Abstract

Incoming and reflected light waves superimpose to form a standing-wave pattern normal to a reflecting surface. For total internal reflection, a cosine distribution of the electric field amplitude in the denser medium joins onto the exponential distribution of the penetrating field in the rarer medium. The electric field amplitude at the reflecting interface is a maximum at the critical angle and decreases to zero at grazing incidence. In this paper, theoretical expressions are given for the electric field amplitudes, near the surface, which depend both on polarization and on angle of incidence. These expressions enable us to calculate from simple formulas, and without the aid of computers, the reflectivity losses resulting from the interaction of these standing waves with absorbing species, near the surface either in the rarer or denser medium. They also give us physical insight into the nature of the absorption mechanism at the reflecting interface when the reflection is frustrated. This is helpful in the fields of internal reflection optical spectroscopy and fiber optics. Experimental results, which agree with theoretical expectations, are presented. Strongest coupling is obtained by working near the critical angle for either polarization, and the absorption in the rarer medium is greater for parallel polarization than for perpendicular polarization.

© 1965 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light scattering from a random rough interface with total internal reflection

M. Nieto-Vesperinas and J. A. Sánchez-Gil
J. Opt. Soc. Am. A 9(3) 424-436 (1992)

Effects of total internal reflection on the reflectivities of dielectric gratings

D. Maystre and M. Nieto-Vesperinas
J. Opt. Soc. Am. A 9(12) 2218-2222 (1992)

Internal–external reflection sum-frequency generation spectroscopy at an interface

Yarjing J. Yang, Rebecca L. Pizzolatto, and Marie C. Messmer
J. Opt. Soc. Am. B 17(4) 638-645 (2000)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription