Abstract

In this work, an amorphous silicon (a-Si:H) thin-film transistor (TFT) circuit designed for charging of intermediary energy storage devices using photovoltaic (PV) solar cell arrays is demonstrated and analyzed. The proposed circuit combines the functionality of a linear DC–DC voltage regulator and a maximum power point tracking unit (MPPT). The circuit reduces the dependence of the charging voltage on light intensity and offers relatively stable operation when electrically stressed. The effects of light intensity and the PV array size on the system and circuit efficiencies as well as on PV utilization are investigated. A peak system efficiency of 18% is demonstrated. Although this is significantly lower than state-of-the-art switch mode DC-DC voltage regulator and MPPTs, the combined use of thin-film technology and low fabrication temperatures (below 150 °C allow its integration within a wide range of mobile devices, making it an attractive solution for energy harvesting systems.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription