Abstract

Spinal cord tumors are complicated and infrequent, which poses a major challenge to surgeons during neurosurgery. Currently, the intraoperative identification of the tissues’ pathological properties is usually difficult for surgeons. This issue influences the decision-making in treatment planning. Traditional pathological diagnoses can facilitate judging the tissues’ properties, but the diagnosis process is complex and time-consuming. In this study, we evaluated the potential of autofluorescence spectroscopy for the fast pathological diagnosis of specific spinal cord tumors. The spectral properties of six types of spinal cord tumors were acquired ex vivo. Several peak intensity ratios were calculated for classification and then associated with the pathological immunohistochemical indexes. Our results revealed the spectral properties of three types of intramedullary tumors different from those of the other three types of extramedullary tumors. Furthermore, some peak intensity ratios revealed a high correlation with the immunohistochemical index of glial fibrillary acidic protein (GFAP). Thus, we believe that autofluorescence spectroscopy has the potential to provide real-time pathological information of spinal cord tumors and help surgeons validate tumor types and perform precise tumor resection.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescence lifetime spectroscopy of tissue autofluorescence in normal and diseased colon measured ex vivo using a fiber-optic probe

Sergio Coda, Alex J. Thompson, Gordon T. Kennedy, Kim L. Roche, Lakshmana Ayaru, Devinder S. Bansi, Gordon W. Stamp, Andrew V. Thillainayagam, Paul M. W. French, and Chris Dunsby
Biomed. Opt. Express 5(2) 515-538 (2014)

Prostate cancer detection using combined auto-fluorescence and light reflectance spectroscopy: ex vivo study of human prostates

Vikrant Sharma, Ephrem O. Olweny, Payal Kapur, Jeffrey A. Cadeddu, Claus G. Roehrborn, and Hanli Liu
Biomed. Opt. Express 5(5) 1512-1529 (2014)

Near-infrared autofluorescence spectroscopy of in vivo soft tissue sarcomas

John Quan Nguyen, Zain Gowani, Maggie O’Connor, Isaac Pence, The-Quyen Nguyen, Ginger Holt, and Anita Mahadevan-Jansen
Opt. Lett. 40(23) 5498-5501 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Espina, M. Porta, J. Schüz, I. H. Aguado, R. V. Percival, C. Dora, T. Slevin, J. R. Guzman, T. Meredith, P. J. Landrigan, and M. Neira, “Environmental and occupational interventions for primary prevention of cancer: a cross-sectorial policy framework,” Environ. Health Perspect. 121(4), 420–426 (2013).
    [PubMed]
  2. Y. Li, R. Rey-Dios, D. W. Roberts, P. A. Valdés, and A. A. Cohen-Gadol, “Intraoperative fluorescence-guided resection of high-grade gliomas: a comparison of the present techniques and evolution of future strategies,” World Neurosurg. 82(1-2), 175–185 (2014).
    [Crossref] [PubMed]
  3. C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
    [Crossref] [PubMed]
  4. P. A. Valdés, D. W. Roberts, F.-K. Lu, and A. Golby, “Optical technologies for intraoperative neurosurgical guidance,” Neurosurg. Focus 40(3), E8 (2016).
    [Crossref] [PubMed]
  5. T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol. 28(1), 43–51 (2011).
    [Crossref] [PubMed]
  6. H. Liao, M. Noguchi, T. Maruyama, Y. Muragaki, E. Kobayashi, H. Iseki, and I. Sakuma, “An integrated diagnosis and therapeutic system using intra-operative 5-aminolevulinic-acid-induced fluorescence guided robotic laser ablation for precision neurosurgery,” Med. Image Anal. 16(3), 754–766 (2012).
    [Crossref] [PubMed]
  7. H. Liao, K. Fujiwara, T. Ando, T. Maruyama, E. Kobayashi, Y. Muragaki, H. Iseki, and I. Sakuma, “Automatic laser scanning ablation system for high-precision treatment of brain tumors,” Lasers Med. Sci. 28(3), 891–900 (2013).
    [Crossref] [PubMed]
  8. W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H.-J. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
    [Crossref] [PubMed]
  9. S. Shimizu, S. Utsuki, K. Sato, H. Oka, K. Fujii, and K. Mii, “Photodynamic diagnosis in surgery for spinal ependymoma. case illustration,” J. Neurosurg. Spine 5(4), 380 (2006).
    [Crossref] [PubMed]
  10. C. Ewelt, W. Stummer, B. Klink, J. Felsberg, H. J. Steiger, and M. Sabel, “Cordectomy as final treatment option for diffuse intramedullary malignant glioma using 5-ALA fluorescence-guided resection,” Clin. Neurol. Neurosurg. 112(4), 357–361 (2010).
    [Crossref] [PubMed]
  11. M. Rapp, M. Klingenhöfer, J. Felsberg, H. J. Steiger, W. Stummer, and M. Sabel, “Fluorescence-guided resection of spinal metastases of malignant glioma: report of 2 cases,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 73(2), 103–105 (2012).
    [Crossref] [PubMed]
  12. T. Inoue, T. Endo, K. Nagamatsu, M. Watanabe, and T. Tominaga, “5-aminolevulinic acid fluorescence-guided resection of intramedullary ependymoma: report of 9 cases,” Neurosurgery 72(2), ons159 (2013).
    [PubMed]
  13. M. Millesi, B. Kiesel, A. Woehrer, J. A. Hainfellner, K. Novak, M. Martínez-Moreno, S. Wolfsberger, E. Knosp, and G. Widhalm, “Analysis of 5-aminolevulinic acid-induced fluorescence in 55 different spinal tumors,” Neurosurg. Focus 36(2), E11 (2014).
    [Crossref] [PubMed]
  14. K. Vishwanath and N. Ramanujam, “Fluorescence spectroscopy in vivo,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley & Sons Ltd. 2006).
  15. A. C. Croce and G. Bottiroli, “Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis,” Eur. J. Histochem. 58(4), 2461 (2014).
    [Crossref] [PubMed]
  16. W.-C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, “Brain tumor demarcation using optical spectroscopy; an in vitro study,” J. Biomed. Opt. 5(2), 214–220 (2000).
    [Crossref] [PubMed]
  17. A. Saraswathy, R. S. Jayasree, K. V. Baiju, A. K. Gupta, and V. P. Pillai, “Optimum wavelength for the differentiation of brain tumor tissue using autofluorescence spectroscopy,” Photomed. Laser Surg. 27(3), 425–433 (2009).
    [Crossref] [PubMed]
  18. A. C. Croce, U. De Simone, I. Freitas, E. Boncompagni, D. Neri, U. Cillo, and G. Bottiroli, “Human liver autofluorescence: an intrinsic tissue parameter discriminating normal and diseased conditions,” Lasers Surg. Med. 42(5), 371–378 (2010).
    [Crossref] [PubMed]
  19. W. Zheng, W. Lau, C. Cheng, K. C. Soo, and M. Olivo, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104(4), 477–481 (2003).
    [Crossref] [PubMed]
  20. B.-H. Li and S.-S. Xie, “Autofluorescence excitation-emission matrices for diagnosis of colonic cancer,” World J. Gastroenterol. 11(25), 3931–3934 (2005).
    [Crossref] [PubMed]
  21. L. F. Eng, R. S. Ghirnikar, and Y. L. Lee, “Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000),” Neurochem. Res. 25(9/10), 1439–1451 (2000).
    [Crossref] [PubMed]
  22. A. C. Croce, S. Fiorani, D. Locatelli, R. Nano, M. Ceroni, F. Tancioni, E. Giombelli, E. Benericetti, and G. Bottiroli, “Diagnostic potential of autofluorescence for an assisted intraoperative delineation of glioblastoma resection margins,” Photochem. Photobiol. 77(3), 309–318 (2003).
    [Crossref] [PubMed]
  23. Y. G. Chung, J. A. Schwartz, C. M. Gardner, R. E. Sawaya, and S. L. Jacques, “Diagnostic potential of laser-induced autofluorescence emission in brain tissue,” J. Korean Med. Sci. 12(2), 135–142 (1997).
    [Crossref] [PubMed]
  24. M. Stoeckli, P. Chaurand, D. E. Hallahan, and R. M. Caprioli, “Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues,” Nat. Med. 7(4), 493–496 (2001).
    [Crossref] [PubMed]
  25. L. S. Eberlin, I. Norton, D. Orringer, I. F. Dunn, X. Liu, J. L. Ide, A. K. Jarmusch, K. L. Ligon, F. A. Jolesz, A. J. Golby, S. Santagata, N. Y. Agar, and R. G. Cooks, “Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors,” Proc. Natl. Acad. Sci. U.S.A. 110(5), 1611–1616 (2013).
    [Crossref] [PubMed]
  26. J. Q. Nguyen, Z. Gowani, M. O’Connor, I. Pence, T. Q. Nguyen, G. Holt, and A. Mahadevan-Jansen, “Near-infrared autofluorescence spectroscopy of in vivo soft tissue sarcomas,” Opt. Lett. 40(23), 5498–5501 (2015).
    [Crossref] [PubMed]
  27. T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
    [Crossref] [PubMed]
  28. T. Zhou, T. Ando, K. Nakagawa, H. Liao, E. Kobayashi, and I. Sakuma, “Localizing fluorophore (centroid) inside a scattering medium by depth perturbation,” J. Biomed. Opt. 20(1), 017003 (2015).
    [Crossref] [PubMed]
  29. H. Liao, T. Inomata, I. Sakuma, and T. Dohi, “3-D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay,” IEEE Trans. Biomed. Eng. 57(6), 1476–1486 (2010).
    [Crossref] [PubMed]
  30. Y. Fan, Y. Sun, W. Chang, X. Zhang, J. Tang, L. Zhang, and H. Liao, “Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden in a mouse model,” Theranostics 8(15), 4072–4085 (2018).
  31. H. Liao, “Integrated diagnostic and therapeutic techniques: Toward an intelligent medical system,” Comput. Med. Imaging Graph. 38(5), 421–422 (2014).
    [Crossref] [PubMed]

2018 (1)

Y. Fan, Y. Sun, W. Chang, X. Zhang, J. Tang, L. Zhang, and H. Liao, “Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden in a mouse model,” Theranostics 8(15), 4072–4085 (2018).

2016 (1)

P. A. Valdés, D. W. Roberts, F.-K. Lu, and A. Golby, “Optical technologies for intraoperative neurosurgical guidance,” Neurosurg. Focus 40(3), E8 (2016).
[Crossref] [PubMed]

2015 (2)

T. Zhou, T. Ando, K. Nakagawa, H. Liao, E. Kobayashi, and I. Sakuma, “Localizing fluorophore (centroid) inside a scattering medium by depth perturbation,” J. Biomed. Opt. 20(1), 017003 (2015).
[Crossref] [PubMed]

J. Q. Nguyen, Z. Gowani, M. O’Connor, I. Pence, T. Q. Nguyen, G. Holt, and A. Mahadevan-Jansen, “Near-infrared autofluorescence spectroscopy of in vivo soft tissue sarcomas,” Opt. Lett. 40(23), 5498–5501 (2015).
[Crossref] [PubMed]

2014 (5)

H. Liao, “Integrated diagnostic and therapeutic techniques: Toward an intelligent medical system,” Comput. Med. Imaging Graph. 38(5), 421–422 (2014).
[Crossref] [PubMed]

Y. Li, R. Rey-Dios, D. W. Roberts, P. A. Valdés, and A. A. Cohen-Gadol, “Intraoperative fluorescence-guided resection of high-grade gliomas: a comparison of the present techniques and evolution of future strategies,” World Neurosurg. 82(1-2), 175–185 (2014).
[Crossref] [PubMed]

C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
[Crossref] [PubMed]

M. Millesi, B. Kiesel, A. Woehrer, J. A. Hainfellner, K. Novak, M. Martínez-Moreno, S. Wolfsberger, E. Knosp, and G. Widhalm, “Analysis of 5-aminolevulinic acid-induced fluorescence in 55 different spinal tumors,” Neurosurg. Focus 36(2), E11 (2014).
[Crossref] [PubMed]

A. C. Croce and G. Bottiroli, “Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis,” Eur. J. Histochem. 58(4), 2461 (2014).
[Crossref] [PubMed]

2013 (4)

T. Inoue, T. Endo, K. Nagamatsu, M. Watanabe, and T. Tominaga, “5-aminolevulinic acid fluorescence-guided resection of intramedullary ependymoma: report of 9 cases,” Neurosurgery 72(2), ons159 (2013).
[PubMed]

C. Espina, M. Porta, J. Schüz, I. H. Aguado, R. V. Percival, C. Dora, T. Slevin, J. R. Guzman, T. Meredith, P. J. Landrigan, and M. Neira, “Environmental and occupational interventions for primary prevention of cancer: a cross-sectorial policy framework,” Environ. Health Perspect. 121(4), 420–426 (2013).
[PubMed]

H. Liao, K. Fujiwara, T. Ando, T. Maruyama, E. Kobayashi, Y. Muragaki, H. Iseki, and I. Sakuma, “Automatic laser scanning ablation system for high-precision treatment of brain tumors,” Lasers Med. Sci. 28(3), 891–900 (2013).
[Crossref] [PubMed]

L. S. Eberlin, I. Norton, D. Orringer, I. F. Dunn, X. Liu, J. L. Ide, A. K. Jarmusch, K. L. Ligon, F. A. Jolesz, A. J. Golby, S. Santagata, N. Y. Agar, and R. G. Cooks, “Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors,” Proc. Natl. Acad. Sci. U.S.A. 110(5), 1611–1616 (2013).
[Crossref] [PubMed]

2012 (2)

H. Liao, M. Noguchi, T. Maruyama, Y. Muragaki, E. Kobayashi, H. Iseki, and I. Sakuma, “An integrated diagnosis and therapeutic system using intra-operative 5-aminolevulinic-acid-induced fluorescence guided robotic laser ablation for precision neurosurgery,” Med. Image Anal. 16(3), 754–766 (2012).
[Crossref] [PubMed]

M. Rapp, M. Klingenhöfer, J. Felsberg, H. J. Steiger, W. Stummer, and M. Sabel, “Fluorescence-guided resection of spinal metastases of malignant glioma: report of 2 cases,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 73(2), 103–105 (2012).
[Crossref] [PubMed]

2011 (1)

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol. 28(1), 43–51 (2011).
[Crossref] [PubMed]

2010 (3)

C. Ewelt, W. Stummer, B. Klink, J. Felsberg, H. J. Steiger, and M. Sabel, “Cordectomy as final treatment option for diffuse intramedullary malignant glioma using 5-ALA fluorescence-guided resection,” Clin. Neurol. Neurosurg. 112(4), 357–361 (2010).
[Crossref] [PubMed]

A. C. Croce, U. De Simone, I. Freitas, E. Boncompagni, D. Neri, U. Cillo, and G. Bottiroli, “Human liver autofluorescence: an intrinsic tissue parameter discriminating normal and diseased conditions,” Lasers Surg. Med. 42(5), 371–378 (2010).
[Crossref] [PubMed]

H. Liao, T. Inomata, I. Sakuma, and T. Dohi, “3-D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay,” IEEE Trans. Biomed. Eng. 57(6), 1476–1486 (2010).
[Crossref] [PubMed]

2009 (1)

A. Saraswathy, R. S. Jayasree, K. V. Baiju, A. K. Gupta, and V. P. Pillai, “Optimum wavelength for the differentiation of brain tumor tissue using autofluorescence spectroscopy,” Photomed. Laser Surg. 27(3), 425–433 (2009).
[Crossref] [PubMed]

2007 (1)

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[Crossref] [PubMed]

2006 (2)

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H.-J. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

S. Shimizu, S. Utsuki, K. Sato, H. Oka, K. Fujii, and K. Mii, “Photodynamic diagnosis in surgery for spinal ependymoma. case illustration,” J. Neurosurg. Spine 5(4), 380 (2006).
[Crossref] [PubMed]

2005 (1)

B.-H. Li and S.-S. Xie, “Autofluorescence excitation-emission matrices for diagnosis of colonic cancer,” World J. Gastroenterol. 11(25), 3931–3934 (2005).
[Crossref] [PubMed]

2003 (2)

A. C. Croce, S. Fiorani, D. Locatelli, R. Nano, M. Ceroni, F. Tancioni, E. Giombelli, E. Benericetti, and G. Bottiroli, “Diagnostic potential of autofluorescence for an assisted intraoperative delineation of glioblastoma resection margins,” Photochem. Photobiol. 77(3), 309–318 (2003).
[Crossref] [PubMed]

W. Zheng, W. Lau, C. Cheng, K. C. Soo, and M. Olivo, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104(4), 477–481 (2003).
[Crossref] [PubMed]

2001 (1)

M. Stoeckli, P. Chaurand, D. E. Hallahan, and R. M. Caprioli, “Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues,” Nat. Med. 7(4), 493–496 (2001).
[Crossref] [PubMed]

2000 (2)

L. F. Eng, R. S. Ghirnikar, and Y. L. Lee, “Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000),” Neurochem. Res. 25(9/10), 1439–1451 (2000).
[Crossref] [PubMed]

W.-C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, “Brain tumor demarcation using optical spectroscopy; an in vitro study,” J. Biomed. Opt. 5(2), 214–220 (2000).
[Crossref] [PubMed]

1997 (1)

Y. G. Chung, J. A. Schwartz, C. M. Gardner, R. E. Sawaya, and S. L. Jacques, “Diagnostic potential of laser-induced autofluorescence emission in brain tissue,” J. Korean Med. Sci. 12(2), 135–142 (1997).
[Crossref] [PubMed]

Agar, N. Y.

