Abstract

Recent methods based on midlevel visual concepts have shown promising capabilities in the human action recognition field. Automatically discovering semantic entities such as action parts remains challenging. In this paper, we present a method of automatically discovering distinctive midlevel action parts from video for recognition of human actions. We address this problem by learning and selecting a collection of discriminative and representative action part detectors directly from video data. We initially train a large collection of candidate exemplar–linear discriminant analysis detectors from clusters obtained by clustering spatiotemporal patches in whitened space. To select the most effective detectors from the vast array of candidates, we propose novel coverage–entropy curves (CE curves) to evaluate a detector’s capability of distinguishing actions. The CE curves characterize the correlation between the representative and discriminative power of detectors. In the experiments, we apply the mined part detectors as a visual vocabulary to the task of action recognition on four datasets: KTH, Olympic Sports, UCF50, and HMDB51. The experimental results demonstrate the effectiveness of the proposed method and show the state-of-the-art recognition performance.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pixel-level alignment of facial images for high accuracy recognition using ensemble of patches

Hoda Mohammadzade, Amirhossein Sayyafan, and Benyamin Ghojogh
J. Opt. Soc. Am. A 35(7) 1149-1159 (2018)

Thermal-to-visible face recognition using partial least squares

Shuowen Hu, Jonghyun Choi, Alex L. Chan, and William Robson Schwartz
J. Opt. Soc. Am. A 32(3) 431-442 (2015)

Traffic sign recognition method for intelligent vehicles

Ayoub Ellahyani, Mohamed El Ansari, Redouan Lahmyed, and Alain Trémeau
J. Opt. Soc. Am. A 35(11) 1907-1914 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (13)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription