Abstract

We investigate photoacoustic (PA) signal magnitude variation to an absorption coefficient of localized absorbing objects measured by spherically focused ultrasound transducers (US TDs). For this investigation, we develop the PA simulation method that directly calculates Green function solutions of the Helmholtz PA wave equation, considering grid-like elements on absorbing objects and US TDs. The simulation results show that the PA signal amplitude in the PA imaging is nonlinearly varied to the absorption coefficient of localized objects, which are distinct from the known PA saturation effect. For spherical objects especially, the PA amplitude shows a maximum value at a certain absorption coefficient, and decreases even though the absorption coefficient further increases from that point. We suggest conceptual and mathematical interpretations for this phenomenon by analyzing the characteristics of PA spectra combined with US TD transfer functions, which indicates that the combined effect of US TD spatial and temporal filtering plays a significant role in the PA signal magnitude nonlinearity.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear photoacoustics for measuring the nonlinear optical absorption coefficient

Chandra S Yelleswarapu and Sri-Rajasekhar Kothapalli
Opt. Express 18(9) 9020-9025 (2010)

Correcting photoacoustic signals for fluence variations using acousto-optic modulation

K. Daoudi, A. Hussain, E. Hondebrink, and W. Steenbergen
Opt. Express 20(13) 14117-14129 (2012)

Photoacoustic technique for determining optical absorption coefficients in solids

A. Hordvik and H. Schlossberg
Appl. Opt. 16(1) 101-107 (1977)

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21, 061007 (2016).
    [Crossref]
  2. J. Yao, J. Xia, and L. V. Wang, “Multiscale functional and molecular photoacoustic tomography,” Ultrason. Imag. 38, 44–62 (2016).
    [Crossref]
  3. B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).
    [Crossref]
  4. A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9, 219–227 (2015).
    [Crossref]
  5. D. Kang, Q. Huang, and Y. Li, “Measurement of cardiac output by use of noninvasively measured transient hemodilution curves with photoacoustic technology,” Biomed. Opt. Express 5, 1445–1452 (2014).
    [Crossref]
  6. M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurement of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
    [Crossref]
  7. O. B. Knights, S. Ye, N. Ingram, S. Freeara, and J. R. McLaughlan, “Optimising gold nanorods for photoacoustic imaging in vitro,” Nanoscale Adv. 1, 1472–1481 (2019).
    [Crossref]
  8. J. Wang, T. Liu, S. Jiao, L. V. Wang, and H. F. Zhang, “Saturation effect in functional photoacoustic imaging,” J. Biomed. Opt. 15, 021317 (2010).
    [Crossref]
  9. H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4, 4496 (2014).
    [Crossref]
  10. C. Liu, Y. Liang, and L. Wang, “Optical-resolution photoacoustic microscopy of oxygen saturation with nonlinear compensation,” Biomed. Opt. Express 10, 3061–3069 (2019).
    [Crossref]
  11. R. Zhang, F. Gao, X. Feng, S. Liu, R. Ding, and Y. Zheng, “Photoacoustic resonance imaging,” IEEE J. Sel. Top. Quantum Electron. 25, 6800307 (2019).
    [Crossref]
  12. K. Wang, S. A. Ermilov, R. Su, H. Brecht, A. A. Oraevsky, and M. A. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 30, 203–214 (2011).
    [Crossref]
  13. J. Turner, H. Estrada, M. Kneipp, and D. Razansky, “Improved optoacoustic microscopy through three-dimensional spatial impulse response synthetic aperture focusing technique,” Opt. Lett. 39, 3390–3393 (2014).
    [Crossref]
  14. M. Caballero, A. Rosenthal, A. Buehler, D. Razansky, and V. Ntziachristos, “Optoacoustic determination of spatio-temporal responses of ultrasound sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1234–1244 (2013).
    [Crossref]
  15. B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616–3627 (2005).
    [Crossref]
  16. B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15, 021314 (2010).
    [Crossref]
  17. A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).
    [Crossref]
  18. G. Paltauf, P. R. Torke, and R. Nuster, “Modeling photoacoustic imaging with a scanning focused detector using Monte Carlo simulation of energy deposition,” J. Biomed. Opt. 23, 121607 (2018).
    [Crossref]
  19. D. Kang, B. Lashkari, and A. Mandelis, “Photoacoustic resonance by spatial filtering of focused ultrasound transducers,” Opt. Lett. 42, 655–658 (2017).
    [Crossref]
  20. D. Kang, “Effect of spatial filtering of ultrasound transducers on photoacoustic measurements,” Proc. SPIE 10064, 100645D (2017).
    [Crossref]
  21. D. Kang, “Photoacoustic nonlinearity to absorption coefficients in photoacoustic imaging with focused ultrasound transducers,” Korean J. Opt. Photon. 28, 158–165 (2017).
    [Crossref]
  22. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004), p. 473, p. 148. The spatial and temporal inverse Fourier transforms have plus and minus signs in the exponent of the Fourier kernel, respectively.
  23. I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissue,” J. Phys. D 38, 2633–2639 (2005).
    [Crossref]
  24. E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. Oraevsky, “Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions,” Opt. Express 21, 25077–25090 (2013).
    [Crossref]
  25. M. N. Cherkashin, C. Brenner, and M. R. Hofmann, “Transducer-matched multipulse excitation for signal-to-noise ratio improvement in diode laser-based photoacoustic systems,” J. Biomed. Opt. 24, 046001 (2019).
    [Crossref]
  26. C. E. Cook and M. Bernfeld, Radar Signals, An Introduction to Theory and Application (Artech House, 1993), p. 34.
  27. C. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93, 033902 (2008).
    [Crossref]
  28. D. Kang, “Signal-to-noise ratio in time- and frequency-domain photoacoustic measurements by different frequency filtering,” Korean J. Opt. Photon. 30, 48–58 (2019).
  29. B. Lashkari and A. Mandelis, “Comparison between pulsed laser and frequency-domain photoacoustic modalities: signal-to-noise ratio, contrast, resolution, and maximum depth detectivity,” Rev. Sci. Instrum. 82, 094903 (2011).
    [Crossref]
  30. R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, 2000), p. 120.
  31. C. Zhang, K. I. Maslov, S. Hu, L. V. Wang, R. Chen, Q. Zhou, and K. K. Shung, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17, 020501 (2012).
    [Crossref]
  32. J. Y. Kim, C. Lee, K. Park, S. Han, and C. Kim, “High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid,” Sci. Rep. 6, 34803 (2016).
    [Crossref]
  33. Y. Yang, “A signal theoretic approach for envelope analysis of real-valued signals,” IEEE Access 5, 5623–5630 (2017).
    [Crossref]
  34. F. Apoux, R. E. Millman, N. F. Viemeister, C. A. Brown, and S. P. Bacon, “On the mechanisms involved in the recovery of envelope information from temporal fine structure,” J. Acoust. Soc. Am. 130, 273–282 (2011).
    [Crossref]
  35. S. N. Hennen, W. Xing, Y. Shui, Y. Zhou, K. Jennifer, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
    [Crossref]
  36. X. Dai, I. Yang, and H. Jiang, “In vivo photoacoustic imaging of vasculature with a low-cost miniature light emitting diode excitation,” Opt. Lett. 42, 1456–1459 (2017).
    [Crossref]
  37. S. Prahl, “Optical absorption of hemoglobin,” https://omlc.org/spectra/hemoglobin/ .

