Abstract

This study has investigated the potential of near infrared (NIR) spectroscopy to predict the content of moisture, protein, fat and gluten in rice cookies in different sample forms (intact and milled samples). Gluten-free (n = 48) and gluten (n = 48) rice cookies were formulated with brown and white rice flours in which butter was substituted with fat replacer at 0, 15, 30 and 45%. With regard to gluten cookies, rice flour was substituted with wheat gluten at 1, 3 and 5%. Partial least squares regression modeling produced models with coefficient of determination (R2) values greater than 0.88 from NIR spectra of intact samples and greater than 0.92 for milled samples. These models were able to predict the four components with a ratio of prediction to deviation greater than 2.7 and 3.8 in intact and milled samples, respectively. The results suggest that the models obtained from the intact samples can be successfully applied for chemical composition of rice cookies and are reliable enough use for potential quality control programs.

© 2017 The Author(s)

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription