D. Barchiesi and T. Grosges, “Resonance in metallic nanoparticles: a
rigorous formulation of the dipolar approximation,” Eur. J. Phys. 35, 035012 (2014).
[Crossref]
J. Salvi and D. Barchiesi, “Measurement of thicknesses and optical
properties of thin films from surface plasmon resonance
(SPR),” Appl. Phys. A 115, 245–255 (2014).
[Crossref]
R. Cao, H. J. Trussell, and R. Shamey, “Comparison of the performance of inverse
transformation methods from OSA-UCS to CIEXYZ,” J. Opt. Soc. Am. A 30, 1508–1515 (2013).
[Crossref]
E. Stratakis and E. Kymakis, “Nanoparticle-based plasmonic organic
photovoltaic devices,” Mater. Today 16(4), 133–146 (2013).
[Crossref]
K. M. Bryan, Z. Jia, N. K. Pervez, M. P. Cox, M. J. Gazes, and I. Kymissis, “Inexpensive photonic crystal
spectrometer for colorimetric sensing applications,” Opt. Express 21, 4411–4423 (2013).
[Crossref]
S. Mestre, C. Chiva, M. D. Palacios, and J. L. Amorós, “Development of a yellow ceramic pigment
based on silver nanoparticles,” J. Eur.
Ceram. Soc. 32, 2825–2830 (2012).
[Crossref]
D. Barchiesi, “Numerical retrieval of thin aluminum
layer properties from SPR experimental data,” Opt. Express 20, 9064–9078 (2012).
[Crossref]
S. Kessentini and D. Barchiesi, “Quantitative comparison of optimized
nanorods, nanoshells and hollow nanospheres for photothermal
therapy,” Biomed. Opt. Express 3, 590–604 (2012).
[Crossref]
S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm
application to plasmonic design,” Int. J.
Appl. Metaheuristics Comput. 2, 18–28 (2011).
[Crossref]
T. Grosges, D. Barchiesi, S. Kessentini, G. Gréhan, and M. Lamy de la Chapelle, “Nanoshells for photothermal therapy: a
Monte-Carlo based numerical study of their design
tolerance,” Biomed. Opt. Express 2, 1584–1596 (2011).
[Crossref]
M. S. Walton, M. Svoboda, A. Mehta, S. Webb, and K. Trentelman, “Material evidence for the use of attic
white-ground lekythoi ceramics in cremation burials,” J. Archaeol. Sci. 37, 936–940 (2010).
[Crossref]
J. Lafait, S. Berthier, C. Andraud, V. Reillon, and J. Boulenguez, “Physical colors in cultural heritage:
surface plasmons in glass,” C.R.
Phys. 10, 649–659 (2009).
[Crossref]
S. Kreft and M. Kreft, “Quantification of dichromatism: a
characteristic of color in transparent materials,” J. Opt. Soc. Am. A 26, 1576–1581 (2009).
[Crossref]
P. Ricciardi, P. Colomban, A. Tournié, M. Macchiarola, and N. Ayed, “A non-invasive study of Roman age mosaic
glass tesserae by means of Raman spectroscopy,” J. Archaeol. Sci. 36, 2551–2559 (2009).
[Crossref]
D. Barchiesi, E. Kremer, V. P. Mai, and T. Grosges, “A Poincaré’s approach for
plasmonics: the plasmon localization,” J.
Microsc. 229, 525–532 (2008).
[Crossref]
A. Ruivo, C. Gomes, A. Lima, M. L. Botelho, R. Melo, and A. B. A. P. de Matos, “Gold nanoparticles in ancient and
contemporary ruby glass,” J. Cult.
Heritage 9, e134–e137 (2008).
[Crossref]
T. Grosges, D. Barchiesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and
biomedical applications by plasmonic optimization,” Opt. Lett. 33, 2812–2814 (2008).
[Crossref]
I. Freestone, N. Meeks, M. Sax, and C. Higgitt, “The Lycurgus Cup–a Roman
nanotechnology,” Gold Bull. (Geneva) 40, 270–277 (2007).
[Crossref]
L. M. Liz-Marzán, “Nanometals: formation and
color,” Mater. Today 7(2), 26–31 (2004).
[Crossref]
J. Qiu, X. Jiang, C. Zhu, H. Inouye, J. Si, and K. Hirao, “Optical properties of structurally
modified glasses doped with gold ions,” Opt.
Lett. 29, 370–372 (2004).
[Crossref]
R. S. Berns, “Colorimetry Part I: The basics and
materials applications,” Opt. Photon.
News 6(9), 23 (1995).
[Crossref]
D. J. Barber and I. C. Freestone, “An investigation of the origin of the
colour of the Lycurgus Cup by analytical transmission electron
microscopy,” Archaeometry 32, 33–45 (1990).
[Crossref]
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” Science 220, 671–680 (1983).
[Crossref]
H. Verweij, J. H. J. M. Buster, and G. F. Remmers, “Refractive index and density of Li-, Na-
and K-germanosilicate glasses,” J. Mater.
Sci. 14, 931–940 (1979).
[Crossref]
T. Katsuyama, T. Suganuma, K. Ishida, and G. Toda, “Refractive index behavior of
SiO2-P2O5 glass in optical fiber
application,” Opt. Commun. 21, 182–184 (1977).
[Crossref]
S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. V. Uitert, “Binary
SiO2-B2O3 glass system: refractive
index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).
[Crossref]
T. Turbadar, “Complete absorption of plane polarized
light by thin metallic films,” Opt.
Acta 11, 207–210 (1964).
[Crossref]
T. Turbadar, “Complete absorption of light by thin
metal films,” Proc. Phys. Soc.
London 73, 40–44 (1959).
[Crossref]
W. W. Abney, “On the change in hue of spectrum colours
by dilution with white light,” Proc. R. Soc.
London 83, 120–127 (1909).
[Crossref]
G. Mie, “Beiträge zur Optik trüber
Medien speziell kolloidaler Metallösungen (Contributions to the optics
of turbid media, especially colloidal metal
solutions),” Ann. Phys. 330, 377–445 (1908).
[Crossref]
W. W. Abney, “On the change in hue of spectrum colours
by dilution with white light,” Proc. R. Soc.
London 83, 120–127 (1909).
[Crossref]
S. Mestre, C. Chiva, M. D. Palacios, and J. L. Amorós, “Development of a yellow ceramic pigment
based on silver nanoparticles,” J. Eur.
Ceram. Soc. 32, 2825–2830 (2012).
[Crossref]
J. Lafait, S. Berthier, C. Andraud, V. Reillon, and J. Boulenguez, “Physical colors in cultural heritage:
surface plasmons in glass,” C.R.
Phys. 10, 649–659 (2009).
[Crossref]
P. Ricciardi, P. Colomban, A. Tournié, M. Macchiarola, and N. Ayed, “A non-invasive study of Roman age mosaic
glass tesserae by means of Raman spectroscopy,” J. Archaeol. Sci. 36, 2551–2559 (2009).
[Crossref]
D. J. Barber and I. C. Freestone, “An investigation of the origin of the
colour of the Lycurgus Cup by analytical transmission electron
microscopy,” Archaeometry 32, 33–45 (1990).
[Crossref]
D. Barchiesi and T. Grosges, “Resonance in metallic nanoparticles: a
rigorous formulation of the dipolar approximation,” Eur. J. Phys. 35, 035012 (2014).
[Crossref]
J. Salvi and D. Barchiesi, “Measurement of thicknesses and optical
properties of thin films from surface plasmon resonance
(SPR),” Appl. Phys. A 115, 245–255 (2014).
[Crossref]
S. Kessentini and D. Barchiesi, “Quantitative comparison of optimized
nanorods, nanoshells and hollow nanospheres for photothermal
therapy,” Biomed. Opt. Express 3, 590–604 (2012).
[Crossref]
D. Barchiesi, “Numerical retrieval of thin aluminum
layer properties from SPR experimental data,” Opt. Express 20, 9064–9078 (2012).
[Crossref]
T. Grosges, D. Barchiesi, S. Kessentini, G. Gréhan, and M. Lamy de la Chapelle, “Nanoshells for photothermal therapy: a
Monte-Carlo based numerical study of their design
tolerance,” Biomed. Opt. Express 2, 1584–1596 (2011).
[Crossref]
S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm
application to plasmonic design,” Int. J.
Appl. Metaheuristics Comput. 2, 18–28 (2011).
[Crossref]
T. Grosges, D. Barchiesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and
biomedical applications by plasmonic optimization,” Opt. Lett. 33, 2812–2814 (2008).
[Crossref]
D. Barchiesi, E. Kremer, V. P. Mai, and T. Grosges, “A Poincaré’s approach for
plasmonics: the plasmon localization,” J.
Microsc. 229, 525–532 (2008).
[Crossref]
D. Macias and D. Barchiesi, “Identification of unknown experimental
parameters from noisy apertureless scanning near-field optical microscope
data with an evolutionary procedure,” Opt.
Lett. 30, 2557–2559 (2005).
[Crossref]
R. S. Berns, “Colorimetry Part I: The basics and
materials applications,” Opt. Photon.
News 6(9), 23 (1995).
[Crossref]
J. Lafait, S. Berthier, C. Andraud, V. Reillon, and J. Boulenguez, “Physical colors in cultural heritage:
surface plasmons in glass,” C.R.
Phys. 10, 649–659 (2009).
[Crossref]
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small
Particles (Wiley, 1998).
M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).
A. Ruivo, C. Gomes, A. Lima, M. L. Botelho, R. Melo, and A. B. A. P. de Matos, “Gold nanoparticles in ancient and
contemporary ruby glass,” J. Cult.
Heritage 9, e134–e137 (2008).
[Crossref]
J. Lafait, S. Berthier, C. Andraud, V. Reillon, and J. Boulenguez, “Physical colors in cultural heritage:
surface plasmons in glass,” C.R.
Phys. 10, 649–659 (2009).
[Crossref]
H. Verweij, J. H. J. M. Buster, and G. F. Remmers, “Refractive index and density of Li-, Na-
and K-germanosilicate glasses,” J. Mater.
Sci. 14, 931–940 (1979).
[Crossref]
S. Mestre, C. Chiva, M. D. Palacios, and J. L. Amorós, “Development of a yellow ceramic pigment
based on silver nanoparticles,” J. Eur.
Ceram. Soc. 32, 2825–2830 (2012).
[Crossref]
M. Clerc, “A method to improve standard
PSO,” (France Telecom R&D, 2009).
P. Ricciardi, P. Colomban, A. Tournié, M. Macchiarola, and N. Ayed, “A non-invasive study of Roman age mosaic
glass tesserae by means of Raman spectroscopy,” J. Archaeol. Sci. 36, 2551–2559 (2009).
[Crossref]
A. Ruivo, C. Gomes, A. Lima, M. L. Botelho, R. Melo, and A. B. A. P. de Matos, “Gold nanoparticles in ancient and
contemporary ruby glass,” J. Cult.
Heritage 9, e134–e137 (2008).
[Crossref]
J. Kennedy and R. Eberhart, “Particle swarm
optimization,” in IEEE International
Conference on Neural Networks, Perth, Australia (IEEE, 1995), Vol. IV, pp. 1942–1948.
I. Freestone, N. Meeks, M. Sax, and C. Higgitt, “The Lycurgus Cup–a Roman
nanotechnology,” Gold Bull. (Geneva) 40, 270–277 (2007).
[Crossref]
D. J. Barber and I. C. Freestone, “An investigation of the origin of the
colour of the Lycurgus Cup by analytical transmission electron
microscopy,” Archaeometry 32, 33–45 (1990).
[Crossref]
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” Science 220, 671–680 (1983).
[Crossref]
S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm
application to plasmonic design,” Int. J.
Appl. Metaheuristics Comput. 2, 18–28 (2011).
[Crossref]
A. Ruivo, C. Gomes, A. Lima, M. L. Botelho, R. Melo, and A. B. A. P. de Matos, “Gold nanoparticles in ancient and
contemporary ruby glass,” J. Cult.
Heritage 9, e134–e137 (2008).
[Crossref]
T. Grosges, D. Barchiesi, S. Kessentini, G. Gréhan, and M. Lamy de la Chapelle, “Nanoshells for photothermal therapy: a
Monte-Carlo based numerical study of their design
tolerance,” Biomed. Opt. Express 2, 1584–1596 (2011).
[Crossref]
T. Grosges, D. Barchiesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and
biomedical applications by plasmonic optimization,” Opt. Lett. 33, 2812–2814 (2008).
[Crossref]
D. Barchiesi and T. Grosges, “Resonance in metallic nanoparticles: a
rigorous formulation of the dipolar approximation,” Eur. J. Phys. 35, 035012 (2014).
[Crossref]
S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm
application to plasmonic design,” Int. J.
Appl. Metaheuristics Comput. 2, 18–28 (2011).
[Crossref]
T. Grosges, D. Barchiesi, S. Kessentini, G. Gréhan, and M. Lamy de la Chapelle, “Nanoshells for photothermal therapy: a
Monte-Carlo based numerical study of their design
tolerance,” Biomed. Opt. Express 2, 1584–1596 (2011).
[Crossref]
T. Grosges, D. Barchiesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and
biomedical applications by plasmonic optimization,” Opt. Lett. 33, 2812–2814 (2008).
[Crossref]
D. Barchiesi, E. Kremer, V. P. Mai, and T. Grosges, “A Poincaré’s approach for
plasmonics: the plasmon localization,” J.
Microsc. 229, 525–532 (2008).
[Crossref]
I. Freestone, N. Meeks, M. Sax, and C. Higgitt, “The Lycurgus Cup–a Roman
nanotechnology,” Gold Bull. (Geneva) 40, 270–277 (2007).
[Crossref]
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small
Particles (Wiley, 1998).
T. Katsuyama, T. Suganuma, K. Ishida, and G. Toda, “Refractive index behavior of
SiO2-P2O5 glass in optical fiber
application,” Opt. Commun. 21, 182–184 (1977).
[Crossref]
S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. V. Uitert, “Binary
SiO2-B2O3 glass system: refractive
index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).
[Crossref]
T. Katsuyama, T. Suganuma, K. Ishida, and G. Toda, “Refractive index behavior of
SiO2-P2O5 glass in optical fiber
application,” Opt. Commun. 21, 182–184 (1977).
[Crossref]
J. Kennedy and R. Eberhart, “Particle swarm
optimization,” in IEEE International
Conference on Neural Networks, Perth, Australia (IEEE, 1995), Vol. IV, pp. 1942–1948.
S. Kessentini and D. Barchiesi, “Quantitative comparison of optimized
nanorods, nanoshells and hollow nanospheres for photothermal
therapy,” Biomed. Opt. Express 3, 590–604 (2012).
[Crossref]
T. Grosges, D. Barchiesi, S. Kessentini, G. Gréhan, and M. Lamy de la Chapelle, “Nanoshells for photothermal therapy: a
Monte-Carlo based numerical study of their design
tolerance,” Biomed. Opt. Express 2, 1584–1596 (2011).
[Crossref]
S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm
application to plasmonic design,” Int. J.
Appl. Metaheuristics Comput. 2, 18–28 (2011).
[Crossref]
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” Science 220, 671–680 (1983).
[Crossref]
D. Barchiesi, E. Kremer, V. P. Mai, and T. Grosges, “A Poincaré’s approach for
plasmonics: the plasmon localization,” J.
Microsc. 229, 525–532 (2008).
[Crossref]
E. Stratakis and E. Kymakis, “Nanoparticle-based plasmonic organic
photovoltaic devices,” Mater. Today 16(4), 133–146 (2013).
[Crossref]
J. Lafait, S. Berthier, C. Andraud, V. Reillon, and J. Boulenguez, “Physical colors in cultural heritage:
surface plasmons in glass,” C.R.
Phys. 10, 649–659 (2009).
[Crossref]
S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm
application to plasmonic design,” Int. J.
Appl. Metaheuristics Comput. 2, 18–28 (2011).
[Crossref]
T. Grosges, D. Barchiesi, S. Kessentini, G. Gréhan, and M. Lamy de la Chapelle, “Nanoshells for photothermal therapy: a
Monte-Carlo based numerical study of their design
tolerance,” Biomed. Opt. Express 2, 1584–1596 (2011).
[Crossref]
A. Ruivo, C. Gomes, A. Lima, M. L. Botelho, R. Melo, and A. B. A. P. de Matos, “Gold nanoparticles in ancient and
contemporary ruby glass,” J. Cult.
Heritage 9, e134–e137 (2008).
[Crossref]
L. M. Liz-Marzán, “Nanometals: formation and
color,” Mater. Today 7(2), 26–31 (2004).
[Crossref]
P. Ricciardi, P. Colomban, A. Tournié, M. Macchiarola, and N. Ayed, “A non-invasive study of Roman age mosaic
glass tesserae by means of Raman spectroscopy,” J. Archaeol. Sci. 36, 2551–2559 (2009).
[Crossref]
D. Barchiesi, E. Kremer, V. P. Mai, and T. Grosges, “A Poincaré’s approach for
plasmonics: the plasmon localization,” J.
Microsc. 229, 525–532 (2008).
[Crossref]
I. Freestone, N. Meeks, M. Sax, and C. Higgitt, “The Lycurgus Cup–a Roman
nanotechnology,” Gold Bull. (Geneva) 40, 270–277 (2007).
[Crossref]
M. S. Walton, M. Svoboda, A. Mehta, S. Webb, and K. Trentelman, “Material evidence for the use of attic
white-ground lekythoi ceramics in cremation burials,” J. Archaeol. Sci. 37, 936–940 (2010).
[Crossref]
A. Ruivo, C. Gomes, A. Lima, M. L. Botelho, R. Melo, and A. B. A. P. de Matos, “Gold nanoparticles in ancient and
contemporary ruby glass,” J. Cult.
Heritage 9, e134–e137 (2008).
[Crossref]
S. Mestre, C. Chiva, M. D. Palacios, and J. L. Amorós, “Development of a yellow ceramic pigment
based on silver nanoparticles,” J. Eur.
Ceram. Soc. 32, 2825–2830 (2012).
[Crossref]
G. Mie, “Beiträge zur Optik trüber
Medien speziell kolloidaler Metallösungen (Contributions to the optics
of turbid media, especially colloidal metal
solutions),” Ann. Phys. 330, 377–445 (1908).
[Crossref]
S. Mestre, C. Chiva, M. D. Palacios, and J. L. Amorós, “Development of a yellow ceramic pigment
based on silver nanoparticles,” J. Eur.
Ceram. Soc. 32, 2825–2830 (2012).
[Crossref]
E. D. Palik, Handbook of Optical Constants (Academic, 1985).
S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. V. Uitert, “Binary
SiO2-B2O3 glass system: refractive
index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).
[Crossref]
J. Lafait, S. Berthier, C. Andraud, V. Reillon, and J. Boulenguez, “Physical colors in cultural heritage:
surface plasmons in glass,” C.R.
Phys. 10, 649–659 (2009).
[Crossref]
H. Verweij, J. H. J. M. Buster, and G. F. Remmers, “Refractive index and density of Li-, Na-
and K-germanosilicate glasses,” J. Mater.
Sci. 14, 931–940 (1979).
[Crossref]
P. Ricciardi, P. Colomban, A. Tournié, M. Macchiarola, and N. Ayed, “A non-invasive study of Roman age mosaic
glass tesserae by means of Raman spectroscopy,” J. Archaeol. Sci. 36, 2551–2559 (2009).
[Crossref]
S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. V. Uitert, “Binary
SiO2-B2O3 glass system: refractive
index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).
[Crossref]
A. Ruivo, C. Gomes, A. Lima, M. L. Botelho, R. Melo, and A. B. A. P. de Matos, “Gold nanoparticles in ancient and
contemporary ruby glass,” J. Cult.
Heritage 9, e134–e137 (2008).
[Crossref]
J. Salvi and D. Barchiesi, “Measurement of thicknesses and optical
properties of thin films from surface plasmon resonance
(SPR),” Appl. Phys. A 115, 245–255 (2014).
[Crossref]
I. Freestone, N. Meeks, M. Sax, and C. Higgitt, “The Lycurgus Cup–a Roman
nanotechnology,” Gold Bull. (Geneva) 40, 270–277 (2007).
[Crossref]
E. Stratakis and E. Kymakis, “Nanoparticle-based plasmonic organic
photovoltaic devices,” Mater. Today 16(4), 133–146 (2013).
[Crossref]
T. Katsuyama, T. Suganuma, K. Ishida, and G. Toda, “Refractive index behavior of
SiO2-P2O5 glass in optical fiber
application,” Opt. Commun. 21, 182–184 (1977).
[Crossref]
M. S. Walton, M. Svoboda, A. Mehta, S. Webb, and K. Trentelman, “Material evidence for the use of attic
white-ground lekythoi ceramics in cremation burials,” J. Archaeol. Sci. 37, 936–940 (2010).
[Crossref]
T. Katsuyama, T. Suganuma, K. Ishida, and G. Toda, “Refractive index behavior of
SiO2-P2O5 glass in optical fiber
application,” Opt. Commun. 21, 182–184 (1977).
[Crossref]
P. Ricciardi, P. Colomban, A. Tournié, M. Macchiarola, and N. Ayed, “A non-invasive study of Roman age mosaic
glass tesserae by means of Raman spectroscopy,” J. Archaeol. Sci. 36, 2551–2559 (2009).
[Crossref]
M. S. Walton, M. Svoboda, A. Mehta, S. Webb, and K. Trentelman, “Material evidence for the use of attic
white-ground lekythoi ceramics in cremation burials,” J. Archaeol. Sci. 37, 936–940 (2010).
[Crossref]
T. Turbadar, “Complete absorption of plane polarized
light by thin metallic films,” Opt.
Acta 11, 207–210 (1964).
[Crossref]
T. Turbadar, “Complete absorption of light by thin
metal films,” Proc. Phys. Soc.
London 73, 40–44 (1959).
[Crossref]
S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. V. Uitert, “Binary
SiO2-B2O3 glass system: refractive
index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).
[Crossref]
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” Science 220, 671–680 (1983).
[Crossref]
H. Verweij, J. H. J. M. Buster, and G. F. Remmers, “Refractive index and density of Li-, Na-
and K-germanosilicate glasses,” J. Mater.
Sci. 14, 931–940 (1979).
[Crossref]
M. S. Walton, M. Svoboda, A. Mehta, S. Webb, and K. Trentelman, “Material evidence for the use of attic
white-ground lekythoi ceramics in cremation burials,” J. Archaeol. Sci. 37, 936–940 (2010).
[Crossref]
M. S. Walton, M. Svoboda, A. Mehta, S. Webb, and K. Trentelman, “Material evidence for the use of attic
white-ground lekythoi ceramics in cremation burials,” J. Archaeol. Sci. 37, 936–940 (2010).
[Crossref]
S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. V. Uitert, “Binary
SiO2-B2O3 glass system: refractive
index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).
[Crossref]
M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).
G. Mie, “Beiträge zur Optik trüber
Medien speziell kolloidaler Metallösungen (Contributions to the optics
of turbid media, especially colloidal metal
solutions),” Ann. Phys. 330, 377–445 (1908).
[Crossref]
J. Salvi and D. Barchiesi, “Measurement of thicknesses and optical
properties of thin films from surface plasmon resonance
(SPR),” Appl. Phys. A 115, 245–255 (2014).
[Crossref]
D. J. Barber and I. C. Freestone, “An investigation of the origin of the
colour of the Lycurgus Cup by analytical transmission electron
microscopy,” Archaeometry 32, 33–45 (1990).
[Crossref]
S. Kessentini and D. Barchiesi, “Quantitative comparison of optimized
nanorods, nanoshells and hollow nanospheres for photothermal
therapy,” Biomed. Opt. Express 3, 590–604 (2012).
[Crossref]
T. Grosges, D. Barchiesi, S. Kessentini, G. Gréhan, and M. Lamy de la Chapelle, “Nanoshells for photothermal therapy: a
Monte-Carlo based numerical study of their design
tolerance,” Biomed. Opt. Express 2, 1584–1596 (2011).
[Crossref]
J. Lafait, S. Berthier, C. Andraud, V. Reillon, and J. Boulenguez, “Physical colors in cultural heritage:
surface plasmons in glass,” C.R.
Phys. 10, 649–659 (2009).
[Crossref]
D. Barchiesi and T. Grosges, “Resonance in metallic nanoparticles: a
rigorous formulation of the dipolar approximation,” Eur. J. Phys. 35, 035012 (2014).
[Crossref]
I. Freestone, N. Meeks, M. Sax, and C. Higgitt, “The Lycurgus Cup–a Roman
nanotechnology,” Gold Bull. (Geneva) 40, 270–277 (2007).
[Crossref]
S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm
application to plasmonic design,” Int. J.
Appl. Metaheuristics Comput. 2, 18–28 (2011).
[Crossref]
S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. V. Uitert, “Binary
SiO2-B2O3 glass system: refractive
index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).
[Crossref]
P. Ricciardi, P. Colomban, A. Tournié, M. Macchiarola, and N. Ayed, “A non-invasive study of Roman age mosaic
glass tesserae by means of Raman spectroscopy,” J. Archaeol. Sci. 36, 2551–2559 (2009).
[Crossref]
M. S. Walton, M. Svoboda, A. Mehta, S. Webb, and K. Trentelman, “Material evidence for the use of attic
white-ground lekythoi ceramics in cremation burials,” J. Archaeol. Sci. 37, 936–940 (2010).
[Crossref]
A. Ruivo, C. Gomes, A. Lima, M. L. Botelho, R. Melo, and A. B. A. P. de Matos, “Gold nanoparticles in ancient and
contemporary ruby glass,” J. Cult.
Heritage 9, e134–e137 (2008).
[Crossref]
S. Mestre, C. Chiva, M. D. Palacios, and J. L. Amorós, “Development of a yellow ceramic pigment
based on silver nanoparticles,” J. Eur.
Ceram. Soc. 32, 2825–2830 (2012).
[Crossref]
H. Verweij, J. H. J. M. Buster, and G. F. Remmers, “Refractive index and density of Li-, Na-
and K-germanosilicate glasses,” J. Mater.
Sci. 14, 931–940 (1979).
[Crossref]
D. Barchiesi, E. Kremer, V. P. Mai, and T. Grosges, “A Poincaré’s approach for
plasmonics: the plasmon localization,” J.
Microsc. 229, 525–532 (2008).
[Crossref]
S. Kreft and M. Kreft, “Quantification of dichromatism: a
characteristic of color in transparent materials,” J. Opt. Soc. Am. A 26, 1576–1581 (2009).
[Crossref]
W. Kurtenbach, C. E. Sternheim, and L. Spillmann, “Change in hue of spectral colors by
dilution with white light (Abney effect),” J.
Opt. Soc. Am. A 1, 365–372 (1984).
[Crossref]
R. Cao, H. J. Trussell, and R. Shamey, “Comparison of the performance of inverse
transformation methods from OSA-UCS to CIEXYZ,” J. Opt. Soc. Am. A 30, 1508–1515 (2013).
[Crossref]
L. M. Liz-Marzán, “Nanometals: formation and
color,” Mater. Today 7(2), 26–31 (2004).
[Crossref]
E. Stratakis and E. Kymakis, “Nanoparticle-based plasmonic organic
photovoltaic devices,” Mater. Today 16(4), 133–146 (2013).
[Crossref]
T. Turbadar, “Complete absorption of plane polarized
light by thin metallic films,” Opt.
Acta 11, 207–210 (1964).
[Crossref]
T. Katsuyama, T. Suganuma, K. Ishida, and G. Toda, “Refractive index behavior of
SiO2-P2O5 glass in optical fiber
application,” Opt. Commun. 21, 182–184 (1977).
[Crossref]
K. M. Bryan, Z. Jia, N. K. Pervez, M. P. Cox, M. J. Gazes, and I. Kymissis, “Inexpensive photonic crystal
spectrometer for colorimetric sensing applications,” Opt. Express 21, 4411–4423 (2013).
[Crossref]
D. Barchiesi, “Numerical retrieval of thin aluminum
layer properties from SPR experimental data,” Opt. Express 20, 9064–9078 (2012).
[Crossref]
D. Macias and D. Barchiesi, “Identification of unknown experimental
parameters from noisy apertureless scanning near-field optical microscope
data with an evolutionary procedure,” Opt.
Lett. 30, 2557–2559 (2005).
[Crossref]
J. Qiu, X. Jiang, C. Zhu, H. Inouye, J. Si, and K. Hirao, “Optical properties of structurally
modified glasses doped with gold ions,” Opt.
Lett. 29, 370–372 (2004).
[Crossref]
T. Grosges, D. Barchiesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and
biomedical applications by plasmonic optimization,” Opt. Lett. 33, 2812–2814 (2008).
[Crossref]
R. S. Berns, “Colorimetry Part I: The basics and
materials applications,” Opt. Photon.
News 6(9), 23 (1995).
[Crossref]
T. Turbadar, “Complete absorption of light by thin
metal films,” Proc. Phys. Soc.
London 73, 40–44 (1959).
[Crossref]
W. W. Abney, “On the change in hue of spectrum colours
by dilution with white light,” Proc. R. Soc.
London 83, 120–127 (1909).
[Crossref]
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” Science 220, 671–680 (1983).
[Crossref]
Malvern Instruments Ltd., “Sample dispersion &
refractive index guide,” http://www.malvern.com/en/support/resource-center/user-manuals/MAN0396EN.aspx (1997).
G. Hoffmann, “CIE color space,” http://docs-hoffmann.de/ciexyz29082000.pdf (2013).
E. D. Palik, Handbook of Optical Constants (Academic, 1985).
J. Kennedy and R. Eberhart, “Particle swarm
optimization,” in IEEE International
Conference on Neural Networks, Perth, Australia (IEEE, 1995), Vol. IV, pp. 1942–1948.
M. Clerc, “A method to improve standard
PSO,” (France Telecom R&D, 2009).
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small
Particles (Wiley, 1998).
M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).
British Museum, “The Lycurgus
Cup,” http://www.britishmuseum.org/explore/highlights/highlight_objects/pe_mla/t/the_lycurgus_cup.aspx (2015).