L. S. Eberlin, I. Norton, D. Orringer, I. F. Dunn, X. Liu, J. L. Ide, A. K. Jarmusch, K. L. Ligon, F. A. Jolesz, A. J. Golby, S. Santagata, N. Y. Agar, and R. G. Cooks, “Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors,” Proc. Natl. Acad. Sci. U.S.A. 110(5), 1611–1616 (2013).
[Crossref] [PubMed]

Aguado, I. H.

C. Espina, M. Porta, J. Schüz, I. H. Aguado, R. V. Percival, C. Dora, T. Slevin, J. R. Guzman, T. Meredith, P. J. Landrigan, and M. Neira, “Environmental and occupational interventions for primary prevention of cancer: a cross-sectorial policy framework,” Environ. Health Perspect. 121(4), 420–426 (2013).
[PubMed]

Andersson-Engels, S.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[Crossref] [PubMed]

Ando, T.

T. Zhou, T. Ando, K. Nakagawa, H. Liao, E. Kobayashi, and I. Sakuma, “Localizing fluorophore (centroid) inside a scattering medium by depth perturbation,” J. Biomed. Opt. 20(1), 017003 (2015).
[Crossref] [PubMed]

H. Liao, K. Fujiwara, T. Ando, T. Maruyama, E. Kobayashi, Y. Muragaki, H. Iseki, and I. Sakuma, “Automatic laser scanning ablation system for high-precision treatment of brain tumors,” Lasers Med. Sci. 28(3), 891–900 (2013).
[Crossref] [PubMed]

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol. 28(1), 43–51 (2011).
[Crossref] [PubMed]

Baiju, K. V.

A. Saraswathy, R. S. Jayasree, K. V. Baiju, A. K. Gupta, and V. P. Pillai, “Optimum wavelength for the differentiation of brain tumor tissue using autofluorescence spectroscopy,” Photomed. Laser Surg. 27(3), 425–433 (2009).
[Crossref] [PubMed]

Benericetti, E.

A. C. Croce, S. Fiorani, D. Locatelli, R. Nano, M. Ceroni, F. Tancioni, E. Giombelli, E. Benericetti, and G. Bottiroli, “Diagnostic potential of autofluorescence for an assisted intraoperative delineation of glioblastoma resection margins,” Photochem. Photobiol. 77(3), 309–318 (2003).
[Crossref] [PubMed]

Boncompagni, E.

A. C. Croce, U. De Simone, I. Freitas, E. Boncompagni, D. Neri, U. Cillo, and G. Bottiroli, “Human liver autofluorescence: an intrinsic tissue parameter discriminating normal and diseased conditions,” Lasers Surg. Med. 42(5), 371–378 (2010).
[Crossref] [PubMed]

Bottiroli, G.

A. C. Croce and G. Bottiroli, “Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis,” Eur. J. Histochem. 58(4), 2461 (2014).
[Crossref] [PubMed]

A. C. Croce, U. De Simone, I. Freitas, E. Boncompagni, D. Neri, U. Cillo, and G. Bottiroli, “Human liver autofluorescence: an intrinsic tissue parameter discriminating normal and diseased conditions,” Lasers Surg. Med. 42(5), 371–378 (2010).
[Crossref] [PubMed]

A. C. Croce, S. Fiorani, D. Locatelli, R. Nano, M. Ceroni, F. Tancioni, E. Giombelli, E. Benericetti, and G. Bottiroli, “Diagnostic potential of autofluorescence for an assisted intraoperative delineation of glioblastoma resection margins,” Photochem. Photobiol. 77(3), 309–318 (2003).
[Crossref] [PubMed]

Caprioli, R. M.

M. Stoeckli, P. Chaurand, D. E. Hallahan, and R. M. Caprioli, “Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues,” Nat. Med. 7(4), 493–496 (2001).
[Crossref] [PubMed]

Ceroni, M.