2019 (5)

O. B. Knights, S. Ye, N. Ingram, S. Freeara, and J. R. McLaughlan, “Optimising gold nanorods for photoacoustic imaging in vitro,” Nanoscale Adv. 1, 1472–1481 (2019).
[Crossref]

C. Liu, Y. Liang, and L. Wang, “Optical-resolution photoacoustic microscopy of oxygen saturation with nonlinear compensation,” Biomed. Opt. Express 10, 3061–3069 (2019).
[Crossref]

R. Zhang, F. Gao, X. Feng, S. Liu, R. Ding, and Y. Zheng, “Photoacoustic resonance imaging,” IEEE J. Sel. Top. Quantum Electron. 25, 6800307 (2019).
[Crossref]

M. N. Cherkashin, C. Brenner, and M. R. Hofmann, “Transducer-matched multipulse excitation for signal-to-noise ratio improvement in diode laser-based photoacoustic systems,” J. Biomed. Opt. 24, 046001 (2019).
[Crossref]

D. Kang, “Signal-to-noise ratio in time- and frequency-domain photoacoustic measurements by different frequency filtering,” Korean J. Opt. Photon. 30, 48–58 (2019).

2018 (1)

G. Paltauf, P. R. Torke, and R. Nuster, “Modeling photoacoustic imaging with a scanning focused detector using Monte Carlo simulation of energy deposition,” J. Biomed. Opt. 23, 121607 (2018).
[Crossref]

2017 (5)

D. Kang, B. Lashkari, and A. Mandelis, “Photoacoustic resonance by spatial filtering of focused ultrasound transducers,” Opt. Lett. 42, 655–658 (2017).
[Crossref]

D. Kang, “Effect of spatial filtering of ultrasound transducers on photoacoustic measurements,” Proc. SPIE 10064, 100645D (2017).
[Crossref]

D. Kang, “Photoacoustic nonlinearity to absorption coefficients in photoacoustic imaging with focused ultrasound transducers,” Korean J. Opt. Photon. 28, 158–165 (2017).
[Crossref]

Y. Yang, “A signal theoretic approach for envelope analysis of real-valued signals,” IEEE Access 5, 5623–5630 (2017).
[Crossref]

X. Dai, I. Yang, and H. Jiang, “In vivo photoacoustic imaging of vasculature with a low-cost miniature light emitting diode excitation,” Opt. Lett. 42, 1456–1459 (2017).
[Crossref]

2016 (3)

J. Y. Kim, C. Lee, K. Park, S. Han, and C. Kim, “High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid,” Sci. Rep. 6, 34803 (2016).
[Crossref]

Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21, 061007 (2016).
[Crossref]

J. Yao, J. Xia, and L. V. Wang, “Multiscale functional and molecular photoacoustic tomography,” Ultrason. Imag. 38, 44–62 (2016).
[Crossref]

2015 (3)

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9, 219–227 (2015).
[Crossref]

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).
[Crossref]

S. N. Hennen, W. Xing, Y. Shui, Y. Zhou, K. Jennifer, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref]

2014 (3)

2013 (2)

M. Caballero, A. Rosenthal, A. Buehler, D. Razansky, and V. Ntziachristos, “Optoacoustic determination of spatio-temporal responses of ultrasound sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1234–1244 (2013).
[Crossref]

E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. Oraevsky, “Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions,” Opt. Express 21, 25077–25090 (2013).
[Crossref]

2012 (2)

C. Zhang, K. I. Maslov, S. Hu, L. V. Wang, R. Chen, Q. Zhou, and K. K. Shung, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17, 020501 (2012).
[Crossref]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).
[Crossref]

2011 (3)

K. Wang, S. A. Ermilov, R. Su, H. Brecht, A. A. Oraevsky, and M. A. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 30, 203–214 (2011).
[Crossref]

B. Lashkari and A. Mandelis, “Comparison between pulsed laser and frequency-domain photoacoustic modalities: signal-to-noise ratio, contrast, resolution, and maximum depth detectivity,” Rev. Sci. Instrum. 82, 094903 (2011).
[Crossref]

F. Apoux, R. E. Millman, N. F. Viemeister, C. A. Brown, and S. P. Bacon, “On the mechanisms involved in the recovery of envelope information from temporal fine structure,” J. Acoust. Soc. Am. 130, 273–282 (2011).
[Crossref]

2010 (2)

J. Wang, T. Liu, S. Jiao, L. V. Wang, and H. F. Zhang, “Saturation effect in functional photoacoustic imaging,” J. Biomed. Opt. 15, 021317 (2010).
[Crossref]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15, 021314 (2010).
[Crossref]

2008 (1)

C. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93, 033902 (2008).
[Crossref]

2007 (1)

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurement of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[Crossref]

2005 (2)

B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616–3627 (2005).
[Crossref]

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissue,” J. Phys. D 38, 2633–2639 (2005).
[Crossref]

Anastasio, M. A.

K. Wang, S. A. Ermilov, R. Su, H. Brecht, A. A. Oraevsky, and M. A. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 30, 203–214 (2011).
[Crossref]

Andrews-Kaminsky, L. B.

S. N. Hennen, W. Xing, Y. Shui, Y. Zhou, K. Jennifer, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref]

Apoux, F.

F. Apoux, R. E. Millman, N. F. Viemeister, C. A. Brown, and S. P. Bacon, “On the mechanisms involved in the recovery of envelope information from temporal fine structure,” J. Acoust. Soc. Am. 130, 273–282 (2011).
[Crossref]

Arridge, S. R.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).
[Crossref]

Bacon, S. P.

F. Apoux, R. E. Millman, N. F. Viemeister, C. A. Brown, and S. P. Bacon, “On the mechanisms involved in the recovery of envelope information from temporal fine structure,” J. Acoust. Soc. Am. 130, 273–282 (2011).
[Crossref]

Barrett, H. H.

H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004), p. 473, p. 148. The spatial and temporal inverse Fourier transforms have plus and minus signs in the exponent of the Fourier kernel, respectively.

Beard, P.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).
[Crossref]

Beard, P. C.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).
[Crossref]

B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616–3627 (2005).
[Crossref]

Beebe, D. C.

S. N. Hennen, W. Xing, Y. Shui, Y. Zhou, K. Jennifer, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref]

Bernfeld, M.

C. E. Cook and M. Bernfeld, Radar Signals, An Introduction to Theory and Application (Artech House, 1993), p. 34.

Bracewell, R. N.

R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, 2000), p. 120.

Brecht, H.

K. Wang, S. A. Ermilov, R. Su, H. Brecht, A. A. Oraevsky, and M. A. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 30, 203–214 (2011).
[Crossref]

Brenner, C.

M. N. Cherkashin, C. Brenner, and M. R. Hofmann, “Transducer-matched multipulse excitation for signal-to-noise ratio improvement in diode laser-based photoacoustic systems,” J. Biomed. Opt. 24, 046001 (2019).
[Crossref]

Brown, C. A.

F. Apoux, R. E. Millman, N. F. Viemeister, C. A. Brown, and S. P. Bacon, “On the mechanisms involved in the recovery of envelope information from temporal fine structure,” J. Acoust. Soc. Am. 130, 273–282 (2011).
[Crossref]

Buehler, A.

M. Caballero, A. Rosenthal, A. Buehler, D. Razansky, and V. Ntziachristos, “Optoacoustic determination of spatio-temporal responses of ultrasound sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1234–1244 (2013).
[Crossref]

Caballero, M.

M. Caballero, A. Rosenthal, A. Buehler, D. Razansky, and V. Ntziachristos, “Optoacoustic determination of spatio-temporal responses of ultrasound sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1234–1244 (2013).
[Crossref]

Chen, R.

C. Zhang, K. I. Maslov, S. Hu, L. V. Wang, R. Chen, Q. Zhou, and K. K. Shung, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17, 020501 (2012).
[Crossref]

Cherkashin, M. N.

M. N. Cherkashin, C. Brenner, and M. R. Hofmann, “Transducer-matched multipulse excitation for signal-to-noise ratio improvement in diode laser-based photoacoustic systems,” J. Biomed. Opt. 24, 046001 (2019).
[Crossref]

Conjusteau, A.

