## Abstract

In our recently published paper (J. Opt. Commun. Netw. , vol.  9, no. 2, p. 138, 2017 [CrossRef]  ), the following errors need to be corrected.

© 2017 Optical Society of America

• View by:
• |
• |
• |

### Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

### Equations (9)

$Mean ( y 1 ) = { ϵ 1 ϕ 1 ( 1 + ϵ 1 ) bit 1 ϕ 1 Threshold ϕ 1 ( 1 + ϵ 1 ) bit 0 .$
$Var ( y 1 ) = σ n , 1 2 + [ exp ( 4 σ h , 1 2 ) − 1 ] × { ( 2 ϵ 1 ϕ 1 ( 1 + ϵ 1 ) ) 2 bit 1 ( ϕ 1 ) 2 Threshold ( 2 ϕ 1 ( 1 + ϵ 1 ) ) 2 bit 0 .$
$Mean ( Y ) = { 2 ϵ 1 ϕ 1 ( 1 + ϵ 1 ) − 2 ϕ 2 ( 1 + ϵ 2 ) bit 1 ϕ 1 − ϕ 2 Threshold 2 ϕ 1 ( 1 + ϵ 1 ) − 2 ϵ 2 ϕ 2 ( 1 + ϵ 2 ) bit 0 .$
$Var ( y 1 ) = σ n , 1 2 + σ n , 2 2 + [ exp ( 4 σ h , 1 2 ) − 1 ] × { ( 2 ϵ 1 ϕ 1 ( 1 + ϵ 1 ) ) 2 + ( 2 ϕ 2 ( 1 + ϵ 2 ) ) 2 − 2 ρ 1 , 2 4 ϵ 1 ϕ 1 ϕ 2 ( 1 + ϵ 1 ) ( 1 + ϵ 2 ) bit 1 ( ϕ 1 ) 2 + ( ϕ 2 ) 2 − 2 ρ 1 , 2 ϕ 1 ϕ 2 Threshold ( 2 ϕ 1 ( 1 + ϵ 1 ) ) 2 + ( 2 ϵ 2 ϕ 2 ( 1 + ϵ 2 ) ) 2 − 2 ρ 1 , 2 4 ϵ 2 ϕ 1 ϕ 2 ( 1 + ϵ 1 ) ( 1 + ϵ 2 ) bit 0 .$
$Var ( Y TL ) = 2 [ exp ( 4 σ h , 1 2 ) − 1 ] ( ϕ 1 ) 2 ( 1 − ρ 1,2 ) + σ n , 1 2 + σ n , 2 2 .$
$Mean ( Y bit 0 ) = 2 ϕ 1 [ 1 ( 1 + ϵ 1 ) − ϵ 2 ( 1 + ϵ 2 ) ] .$
$Mean ( Y bit 1 ) = 2 ϕ 1 [ ϵ 1 ( 1 + ϵ 1 ) − 1 ( 1 + ϵ 2 ) ] .$
$Var ( Y bit 0 ) = 4 [ exp ( 4 σ h , 1 2 ) − 1 ] ( ϕ 1 ) 2 [ ( 1 ( 1 + ϵ 1 ) ) 2 + ( ϵ 2 ( 1 + ϵ 2 ) ) 2 − 2 ρ 1,2 ϵ 2 ( 1 + ϵ 1 ) ( 1 + ϵ 2 ) ] + σ n , 1 2 + σ n , 2 2 .$
$Var ( Y bit 1 ) = 4 [ exp ( 4 σ h , 1 2 ) − 1 ] ( ϕ 1 ) 2 [ ( ϵ 1 ( 1 + ϵ 1 ) ) 2 + ( 1 ( 1 + ϵ 2 ) ) 2 − 2 ρ 1,2 ϵ 1 ( 1 + ϵ 1 ) ( 1 + ϵ 2 ) ] + σ n , 1 2 + σ n , 2 2 .$