Abstract

The effect of temperature-dependent electroluminescence (EL) on nitride-based light-emitting diodes (LEDs) with different thicknesses of quantum barrier are studied and demonstrated. It was found that quantum confined stark effect (QCSE) of 6-nm thick barrier was more slightly than that of 9- and 12-nm thick barrier. The results indicated that the polarization field is independent of ambient temperature due to no clearly change of blue-shift value. The results also pointed out that the polarization field within the active region of 12-nm thick barrier was stronger than the others due to larger variation of the wavelength transition position (i.e. blue-shift change to red-shift) from 300 to 350 K, and thus it needed more injection carriers to complete the screening of QCSE. In this study, we reported a simple method to provide useful comparison of electrostatic fields within active region in nitride-based LEDs, specifically for structures consisting of identical active regions with different barrier thicknesses.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription