Abstract

Alternative formal definitions of perceived color are examined. Both alternative formulations treat the responses evoked by stimulation of a focal test area, but in one case the influence of surrounding stimulation on the primary test area is taken into consideration, whereas this influence is ignored in the other formulation. The consequences of these alternative formulations for predictions of equivalent stimuli and for predictions of color appearance under different circumstances are discussed.

Sensory scaling experiments are reported which yield direct quantitative estimates of the hue, saturation, and brightness attributes of perceived color, and of the dependence of these attributes on variations in focal, surrounding, and preceding stimulation. The relation of some of these dependencies to opponent neural induction mechanisms postulated by the opponent-colors theory is discussed.

© 1959 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Some Quantitative Aspects of an Opponent-Colors Theory. IV. A Psychological Color Specification System

Leo M. Hurvich and Dorothea Jameson
J. Opt. Soc. Am. 46(6) 416-421 (1956)

Opponent Chromatic Induction: Experimental Evaluation and Theoretical Account*

Dorothea Jameson and Leo M. Hurvich
J. Opt. Soc. Am. 51(1) 46-53 (1961)

References

  • View by:
  • |
  • |
  • |

  1. Committee on Colorimetry of the Optical Society of America, The Science of Color (Thomas Y. Crowell Company, New York, 1953), p. 42.
  2. R. Granit, Receptors and Sensory Perception (Yale University Press, New Haven, 1955), Chaps. 2 and 3.
  3. S. W. Kuffler, J. Neurophysiol. 16, 37 (1953).
    [PubMed]
  4. H. K. Hartline, Harvey Lectures 37, 39 (1941/42).
  5. Hartline, Wagner, and Ratliff, J. Gen. Physiol. 39, 651 (1956).
  6. Reference 1, p. 51.
  7. J. V. Kries, Nagel’s Handbuch der Physiologie der Menschen (F. Vieweg, and Son, Brunswick, 1905), Vol. 3, p. 309.
  8. W. L. Brewer, J. Opt. Soc. Am. 44, 207 (1954).
    [Crossref] [PubMed]
  9. D. L. MacAdam, J. Opt. Soc. Am. 46, 500 (1956).
    [Crossref] [PubMed]
  10. J. V. Kries, Nagel’s Handbuch der Physiologie der Menschen (F. Vieweg and Son, Brunswick, 1905), Vol. 3, pp. 211–212.
  11. H. V. Walters, Proc. Roy. Soc. (London) B131, 27 (1942).
    [Crossref]
  12. W. D. Wright, Researches in Normal and Defective Colour Vision (Mosby, St. Louis, 1947), Chap. 21.
  13. L. M. Hurvich and D. Jameson, Paper No. 22, Symposium on Visual Problems, National Physical Laboratory, Teddington, England (September, 1957).
  14. C. Hess and H. Pretori, Arch. Ophthalmol. Graefe’s 40, 1 (1894).
    [Crossref]
  15. L. M. Hurvich and D. Jameson, J. Opt. Soc. Am. 45, 602 (1955).
    [Crossref] [PubMed]
  16. For a discussion of brightness magnitude scales see S. S. Stevens, Science 127, 383 (1958).
    [Crossref] [PubMed]
  17. J. A. F. Plateau, Bull. acad. roy. Belg. 33, 376 (1872).
  18. R. G. Hopkinson, Nature 179, 1026 (1957).
    [Crossref] [PubMed]
  19. For a thorough critique of Fechner’s traditionally accepted logarithmic relation see E. Hering, Sitzber. Akad. Wiss. Wien, Math, naturw. Kl. Abt. III 72, 310 (1876).
  20. S. S. Stevens and E. H. Galanter, J. Exptl. Psychol. 54, 377 (1957).
    [Crossref]
  21. L. M. Hurvich and D. Jameson, J. Opt. Soc. Am. 44, 213 (1954).
    [Crossref] [PubMed]
  22. L. M. Hurvich and D. Jameson, J. Opt. Soc. Am. 41, 787 (1951).
    [Crossref] [PubMed]
  23. E. Mach, Sitzber. Akad. Wiss. Wien, Math, naturw. Kl. Abt. II 52, 303 (1865).
  24. E. Hering, Grundzüge der Lehre von Lichtsinn (Verlag Julius Springer, Berlin, 1920).
    [Crossref]

1958 (1)

For a discussion of brightness magnitude scales see S. S. Stevens, Science 127, 383 (1958).
[Crossref] [PubMed]

1957 (2)

S. S. Stevens and E. H. Galanter, J. Exptl. Psychol. 54, 377 (1957).
[Crossref]

R. G. Hopkinson, Nature 179, 1026 (1957).
[Crossref] [PubMed]

1956 (2)

Hartline, Wagner, and Ratliff, J. Gen. Physiol. 39, 651 (1956).

D. L. MacAdam, J. Opt. Soc. Am. 46, 500 (1956).
[Crossref] [PubMed]

1955 (1)

1954 (2)

1953 (1)

S. W. Kuffler, J. Neurophysiol. 16, 37 (1953).
[PubMed]

1951 (1)

1942 (1)

H. V. Walters, Proc. Roy. Soc. (London) B131, 27 (1942).
[Crossref]

1894 (1)

C. Hess and H. Pretori, Arch. Ophthalmol. Graefe’s 40, 1 (1894).
[Crossref]

1876 (1)

For a thorough critique of Fechner’s traditionally accepted logarithmic relation see E. Hering, Sitzber. Akad. Wiss. Wien, Math, naturw. Kl. Abt. III 72, 310 (1876).

1872 (1)

J. A. F. Plateau, Bull. acad. roy. Belg. 33, 376 (1872).

1865 (1)

E. Mach, Sitzber. Akad. Wiss. Wien, Math, naturw. Kl. Abt. II 52, 303 (1865).

Brewer, W. L.

Galanter, E. H.

S. S. Stevens and E. H. Galanter, J. Exptl. Psychol. 54, 377 (1957).
[Crossref]

Granit, R.

R. Granit, Receptors and Sensory Perception (Yale University Press, New Haven, 1955), Chaps. 2 and 3.

Hartline,

Hartline, Wagner, and Ratliff, J. Gen. Physiol. 39, 651 (1956).

Hartline, H. K.

H. K. Hartline, Harvey Lectures 37, 39 (1941/42).

Hering, E.

For a thorough critique of Fechner’s traditionally accepted logarithmic relation see E. Hering, Sitzber. Akad. Wiss. Wien, Math, naturw. Kl. Abt. III 72, 310 (1876).

E. Hering, Grundzüge der Lehre von Lichtsinn (Verlag Julius Springer, Berlin, 1920).
[Crossref]

Hess, C.

C. Hess and H. Pretori, Arch. Ophthalmol. Graefe’s 40, 1 (1894).
[Crossref]

Hopkinson, R. G.

R. G. Hopkinson, Nature 179, 1026 (1957).
[Crossref] [PubMed]

Hurvich, L. M.

Jameson, D.

Kries, J. V.

J. V. Kries, Nagel’s Handbuch der Physiologie der Menschen (F. Vieweg and Son, Brunswick, 1905), Vol. 3, pp. 211–212.

J. V. Kries, Nagel’s Handbuch der Physiologie der Menschen (F. Vieweg, and Son, Brunswick, 1905), Vol. 3, p. 309.

Kuffler, S. W.

S. W. Kuffler, J. Neurophysiol. 16, 37 (1953).
[PubMed]

MacAdam, D. L.

Mach, E.

E. Mach, Sitzber. Akad. Wiss. Wien, Math, naturw. Kl. Abt. II 52, 303 (1865).

Plateau, J. A. F.

J. A. F. Plateau, Bull. acad. roy. Belg. 33, 376 (1872).

Pretori, H.

C. Hess and H. Pretori, Arch. Ophthalmol. Graefe’s 40, 1 (1894).
[Crossref]

Ratliff,

Hartline, Wagner, and Ratliff, J. Gen. Physiol. 39, 651 (1956).

Stevens, S. S.

For a discussion of brightness magnitude scales see S. S. Stevens, Science 127, 383 (1958).
[Crossref] [PubMed]

S. S. Stevens and E. H. Galanter, J. Exptl. Psychol. 54, 377 (1957).
[Crossref]

Wagner,

Hartline, Wagner, and Ratliff, J. Gen. Physiol. 39, 651 (1956).

Walters, H. V.

H. V. Walters, Proc. Roy. Soc. (London) B131, 27 (1942).
[Crossref]

Wright, W. D.

W. D. Wright, Researches in Normal and Defective Colour Vision (Mosby, St. Louis, 1947), Chap. 21.

Arch. Ophthalmol. Graefe’s (1)

C. Hess and H. Pretori, Arch. Ophthalmol. Graefe’s 40, 1 (1894).
[Crossref]

Bull. acad. roy. Belg. (1)

J. A. F. Plateau, Bull. acad. roy. Belg. 33, 376 (1872).

Harvey Lectures (1)

H. K. Hartline, Harvey Lectures 37, 39 (1941/42).

J. Exptl. Psychol. (1)

S. S. Stevens and E. H. Galanter, J. Exptl. Psychol. 54, 377 (1957).
[Crossref]

J. Gen. Physiol. (1)

Hartline, Wagner, and Ratliff, J. Gen. Physiol. 39, 651 (1956).

J. Neurophysiol. (1)

S. W. Kuffler, J. Neurophysiol. 16, 37 (1953).
[PubMed]

J. Opt. Soc. Am. (5)

Nature (1)

R. G. Hopkinson, Nature 179, 1026 (1957).
[Crossref] [PubMed]

Proc. Roy. Soc. (London) (1)

H. V. Walters, Proc. Roy. Soc. (London) B131, 27 (1942).
[Crossref]

Science (1)

For a discussion of brightness magnitude scales see S. S. Stevens, Science 127, 383 (1958).
[Crossref] [PubMed]

Sitzber. Akad. Wiss. Wien, Math, naturw. Kl. Abt. II (1)

E. Mach, Sitzber. Akad. Wiss. Wien, Math, naturw. Kl. Abt. II 52, 303 (1865).

Sitzber. Akad. Wiss. Wien, Math, naturw. Kl. Abt. III (1)

For a thorough critique of Fechner’s traditionally accepted logarithmic relation see E. Hering, Sitzber. Akad. Wiss. Wien, Math, naturw. Kl. Abt. III 72, 310 (1876).

Other (8)

E. Hering, Grundzüge der Lehre von Lichtsinn (Verlag Julius Springer, Berlin, 1920).
[Crossref]

W. D. Wright, Researches in Normal and Defective Colour Vision (Mosby, St. Louis, 1947), Chap. 21.

L. M. Hurvich and D. Jameson, Paper No. 22, Symposium on Visual Problems, National Physical Laboratory, Teddington, England (September, 1957).

J. V. Kries, Nagel’s Handbuch der Physiologie der Menschen (F. Vieweg and Son, Brunswick, 1905), Vol. 3, pp. 211–212.

Committee on Colorimetry of the Optical Society of America, The Science of Color (Thomas Y. Crowell Company, New York, 1953), p. 42.

R. Granit, Receptors and Sensory Perception (Yale University Press, New Haven, 1955), Chaps. 2 and 3.

Reference 1, p. 51.

J. V. Kries, Nagel’s Handbuch der Physiologie der Menschen (F. Vieweg, and Son, Brunswick, 1905), Vol. 3, p. 309.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

F. 1
F. 1 Spectral saturation scales. Test stimuli: 30 mL. Upper graph: chromaticity coordinates of surround stimulus, x = 0.21, y = 0.37; 30 mL. Lower graph: chromaticity coordinates of surround stimulus, x = 0.71, y = 0.29; 30 mL. Observer J.
F. 2
F. 2 Spectral saturation scales. Chromaticity coordinates of surround stimulus, x = 0.21, y = 0.37; 30 mL. Upper graph: test stimuli, 30 mL. Lower graph: test stimuli, 15 mL. Observer H.
F. 3
F. 3 Spectral saturation scales. Chromaticity coordinates of surround stimulus, x = 0.71, y = 0.29; 30 mL. Upper graph: test stimuli, 30 mL. Lower graph: test stimuli, 15 mL. Observer H.
F. 4
F. 4 Spectral hue scales. Test stimuli: 30 mL. Solid circles: chromaticity coordinates of surround stimulus, x = 0.21, y = 0.37; 30 mL. Open triangles: chromaticity coordinates of surround stimulus, x = 0.71, y = 0.29; 30 mL. Upper graph: green (—) and red (---) hue components. Lower graph: blue (---) and yellow (—) hue components. Observer K.
F. 5
F. 5 Spectral hue scales. Chromaticity coordinates of surround stimulus, x = 0.71, y = 0.29; 30 mL. Open triangles: test stimuli, 30 mL. Open circles: test stimuli, 3 mL. Upper graph: green (—) and red (---) hue components. Lower graph: blue (—) and yellow (—) hue components. Observer K.
F. 6
F. 6 Brightness scales. Test stimuli: 650 mμ. Chromaticity coordinates of surround stimulus: x = 0.71, y = 0.29. Circles with vertical bars: surround luminance = 3 mL. Triangles: surround luminance = 30 mL. See text.
F. 7
F. 7 Alternative predictions for brightness vs luminance relations. See text.
F. 8
F. 8 Brightness scales. Chromaticity coordinates of surround stimulus: x = 0.71, y = 0.29; 30 mL. Triangles: test stimuli, 650 mμ. Open circles: test stimuli, 500 mμ. See text.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

