswas and S. Kal, “Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon,” Microelectron. J. 37, 519–525 (2006).
[Crossref]

Boeuf, F.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Bowers, J. E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Chelly, A.

Y. Mandelbaum, I. Gadasi, A. Zev, A. Chelly, Z. Zalevsky, and A. Karsenty, “Small signals’ study of thermal induced current in nanoscale SOI sensor,” J. Sens. 2017, 1961734 (2017).
[Crossref]

Y. Mandelbaum, A. Zev, A. Chelly, Z. Zalevsky, and A. Karsenty, “Study of the photo and thermo-activation mechanisms in nanoscale SOI modulator,” J. Sens. 2017, 9581976 (2017).
[Crossref]

A. Zev, A. Karsenty, A. Chelly, and Z. Zalevsky, “Nanoscale silicon-on-insulator photo-activated modulator building block for optical communication,” IEEE Photon. Technol. Lett. 28, 569–572 (2016).
[Crossref]

D. Abraham, A. Chelly, J. Shappir, and Z. Zalevsky, “Hybrid optical and electrical reconfigurable logic gates based on silicon on insulator technology,” Photon. Nanostr. Fundam. Appl. 9, 35–41 (2011).
[Crossref]

D. Abraham, Z. Zalevsky, A. Chelly, and J. Shappir, “Fabrication of vertically positioned silicon on insulator photo-activated modulator,” Photon. Nanostr. Fundam. Appl. 7, 190–197 (2009).
[Crossref]

A. Chelly, Y. Cohen, A. Sa’ar, and J. Shappir, “Pyramid-shaped silicon photodetector with subwavelength aperture,” IEEE Trans. Electron Devices 49, 986–990 (2002).
[Crossref]

A. Zev, A. Chelly, A. Karsenty, and Z. Zalevsky, “Development, simulation and characterization of nanoscale silicon on insulator photo-activated modulator (SOIPAM) hybrid device,” in International Conference on Optical MEMS and Nanophotonics (OMN), Jerusalem, Israel, August2–6 (IEEE Photonics Society, 2015).

Cohen, Y.

A. Chelly, Y. Cohen, A. Sa’ar, and J. Shappir, “Pyramid-shaped silicon photodetector with subwavelength aperture,” IEEE Trans. Electron Devices 49, 986–990 (2002).
[Crossref]

Faist, J.

J. Faist, “Silicon shines on,” Nature 433, 691–692 (2005).
[Crossref]

Fédéli, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Gadasi, I.

Y. Mandelbaum, I. Gadasi, A. Zev, A. Chelly, Z. Zalevsky, and A. Karsenty, “Small signals’ study of thermal induced current in nanoscale SOI sensor,” J. Sens. 2017, 1961734 (2017).
[Crossref]

Hartmann, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Kal, S.

K. Biswas and S. Kal, “Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon,” Microelectron. J. 37, 519–525 (2006).
[Crossref]

Karsenty, A.

Y. Mandelbaum, I. Gadasi, A. Zev, A. Chelly, Z. Zalevsky, and A. Karsenty, “Small signals’ study of thermal induced current in nanoscale SOI sensor,” J. Sens. 2017, 1961734 (2017).
[Crossref]

Y. Mandelbaum, A. Zev, A. Chelly, Z. Zalevsky, and A. Karsenty, “Study of the photo and thermo-activation mechanisms in nanoscale SOI modulator,” J. Sens. 2017, 9581976 (2017).
[Crossref]

A. Zev, A. Karsenty, A. Chelly, and Z. Zalevsky, “Nanoscale silicon-on-insulator photo-activated modulator building block for optical communication,” IEEE Photon. Technol. Lett. 28, 569–572 (2016).
[Crossref]

A. Zev, A. Chelly, A. Karsenty, and Z. Zalevsky, “Development, simulation and characterization of nanoscale silicon on insulator photo-activated modulator (SOIPAM) hybrid device,” in International Conference on Optical MEMS and Nanophotonics (OMN), Jerusalem, Israel, August2–6 (IEEE Photonics Society, 2015).

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Lipson, M.

Mandelbaum, Y.

Y. Mandelbaum, I. Gadasi, A. Zev, A. Chelly, Z. Zalevsky, and A. Karsenty, “Small signals’ study of thermal induced current in nanoscale SOI sensor,” J. Sens. 2017, 1961734 (2017).
[Crossref]

Y. Mandelbaum, A. Zev, A. Chelly, Z. Zalevsky, and A. Karsenty, “Study of the photo and thermo-activation mechanisms in nanoscale SOI modulator,” J. Sens. 2017, 9581976 (2017).
[Crossref]

Marris-Morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Mashanovich, G. Z.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Mermin, N.

N. Ashcroft and N. Mermin, Solid State Physics (Saunders College, 1976).

Nedeljkovic, M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

O’Brien, P.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Pavesi, L.

L. Pavesi, “Will silicon be the photonic material of the third millennium?” J. Phys. Condens. Matter 15, R1169–R1196 (2003).
[Crossref]

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Sa’ar, A.

A. Chelly, Y. Cohen, A. Sa’ar, and J. Shappir, “Pyramid-shaped silicon photodetector with subwavelength aperture,” IEEE Trans. Electron Devices 49, 986–990 (2002).
[Crossref]

Schmid, J. H.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Schroder, D. K.

D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. (Wiley, 2006).

Shappir, J.

D. Abraham, A. Chelly, J. Shappir, and Z. Zalevsky, “Hybrid optical and electrical reconfigurable logic gates based on silicon on insulator technology,” Photon. Nanostr. Fundam. Appl. 9, 35–41 (2011).
[Crossref]

D. Abraham, Z. Zalevsky, A. Chelly, and J. Shappir, “Fabrication of vertically positioned silicon on insulator photo-activated modulator,” Photon. Nanostr. Fundam. Appl. 7, 190–197 (2009).
[Crossref]

A. Chelly, Y. Cohen, A. Sa’ar, and J. Shappir, “Pyramid-shaped silicon photodetector with subwavelength aperture,” IEEE Trans. Electron Devices 49, 986–990 (2002).
[Crossref]

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Xu, D.-X.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Zalevsky, Z.

Y. Mandelbaum, I. Gadasi, A. Zev, A. Chelly, Z. Zalevsky, and A. Karsenty, “Small signals’ study of thermal induced current in nanoscale SOI sensor,” J. Sens. 2017, 1961734 (2017).
[Crossref]

Y. Mandelbaum, A. Zev, A. Chelly, Z. Zalevsky, and A. Karsenty, “Study of the photo and thermo-activation mechanisms in nanoscale SOI modulator,” J. Sens. 2017, 9581976 (2017).
[Crossref]

A. Zev, A. Karsenty, A. Chelly, and Z. Zalevsky, “Nanoscale silicon-on-insulator photo-activated modulator building block for optical communication,” IEEE Photon. Technol. Lett. 28, 569–572 (2016).
[Crossref]

D. Abraham, A. Chelly, J. Shappir, and Z. Zalevsky, “Hybrid optical and electrical reconfigurable logic gates based on silicon on insulator technology,” Photon. Nanostr. Fundam. Appl. 9, 35–41 (2011).
[Crossref]

D. Abraham, Z. Zalevsky, A. Chelly, and J. Shappir, “Fabrication of vertically positioned silicon on insulator photo-activated modulator,” Photon. Nanostr. Fundam. Appl. 7, 190–197 (2009).
[Crossref]

A. Zev, A. Chelly, A. Karsenty, and Z. Zalevsky, “Development, simulation and characterization of nanoscale silicon on insulator photo-activated modulator (SOIPAM) hybrid device,” in International Conference on Optical MEMS and Nanophotonics (OMN), Jerusalem, Israel, August2–6 (IEEE Photonics Society, 2015).

Zev, A.

Y. Mandelbaum, A. Zev, A. Chelly, Z. Zalevsky, and A. Karsenty, “Study of the photo and thermo-activation mechanisms in nanoscale SOI modulator,” J. Sens. 2017, 9581976 (2017).
[Crossref]

Y. Mandelbaum, I. Gadasi, A. Zev, A. Chelly, Z. Zalevsky, and A. Karsenty, “Small signals’ study of thermal induced current in nanoscale SOI sensor,” J. Sens. 2017, 1961734 (2017).
[Crossref]

A. Zev, A. Karsenty, A. Chelly, and Z. Zalevsky, “Nanoscale silicon-on-insulator photo-activated modulator building block for optical communication,” IEEE Photon. Technol. Lett. 28, 569–572 (2016).
[Crossref]

A. Zev, A. Chelly, A. Karsenty, and Z. Zalevsky, “Development, simulation and characterization of nanoscale silicon on insulator photo-activated modulator (SOIPAM) hybrid device,” in International Conference on Optical MEMS and Nanophotonics (OMN), Jerusalem, Israel, August2–6 (IEEE Photonics Society, 2015).

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Zev, A. Karsenty, A. Chelly, and Z. Zalevsky, “Nanoscale silicon-on-insulator photo-activated modulator building block for optical communication,” IEEE Photon. Technol. Lett. 28, 569–572 (2016).
[Crossref]

IEEE Trans. Electron Devices (1)

A. Chelly, Y. Cohen, A. Sa’ar, and J. Shappir, “Pyramid-shaped silicon photodetector with subwavelength aperture,” IEEE Trans. Electron Devices 49, 986–990 (2002).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

J. Phys. Condens. Matter (1)

L. Pavesi, “Will silicon be the photonic material of the third millennium?” J. Phys. Condens. Matter 15, R1169–R1196 (2003).
[Crossref]

J. Sens. (2)

Y. Mandelbaum, A. Zev, A. Chelly, Z. Zalevsky, and A. Karsenty, “Study of the photo and thermo-activation mechanisms in nanoscale SOI modulator,” J. Sens. 2017, 9581976 (2017).
[Crossref]

Y. Mandelbaum, I. Gadasi, A. Zev, A. Chelly, Z. Zalevsky, and A. Karsenty, “Small signals’ study of thermal induced current in nanoscale SOI sensor,” J. Sens. 2017, 1961734 (2017).
[Crossref]

Microelectron. J. (1)

K. Biswas and S. Kal, “Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon,” Microelectron. J. 37, 519–525 (2006).
[Crossref]

Nature (1)

J. Faist, “Silicon shines on,” Nature 433, 691–692 (2005).
[Crossref]

Photon. Nanostr. Fundam. Appl. (2)

D. Abraham, Z. Zalevsky, A. Chelly, and J. Shappir, “Fabrication of vertically positioned silicon on insulator photo-activated modulator,” Photon. Nanostr. Fundam. Appl. 7, 190–197 (2009).
[Crossref]

D. Abraham, A. Chelly, J. Shappir, and Z. Zalevsky, “Hybrid optical and electrical reconfigurable logic gates based on silicon on insulator technology,” Photon. Nanostr. Fundam. Appl. 9, 35–41 (2011).
[Crossref]

Other (7)

D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. (Wiley, 2006).

“Refractive. Index.INFO,” https://refractiveindex.info/?shelf=main&book=Si&page=Aspnes .

“COMSOL Multiphysics,” https://www.comsol.com/comsol-multiphysics .

N. Ashcroft and N. Mermin, Solid State Physics (Saunders College, 1976).

J. Mason, “Development of on-chip optical interconnects for future...,” 2008, https://www.smartdatacollective.com/15528/ .

N. Savage, “Linking chips with light,” IEEE Spectrum, 2015, http://spectrum.ieee.org/semiconductors/optoelectronics/linking-chips-with-light .

A. Zev, A. Chelly, A. Karsenty, and Z. Zalevsky, “Development, simulation and characterization of nanoscale silicon on insulator photo-activated modulator (SOIPAM) hybrid device,” in International Conference on Optical MEMS and Nanophotonics (OMN), Jerusalem, Israel, August2–6 (IEEE Photonics Society, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. Visualization of the V-groove’s structure of the device: COMSOL 3D simulated view of SOIPAM device. (a) Structure and dimensions of the SOIPAM (in meters). (b) Structure of SOIPAM with V-groove mesh.
Fig. 2.
Fig. 2. Scanning electron microscope picture of the V-groove’s structure of the first-generation fabricated device. (a) General top view. (b) Zoom-in of the cross section of the cleaved sample.
Fig. 3.
Fig. 3. Numerical simulations showing the number of photo-induced electrons in a 2D rectangle, for an area of $l \times d$ as a function of the enlargement of this area with the increasing of the depth $d$. The positive effect of the V-groove on the number of photogenerated electrons under the BOX is simulated (${{\rm V}_{\rm GS}}= - {1}\;{\rm V}$, ${{\rm V}_{\rm DS}}={1}\;{\rm V}$, ${{\rm P}_{\rm in}}={10}\;{\rm mW}$, $\lambda ={550}\;{\rm nm}$, $A={2}\;{\unicode{x00B5}{\rm m}} \times d$).
Fig. 4.
Fig. 4. Numerical simulations showing the photo-induced electrons’ 3D concentration as a function of the depth $d$ of the chosen area, with and without the V-groove (${{\rm V}_{\rm GS}}= - {1}\;{\rm V}$, ${{\rm V}_{\rm DS}} = {1}\;{\rm V}$, ${{\rm P}_{\rm in}} = {10}\;{\rm mW}$, $\lambda ={550}\;{\rm nm}$, $A = {2}\;{\unicode{x00B5}{\rm m}} \times d$).
Fig. 5.
Fig. 5. Numerical simulations showing electrons’ concentration as a function of the illumination power ${{\rm P}_{\rm in}}$ with and without the V-groove (${{\rm V}_{\rm GS}}= - {1}\;{\rm V}$, ${{\rm V}_{\rm DS}}={1}\;{\rm V}$, $\lambda ={550}\;{\rm nm}$, $d={25}\;{\rm nm}$, $A = {2}\;{\unicode{x00B5}{\rm m}} \times d$).
Fig. 6.
Fig. 6. Numerical simulations showing electrons’ concentration as a function of the illumination wavelength with and without the V-groove (${{\rm V}_{\rm GS}} = - {1}\;{\rm V}$, ${{\rm V}_{\rm DS}}={1}\;{\rm V}$, ${{\rm P}_{\rm in}}={10}\;{\rm mW}$, $d={25}\;{\rm nm}$, $A = {2}\;{\unicode{x00B5}{\rm m}} \times d$).
Fig. 7.
Fig. 7. Numerical simulations showing electrons’ concentration as a function of the angle of the V-groove for $\alpha ={14.5}^\circ $ (${{\rm V}_{\rm GS}}= - {1}\;{\rm V}$, ${{\rm V}_{\rm DS}}={1}\;{\rm V}$, ${{\rm P}_{\rm in}}={10}\;{\rm mW}$, $d={25}\;{\rm nm}$, $A={2}\;{\unicode{x00B5}{\rm m}} \times d$).
Fig. 8.
Fig. 8. Numerical simulations showing electrons’ concentration as a function of the angle of the V-groove for $\alpha ={41.7}^\circ $ (${{\rm V}_{\rm GS}} = - {1}\;{\rm V}$, ${{\rm V}_{\rm DS}}={1}\;{\rm V}$, ${{\rm P}_{\rm in}}={10}\;{\rm mW}$, $d={25}\;{\rm nm}$, $A={2}\;{\unicode{x00B5}{\rm m}} \times d$).
Fig. 9.
Fig. 9. Numerical simulations showing electrons’ concentration as a function of the angle of the V-groove for $\alpha ={65.8}^\circ $ (${{\rm V}_{\rm GS}}= - {1}\;{\rm V}$, ${{\rm V}_{\rm DS}}={1}\;{\rm V}$, ${{\rm P}_{\rm in}}={10}\;{\rm mW}$, $d={25}\;{\rm nm}$, $A={2}\;{\unicode{x00B5}{\rm m}} \times d$).
Fig. 10.
Fig. 10. Numerical simulations showing electrons’ concentration as a function of the V-groove opening depending on the light polarization (${{\rm V}_{\rm GS}}= - {1}\;{\rm V}$, ${{\rm V}_{\rm DS}}={1}\;{\rm V}$, ${{\rm P}_{\rm in}}={10}\;{\rm mW}$, $d={25}\;{\rm nm}$, $A={2}\;{\unicode{x00B5}{\rm m}} \times d$, $\lambda ={940}\;{\rm nm}$).
Fig. 11.
Fig. 11. Numerical simulations showing electrons’ concentration as a function of the V-groove opening depending on the light polarization for a wavelength of 400 nm (${{\rm V}_{\rm GS}}= - {1}\;{\rm V}$, ${{\rm V}_{\rm DS}}={1}\;{\rm V}$, ${{\rm P}_{\rm in}}={10}\;{\rm mW}$, $d={25}\;{\rm nm}$, $A={2}\;{\unicode{x00B5}{\rm m}} \times d$, $\lambda ={400}\;{\rm nm}$).
Fig. 12.
Fig. 12. Numerical simulations showing electrons’ concentration as a function of the V-groove opening depending on the light polarization for a wavelength of 1000 nm (${{\rm V}_{\rm GS}}= - {1}\;{\rm V}$, ${{\rm V}_{\rm DS}}={1}\;{\rm V}$, ${{\rm P}_{\rm in}}={10}\;{\rm mW}$, $d={25}\;{\rm nm}$, $A = {2}\;{\unicode{x00B5}{\rm m}} \times d$, $\lambda ={1000}\;{\rm nm}$).
Fig. 13.
Fig. 13. Simulations of the channel behavior for partially depleted (PD) zone (ON) and FD zone (OFF), as described in the mathematical model.
Fig. 14.
Fig. 14. ${{\rm SOIP}^2}{\rm AM}$ device’s main parameters and electrons’ concentration varying with the depth below the channel down to the substrate are presented.
Fig. 15.
Fig. 15. Preliminary experimental results. (a) Optical setup. (b) Generation of polarized radiation of the IR LED when driven via “polarized electrons.” (c) Generation of nonpolarized radiation of the IR LED when driven via “nonpolarized electrons.”

Tables (1)

Tables Icon

Table 1. SOIPAM Nanoscale Device’s Parameters

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d n ( x ) = α 0 t n ( 1 + V F B V G S + V ( x ) + V p h Φ 0 1 ) ,
V p h = Φ 0 ( d n ( x ) α 0 t n + 1 ) 2 Φ 0 V F B V G S + V ( x ) .
V p h V p h min , d n ( x = L ) = t n ,
V p h m i n = ϕ 0 [ ( 1 α 0 + 1 ) 2 1 ] V F B + V G S V D ,
V p h min = 3.77 V .
V p h = q η λ p h C . W . L .
N p h min = V p h min C . W . L q η λ = 3109 p h o t o n s .
N l a s e r min = 2 N p h min 1 R = 9843 p h o t o n s .
P i n min = N p h min Δ t h c λ = 3.55 m W .

Metrics