Cook, C. E.

C. E. Cook and M. Bernfeld, Radar Signals, An Introduction to Theory and Application (Artech House, 1993), p. 34.

Cox, B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).
[Crossref]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).
[Crossref]

Cox, B. T.

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15, 021314 (2010).
[Crossref]

B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616–3627 (2005).
[Crossref]

Dai, X.

Ding, R.

R. Zhang, F. Gao, X. Feng, S. Liu, R. Ding, and Y. Zheng, “Photoacoustic resonance imaging,” IEEE J. Sel. Top. Quantum Electron. 25, 6800307 (2019).
[Crossref]

Dong, B.

H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4, 4496 (2014).
[Crossref]

Ermilov, S.

Ermilov, S. A.

K. Wang, S. A. Ermilov, R. Su, H. Brecht, A. A. Oraevsky, and M. A. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 30, 203–214 (2011).
[Crossref]

Esenaliev, R. O.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissue,” J. Phys. D 38, 2633–2639 (2005).
[Crossref]

Estrada, H.

Feng, X.

R. Zhang, F. Gao, X. Feng, S. Liu, R. Ding, and Y. Zheng, “Photoacoustic resonance imaging,” IEEE J. Sel. Top. Quantum Electron. 25, 6800307 (2019).
[Crossref]

Freeara, S.

O. B. Knights, S. Ye, N. Ingram, S. Freeara, and J. R. McLaughlan, “Optimising gold nanorods for photoacoustic imaging in vitro,” Nanoscale Adv. 1, 1472–1481 (2019).
[Crossref]

Gao, F.

R. Zhang, F. Gao, X. Feng, S. Liu, R. Ding, and Y. Zheng, “Photoacoustic resonance imaging,” IEEE J. Sel. Top. Quantum Electron. 25, 6800307 (2019).
[Crossref]

Han, S.

J. Y. Kim, C. Lee, K. Park, S. Han, and C. Kim, “High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid,” Sci. Rep. 6, 34803 (2016).
[Crossref]

Hennen, S. N.

S. N. Hennen, W. Xing, Y. Shui, Y. Zhou, K. Jennifer, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref]

Hofmann, M. R.

M. N. Cherkashin, C. Brenner, and M. R. Hofmann, “Transducer-matched multipulse excitation for signal-to-noise ratio improvement in diode laser-based photoacoustic systems,” J. Biomed. Opt. 24, 046001 (2019).
[Crossref]

Hu, S.

C. Zhang, K. I. Maslov, S. Hu, L. V. Wang, R. Chen, Q. Zhou, and K. K. Shung, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17, 020501 (2012).
[Crossref]

Huang, Q.

Ingram, N.

O. B. Knights, S. Ye, N. Ingram, S. Freeara, and J. R. McLaughlan, “Optimising gold nanorods for photoacoustic imaging in vitro,” Nanoscale Adv. 1, 1472–1481 (2019).
[Crossref]

Jathoul, A. P.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).
[Crossref]

Jennifer, K.

S. N. Hennen, W. Xing, Y. Shui, Y. Zhou, K. Jennifer, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref]

Jiang, H.

Jiao, S.

J. Wang, T. Liu, S. Jiao, L. V. Wang, and H. F. Zhang, “Saturation effect in functional photoacoustic imaging,” J. Biomed. Opt. 15, 021317 (2010).
[Crossref]

Johnson, P.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).
[Crossref]

Kang, D.

D. Kang, “Signal-to-noise ratio in time- and frequency-domain photoacoustic measurements by different frequency filtering,” Korean J. Opt. Photon. 30, 48–58 (2019).

D. Kang, B. Lashkari, and A. Mandelis, “Photoacoustic resonance by spatial filtering of focused ultrasound transducers,” Opt. Lett. 42, 655–658 (2017).
[Crossref]

D. Kang, “Effect of spatial filtering of ultrasound transducers on photoacoustic measurements,” Proc. SPIE 10064, 100645D (2017).
[Crossref]

D. Kang, “Photoacoustic nonlinearity to absorption coefficients in photoacoustic imaging with focused ultrasound transducers,” Korean J. Opt. Photon. 28, 158–165 (2017).
[Crossref]

D. Kang, Q. Huang, and Y. Li, “Measurement of cardiac output by use of noninvasively measured transient hemodilution curves with photoacoustic technology,” Biomed. Opt. Express 5, 1445–1452 (2014).
[Crossref]

Kass, M. A.

S. N. Hennen, W. Xing, Y. Shui, Y. Zhou, K. Jennifer, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref]

Kim, C.

J. Y. Kim, C. Lee, K. Park, S. Han, and C. Kim, “High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid,” Sci. Rep. 6, 34803 (2016).
[Crossref]

Kim, J. Y.

J. Y. Kim, C. Lee, K. Park, S. Han, and C. Kim, “High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid,” Sci. Rep. 6, 34803 (2016).
[Crossref]

Kneipp, M.

Knights, O. B.

O. B. Knights, S. Ye, N. Ingram, S. Freeara, and J. R. McLaughlan, “Optimising gold nanorods for photoacoustic imaging in vitro,” Nanoscale Adv. 1, 1472–1481 (2019).
[Crossref]

Larin, K. V.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissue,” J. Phys. D 38, 2633–2639 (2005).
[Crossref]

Larina, I. V.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissue,” J. Phys. D 38, 2633–2639 (2005).
[Crossref]

Lashkari, B.

D. Kang, B. Lashkari, and A. Mandelis, “Photoacoustic resonance by spatial filtering of focused ultrasound transducers,” Opt. Lett. 42, 655–658 (2017).
[Crossref]

B. Lashkari and A. Mandelis, “Comparison between pulsed laser and frequency-domain photoacoustic modalities: signal-to-noise ratio, contrast, resolution, and maximum depth detectivity,” Rev. Sci. Instrum. 82, 094903 (2011).
[Crossref]

Laufer, J.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).
[Crossref]

Laufer, J. G.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).
[Crossref]

Lee, C.

J. Y. Kim, C. Lee, K. Park, S. Han, and C. Kim, “High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid,” Sci. Rep. 6, 34803 (2016).
[Crossref]

Li, C.

C. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93, 033902 (2008).
[Crossref]

Li, H.

H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4, 4496 (2014).
[Crossref]

Li, Y.

Liang, Y.

Liu, C.

Liu, S.

R. Zhang, F. Gao, X. Feng, S. Liu, R. Ding, and Y. Zheng, “Photoacoustic resonance imaging,” IEEE J. Sel. Top. Quantum Electron. 25, 6800307 (2019).
[Crossref]

Liu, T.

J. Wang, T. Liu, S. Jiao, L. V. Wang, and H. F. Zhang, “Saturation effect in functional photoacoustic imaging,” J. Biomed. Opt. 15, 021317 (2010).
[Crossref]

Lythgoe, M. F.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).
[Crossref]

Mandelis, A.

D. Kang, B. Lashkari, and A. Mandelis, “Photoacoustic resonance by spatial filtering of focused ultrasound transducers,” Opt. Lett. 42, 655–658 (2017).
[Crossref]

B. Lashkari and A. Mandelis, “Comparison between pulsed laser and frequency-domain photoacoustic modalities: signal-to-noise ratio, contrast, resolution, and maximum depth detectivity,” Rev. Sci. Instrum. 82, 094903 (2011).
[Crossref]

Marafioti, T.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).
[Crossref]

Maslov, K.

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurement of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[Crossref]

Maslov, K. I.

S. N. Hennen, W. Xing, Y. Shui, Y. Zhou, K. Jennifer, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref]

C. Zhang, K. I. Maslov, S. Hu, L. V. Wang, R. Chen, Q. Zhou, and K. K. Shung, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17, 020501 (2012).
[Crossref]

McLaughlan, J. R.

O. B. Knights, S. Ye, N. Ingram, S. Freeara, and J. R. McLaughlan, “Optimising gold nanorods for photoacoustic imaging in vitro,” Nanoscale Adv. 1, 1472–1481 (2019).
[Crossref]

Millman, R. E.

F. Apoux, R. E. Millman, N. F. Viemeister, C. A. Brown, and S. P. Bacon, “On the mechanisms involved in the recovery of envelope information from temporal fine structure,” J. Acoust. Soc. Am. 130, 273–282 (2011).
[Crossref]

Myers, K. J.

H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004), p. 473, p. 148. The spatial and temporal inverse Fourier transforms have plus and minus signs in the exponent of the Fourier kernel, respectively.

Nadvoretskiy, V.

Ntziachristos, V.

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9, 219–227 (2015).
[Crossref]

M. Caballero, A. Rosenthal, A. Buehler, D. Razansky, and V. Ntziachristos, “Optoacoustic determination of spatio-temporal responses of ultrasound sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1234–1244 (2013).
[Crossref]

Nuster, R.

G. Paltauf, P. R. Torke, and R. Nuster, “Modeling photoacoustic imaging with a scanning focused detector using Monte Carlo simulation of energy deposition,” J. Biomed. Opt. 23, 121607 (2018).
[Crossref]

Ogunlade, O.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).
[Crossref]

Oraevsky, A.

Oraevsky, A. A.

K. Wang, S. A. Ermilov, R. Su, H. Brecht, A. A. Oraevsky, and M. A. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 30, 203–214 (2011).
[Crossref]

Paltauf, G.

G. Paltauf, P. R. Torke, and R. Nuster, “Modeling photoacoustic imaging with a scanning focused detector using Monte Carlo simulation of energy deposition,” J. Biomed. Opt. 23, 121607 (2018).
[Crossref]

Park, K.

J. Y. Kim, C. Lee, K. Park, S. Han, and C. Kim, “High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid,” Sci. Rep. 6, 34803 (2016).
[Crossref]

Pedley, R. B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).
[Crossref]

Petrova, E.

Philip, B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).
[Crossref]

Pizzey, A. R.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).
[Crossref]

Pule, M. A.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).
[Crossref]

Razansky, D.

J. Turner, H. Estrada, M. Kneipp, and D. Razansky, “Improved optoacoustic microscopy through three-dimensional spatial impulse response synthetic aperture focusing technique,” Opt. Lett. 39, 3390–3393 (2014).
[Crossref]

M. Caballero, A. Rosenthal, A. Buehler, D. Razansky, and V. Ntziachristos, “Optoacoustic determination of spatio-temporal responses of ultrasound sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1234–1244 (2013).
[Crossref]

Rosenthal, A.

M. Caballero, A. Rosenthal, A. Buehler, D. Razansky, and V. Ntziachristos, “Optoacoustic determination of spatio-temporal responses of ultrasound sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1234–1244 (2013).
[Crossref]

Shui, Y.

S. N. Hennen, W. Xing, Y. Shui, Y. Zhou, K. Jennifer, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref]

Shung, K. K.

C. Zhang, K. I. Maslov, S. Hu, L. V. Wang, R. Chen, Q. Zhou, and K. K. Shung, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17, 020501 (2012).
[Crossref]

Sivaramakrishnan, M.

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurement of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[Crossref]

Stoica, G.

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurement of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[Crossref]

Su, R.

E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. Oraevsky, “Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions,” Opt. Express 21, 25077–25090 (2013).
[Crossref]

K. Wang, S. A. Ermilov, R. Su, H. Brecht, A. A. Oraevsky, and M. A. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 30, 203–214 (2011).
[Crossref]

Sun, C.

H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4, 4496 (2014).
[Crossref]

Taruttis, A.

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9, 219–227 (2015).
[Crossref]

Torke, P. R.

G. Paltauf, P. R. Torke, and R. Nuster, “Modeling photoacoustic imaging with a scanning focused detector using Monte Carlo simulation of energy deposition,” J. Biomed. Opt. 23, 121607 (2018).
[Crossref]

Treeby, B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).
[Crossref]

Treeby, B. E.

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15, 021314 (2010).
[Crossref]

Turner, J.

Viemeister, N. F.

F. Apoux, R. E. Millman, N. F. Viemeister, C. A. Brown, and S. P. Bacon, “On the mechanisms involved in the recovery of envelope information from temporal fine structure,” J. Acoust. Soc. Am. 130, 273–282 (2011).
[Crossref]

Wang, J.

J. Wang, T. Liu, S. Jiao, L. V. Wang, and H. F. Zhang, “Saturation effect in functional photoacoustic imaging,” J. Biomed. Opt. 15, 021317 (2010).
[Crossref]

Wang, K.

K. Wang, S. A. Ermilov, R. Su, H. Brecht, A. A. Oraevsky, and M. A. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 30, 203–214 (2011).
[Crossref]

Wang, L.

Wang, L. V.

Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21, 061007 (2016).
[Crossref]

J. Yao, J. Xia, and L. V. Wang, “Multiscale functional and molecular photoacoustic tomography,” Ultrason. Imag. 38, 44–62 (2016).
[Crossref]

S. N. Hennen, W. Xing, Y. Shui, Y. Zhou, K. Jennifer, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref]

C. Zhang, K. I. Maslov, S. Hu, L. V. Wang, R. Chen, Q. Zhou, and K. K. Shung, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17, 020501 (2012).
[Crossref]

J. Wang, T. Liu, S. Jiao, L. V. Wang, and H. F. Zhang, “Saturation effect in functional photoacoustic imaging,” J. Biomed. Opt. 15, 021317 (2010).
[Crossref]

C. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93, 033902 (2008).
[Crossref]

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurement of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[Crossref]

Xia, J.

J. Yao, J. Xia, and L. V. Wang, “Multiscale functional and molecular photoacoustic tomography,” Ultrason. Imag. 38, 44–62 (2016).
[Crossref]

Xing, W.

S. N. Hennen, W. Xing, Y. Shui, Y. Zhou, K. Jennifer, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref]

Yang, I.

Yang, Y.

Y. Yang, “A signal theoretic approach for envelope analysis of real-valued signals,” IEEE Access 5, 5623–5630 (2017).
[Crossref]

Yao, J.

J. Yao, J. Xia, and L. V. Wang, “Multiscale functional and molecular photoacoustic tomography,” Ultrason. Imag. 38, 44–62 (2016).
[Crossref]

Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21, 061007 (2016).
[Crossref]

Ye, S.

O. B. Knights, S. Ye, N. Ingram, S. Freeara, and J. R. McLaughlan, “Optimising gold nanorods for photoacoustic imaging in vitro,” Nanoscale Adv. 1, 1472–1481 (2019).
[Crossref]

Zhang, C.

C. Zhang, K. I. Maslov, S. Hu, L. V. Wang, R. Chen, Q. Zhou, and K. K. Shung, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17, 020501 (2012).
[Crossref]

Zhang, E.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).
[Crossref]

Zhang, H. F.

H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4, 4496 (2014).
[Crossref]

J. Wang, T. Liu, S. Jiao, L. V. Wang, and H. F. Zhang, “Saturation effect in functional photoacoustic imaging,” J. Biomed. Opt. 15, 021317 (2010).
[Crossref]

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurement of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[Crossref]

Zhang, R.

R. Zhang, F. Gao, X. Feng, S. Liu, R. Ding, and Y. Zheng, “Photoacoustic resonance imaging,” IEEE J. Sel. Top. Quantum Electron. 25, 6800307 (2019).
[Crossref]

Zhang, Z.

H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4, 4496 (2014).
[Crossref]

Zheng, Y.

R. Zhang, F. Gao, X. Feng, S. Liu, R. Ding, and Y. Zheng, “Photoacoustic resonance imaging,” IEEE J. Sel. Top. Quantum Electron. 25, 6800307 (2019).
[Crossref]

Zhou, Q.

C. Zhang, K. I. Maslov, S. Hu, L. V. Wang, R. Chen, Q. Zhou, and K. K. Shung, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17, 020501 (2012).
[Crossref]

Zhou, Y.

Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21, 061007 (2016).
[Crossref]

S. N. Hennen, W. Xing, Y. Shui, Y. Zhou, K. Jennifer, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref]

Appl. Phys. Lett. (1)

C. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93, 033902 (2008).
[Crossref]

Biomed. Opt. Express (2)

Exp. Eye Res. (1)

S. N. Hennen, W. Xing, Y. Shui, Y. Zhou, K. Jennifer, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref]

IEEE Access (1)

Y. Yang, “A signal theoretic approach for envelope analysis of real-valued signals,” IEEE Access 5, 5623–5630 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Zhang, F. Gao, X. Feng, S. Liu, R. Ding, and Y. Zheng, “Photoacoustic resonance imaging,” IEEE J. Sel. Top. Quantum Electron. 25, 6800307 (2019).
[Crossref]

IEEE Trans. Med. Imaging (1)

K. Wang, S. A. Ermilov, R. Su, H. Brecht, A. A. Oraevsky, and M. A. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 30, 203–214 (2011).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

M. Caballero, A. Rosenthal, A. Buehler, D. Razansky, and V. Ntziachristos, “Optoacoustic determination of spatio-temporal responses of ultrasound sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1234–1244 (2013).
[Crossref]

J. Acoust. Soc. Am. (2)

B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616–3627 (2005).
[Crossref]

F. Apoux, R. E. Millman, N. F. Viemeister, C. A. Brown, and S. P. Bacon, “On the mechanisms involved in the recovery of envelope information from temporal fine structure,” J. Acoust. Soc. Am. 130, 273–282 (2011).
[Crossref]

J. Biomed. Opt. (7)

C. Zhang, K. I. Maslov, S. Hu, L. V. Wang, R. Chen, Q. Zhou, and K. K. Shung, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17, 020501 (2012).
[Crossref]

G. Paltauf, P. R. Torke, and R. Nuster, “Modeling photoacoustic imaging with a scanning focused detector using Monte Carlo simulation of energy deposition,” J. Biomed. Opt. 23, 121607 (2018).
[Crossref]

M. N. Cherkashin, C. Brenner, and M. R. Hofmann, “Transducer-matched multipulse excitation for signal-to-noise ratio improvement in diode laser-based photoacoustic systems,” J. Biomed. Opt. 24, 046001 (2019).
[Crossref]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15, 021314 (2010).
[Crossref]

J. Wang, T. Liu, S. Jiao, L. V. Wang, and H. F. Zhang, “Saturation effect in functional photoacoustic imaging,” J. Biomed. Opt. 15, 021317 (2010).
[Crossref]

Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21, 061007 (2016).
[Crossref]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).
[Crossref]

J. Phys. D (1)

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissue,” J. Phys. D 38, 2633–2639 (2005).
[Crossref]

Korean J. Opt. Photon. (2)

D. Kang, “Photoacoustic nonlinearity to absorption coefficients in photoacoustic imaging with focused ultrasound transducers,” Korean J. Opt. Photon. 28, 158–165 (2017).
[Crossref]

D. Kang, “Signal-to-noise ratio in time- and frequency-domain photoacoustic measurements by different frequency filtering,” Korean J. Opt. Photon. 30, 48–58 (2019).

Nanoscale Adv. (1)

O. B. Knights, S. Ye, N. Ingram, S. Freeara, and J. R. McLaughlan, “Optimising gold nanorods for photoacoustic imaging in vitro,” Nanoscale Adv. 1, 1472–1481 (2019).
[Crossref]

Nat. Photonics (2)

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9, 219–227 (2015).
[Crossref]

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Med. Biol. (1)

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurement of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349–1361 (2007).
[Crossref]

Proc. SPIE (1)

D. Kang, “Effect of spatial filtering of ultrasound transducers on photoacoustic measurements,” Proc. SPIE 10064, 100645D (2017).
[Crossref]

Rev. Sci. Instrum. (1)

B. Lashkari and A. Mandelis, “Comparison between pulsed laser and frequency-domain photoacoustic modalities: signal-to-noise ratio, contrast, resolution, and maximum depth detectivity,” Rev. Sci. Instrum. 82, 094903 (2011).
[Crossref]

Sci. Rep. (2)

J. Y. Kim, C. Lee, K. Park, S. Han, and C. Kim, “High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid,” Sci. Rep. 6, 34803 (2016).
[Crossref]

H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4, 4496 (2014).
[Crossref]

Ultrason. Imag. (1)

J. Yao, J. Xia, and L. V. Wang, “Multiscale functional and molecular photoacoustic tomography,” Ultrason. Imag. 38, 44–62 (2016).
[Crossref]

Other (4)

R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, 2000), p. 120.