C = f [ Σ ( e λ χ λ ) , Σ ( e λ ψ λ ) , Σ ( e λ Ω λ ) ] .
C = f [ Σ ( e λ χ λ ) , Σ ( e λ ψ λ ) , Σ ( e λ Ω λ ) ] + I .
Σ ( e λ χ λ ) = Σ ( e λ χ λ ) , Σ ( e λ ψ λ ) = Σ ( e λ ψ λ ) ,
Σ ( e λ Ω λ ) = Σ ( e λ Ω λ ) .
f [ Σ ( e λ χ λ ) , Σ ( e λ ψ λ ) , Σ ( e λ Ω λ ) ] = f [ Σ ( e λ χ λ ) , Σ ( e λ ψ λ ) , Σ ( e λ Ω λ ) ]
f [ Σ ( e λ χ λ ) , Σ ( e λ ψ λ ) , Σ ( e λ Ω λ ) ] + I = f [ Σ ( e λ χ λ ) , Σ ( e λ ψ λ ) , Σ ( e λ Ω λ ) ] + I .
f [ Σ ( q e λ χ λ ) , Σ ( q e λ ψ λ ) , Σ ( q e λ Ω λ ) ] = f [ Σ ( q e χ λ ) , Σ ( q e λ ψ λ ) , Σ ( q e λ Ω λ ) ]
f [ Σ ( q e λ χ λ ) , Σ ( q e λ ψ λ ) , Σ ( q e λ Ω λ ) ] + I = f [ Σ ( q e λ χ λ ) , Σ ( q e λ ψ λ ) , Σ ( q e λ Ω λ ) ] + I .
χ λ = k 1 χ λ , ψ λ = k 2 ψ λ , Ω λ = k 3 Ω λ ,
f [ Σ ( q e λ k 1 χ λ ) , Σ ( q e λ k 2 ψ λ ) , Σ ( q e λ k 3 Ω λ ) ] = f [ Σ ( q e λ k 1 χ λ ) , Σ ( q e λ k 2 ψ λ ) , Σ ( q e λ k 3 Ω λ ) ]
f [ Σ ( q e λ k 1 χ λ ) , Σ ( q e λ k 2 ψ λ ) , Σ ( q e λ k 3 Ω λ ) ] + I = f [ Σ ( q e λ k 1 χ λ ) , Σ ( q e λ k 2 ψ λ ) , Σ ( q e λ k 3 Ω λ ) ] + I .
e λ χ λ = e k 1 χ λ , e λ ψ λ = e λ k 2 ψ λ , and e λ Ω λ = e λ k 3 Ω λ ,
f [ Σ ( e λ χ λ ) , Σ ( e λ ψ λ ) , Σ ( e λ Ω λ ) ] = f [ Σ ( e λ k 1 χ λ ) , Σ ( e k 2 ψ λ ) , Σ ( e λ k 3 Ω λ ) ] .
f [ Σ ( e λ χ λ ) , Σ ( e λ ψ λ ) , Σ ( e λ Ω λ ) ] + I = f [ Σ ( e λ k 1 χ λ ) , Σ ( e k 2 ψ λ ) , Σ ( e k 3 Ω λ ) ] + I .
f [ Σ ( q e λ χ λ ) , Σ ( q e λ ψ λ ) , Σ ( q e λ Ω λ ) ] = f [ Σ ( q e λ k 1 χ λ ) , Σ ( q e λ k 2 ψ λ ) , Σ ( q e λ k 3 Ω λ ) ] .
f [ Σ ( q e λ χ λ ) , Σ ( q e λ ψ λ ) , Σ ( q e λ Ω λ ) ] + I f [ Σ ( q e k 1 χ λ ) , Σ ( q e λ k 2 ψ λ ) , Σ ( q e λ k 3 Ω λ ) ] + I .
C = f [ Σ ( e λ χ λ ) , Σ ( e λ ψ λ ) , Σ ( e λ Ω λ ) ]
C = f [ ( r g ) t + ( r g ) i , ( y b ) t + ( y b ) i , ( w b k ) t + ( w b k ) i ] .