H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004), p. 473, p. 148. The spatial and temporal inverse Fourier transforms have plus and minus signs in the exponent of the Fourier kernel, respectively.

C. E. Cook and M. Bernfeld, Radar Signals, An Introduction to Theory and Application (Artech House, 1993), p. 34.

S. Prahl, “Optical absorption of hemoglobin,” https://omlc.org/spectra/hemoglobin/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Simple schemes of the PA imaging configuration for the investigation of PA signal variation to an absorption coefficient with (a) cylindrical and (b) spherical absorbing objects.
Fig. 2.
Fig. 2. PA spectra simulated by k-Wave and the DCHE method for (a) cylindrical and (b) spherical absorbing objects measured by a spherically focused US TD. Lower and higher resonance peaks are for absorption coefficients of ${5}\;{{\rm cm}^{ - 1}}$ and ${30}\;{{\rm cm}^{ - 1}}$.
Fig. 3.
Fig. 3. PA spectra simulated for the (a) cylindrical absorbing object of 4 mm height and 2 mm radius and (b) spherical absorbing object of 2 mm radius measured by a spherically focused US TD. The units for absorption coefficients in the legends are ${{\rm cm}^{ - 1}}$.
Fig. 4.
Fig. 4. Variation of the absorbing energy density in cylindrical (upper line) and spherical (lower line) absorbing objects as their absorption coefficients are increased to 10, 30, 50, and ${100}\;{{\rm cm}^{ - 1}}$. In (c) and (d), there are some PA rays propagating to a specific point at the left corner of the US TD from several point sources.
Fig. 5.
Fig. 5. Normalized PA signal variation to an absorption coefficient for the (a) cylindrical and (b) spherical absorbing objects measured by a spherically focused US TD.
Fig. 6.
Fig. 6. Normalized PA signal variation to an absorption coefficient for spherical objects of different radius values (${r_s}$) scaled by a focal diameters (FD) of a spherically focused US TD with bandwidths of the Rect transfer function that are (a) 0–5 MHz and (b) 0–10 MHz. PA spectra for (c) ${r_s} = {{\rm FD}_5} \times 6$ and (d) ${r_s} = {{\rm FD}_{10}} \times 6$, where the units of absorption coefficients in the legends are ${\rm cm}^{-1} $.
Fig. 7.
Fig. 7. Normalized PA signal variation to an absorption coefficient for spherical absorbing objects of different radius values (${r_s}$) scaled by focal diameters (FDs). The bandwidths of the Rect $\widetilde{T}_{\textit{USTD}}$ are 0–5 MHz for (a) and (c), and 0–10 MHz for (b) and (d).
Fig. 8.
Fig. 8. (a) US TD transfer function simulated from the simplified KLM equation. (b) PA spectra amplitude applying the US TD transfer function in (a) for the same PA imaging condition as Fig. 6(d). Comparison of normalized PA signal magnitude curves with and without the KLM-analogous modeled transfer functions ($\tilde T_{\rm USTD}$) within bandwidths of (c) 0–5 MHz and (d) 0–10 MHz.
Fig. 9.
Fig. 9. Percentage differences between maximum PA amplitude values from Eq. (10) and correct ones with (a) 0–10 MHz Rect and (b) KLM-analogous modeled transfer functions.
Fig. 10.
Fig. 10. Fourier (${{\rm PA}_{\rm F}}$) and Hilbert (${{\rm PA}_{\rm H}}$) transformed PA signals for different absorption coefficients and US TD transfer functions for spherical objects of radii of [(a) and (c)] ${{\rm FD}_5}$ and [(b) and (d)] ${{\rm FD}_{10}}$. PA maximum magnitude variation curves to an absorption coefficient calculated from Fourier and Hilbert transformed PA signals.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P ~ ( r d , ω ) = i ω Γ 4 π c s 2 I ( ω ) V o exp ( i k | r d r o | ) | r d r o | H ( r o ) d V o ,
P ~ ( ω ) = i ω Γ 4 π c s 2 I ( ω ) V o H ( r o ) U T d ( r o , ω ) d V o ,
U T d ( r o , ω ) V d D ( r d ) exp ( i ω | r d r o | / c s ) | r d r o | d V d .
U T d ( r o , ω ) φ d = 0 2 π θ d = 0 θ N A exp ( i ω | r d r o | / c s ) | r d r o | f d 2 sin θ d d θ d d φ d ,
| r d r o | = f d 2 + r o 2 2 f d r o [ sin θ d sin θ o cos ( φ d φ o ) + cos θ d cos θ o ] .
P ~ ( ω ) = i ω Γ 2 c s 2 I ( ω ) z o r o H ( z o , r o ) U T d ( z o , r o , ω ) r o d r o d z o .
H ( z o , r o ) = μ a exp ( μ a z o ) O ( z o , r o ) f o r z o 0 ,
P ~ ( ω ) = P ~ wf ( ω ) exp ( i ω f d c s ) = P ~ wf ( ω ) exp ( i ω t d ) ,
PA ( t ) = P ~ wf ( ω ) T ~ U S T D ( ω ) exp [ i ω ( t t d ) ] d ω ,
PA max PA ( t = t d ) = P ~ wf ( ω ) T ~ U S T D ( ω ) d ω .

Metrics