A. C. Croce, S. Fiorani, D. Locatelli, R. Nano, M. Ceroni, F. Tancioni, E. Giombelli, E. Benericetti, and G. Bottiroli, “Diagnostic potential of autofluorescence for an assisted intraoperative delineation of glioblastoma resection margins,” Photochem. Photobiol. 77(3), 309–318 (2003).
[Crossref] [PubMed]

Chang, W.

Y. Fan, Y. Sun, W. Chang, X. Zhang, J. Tang, L. Zhang, and H. Liao, “Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden in a mouse model,” Theranostics 8(15), 4072–4085 (2018).

Chaurand, P.

M. Stoeckli, P. Chaurand, D. E. Hallahan, and R. M. Caprioli, “Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues,” Nat. Med. 7(4), 493–496 (2001).
[Crossref] [PubMed]

Chen, X.

C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
[Crossref] [PubMed]

Cheng, C.

W. Zheng, W. Lau, C. Cheng, K. C. Soo, and M. Olivo, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104(4), 477–481 (2003).
[Crossref] [PubMed]

Chi, C.

C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
[Crossref] [PubMed]

Chung, Y. G.

Y. G. Chung, J. A. Schwartz, C. M. Gardner, R. E. Sawaya, and S. L. Jacques, “Diagnostic potential of laser-induced autofluorescence emission in brain tissue,” J. Korean Med. Sci. 12(2), 135–142 (1997).
[Crossref] [PubMed]

Cillo, U.

A. C. Croce, U. De Simone, I. Freitas, E. Boncompagni, D. Neri, U. Cillo, and G. Bottiroli, “Human liver autofluorescence: an intrinsic tissue parameter discriminating normal and diseased conditions,” Lasers Surg. Med. 42(5), 371–378 (2010).
[Crossref] [PubMed]

Cohen-Gadol, A. A.

Y. Li, R. Rey-Dios, D. W. Roberts, P. A. Valdés, and A. A. Cohen-Gadol, “Intraoperative fluorescence-guided resection of high-grade gliomas: a comparison of the present techniques and evolution of future strategies,” World Neurosurg. 82(1-2), 175–185 (2014).
[Crossref] [PubMed]

Cooks, R. G.

L. S. Eberlin, I. Norton, D. Orringer, I. F. Dunn, X. Liu, J. L. Ide, A. K. Jarmusch, K. L. Ligon, F. A. Jolesz, A. J. Golby, S. Santagata, N. Y. Agar, and R. G. Cooks, “Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors,” Proc. Natl. Acad. Sci. U.S.A. 110(5), 1611–1616 (2013).
[Crossref] [PubMed]

Croce, A. C.

A. C. Croce and G. Bottiroli, “Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis,” Eur. J. Histochem. 58(4), 2461 (2014).
[Crossref] [PubMed]

A. C. Croce, U. De Simone, I. Freitas, E. Boncompagni, D. Neri, U. Cillo, and G. Bottiroli, “Human liver autofluorescence: an intrinsic tissue parameter discriminating normal and diseased conditions,” Lasers Surg. Med. 42(5), 371–378 (2010).
[Crossref] [PubMed]

A. C. Croce, S. Fiorani, D. Locatelli, R. Nano, M. Ceroni, F. Tancioni, E. Giombelli, E. Benericetti, and G. Bottiroli, “Diagnostic potential of autofluorescence for an assisted intraoperative delineation of glioblastoma resection margins,” Photochem. Photobiol. 77(3), 309–318 (2003).
[Crossref] [PubMed]

De Simone, U.

A. C. Croce, U. De Simone, I. Freitas, E. Boncompagni, D. Neri, U. Cillo, and G. Bottiroli, “Human liver autofluorescence: an intrinsic tissue parameter discriminating normal and diseased conditions,” Lasers Surg. Med. 42(5), 371–378 (2010).
[Crossref] [PubMed]

Dohi, T.

H. Liao, T. Inomata, I. Sakuma, and T. Dohi, “3-D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay,” IEEE Trans. Biomed. Eng. 57(6), 1476–1486 (2010).
[Crossref] [PubMed]

Dora, C.

C. Espina, M. Porta, J. Schüz, I. H. Aguado, R. V. Percival, C. Dora, T. Slevin, J. R. Guzman, T. Meredith, P. J. Landrigan, and M. Neira, “Environmental and occupational interventions for primary prevention of cancer: a cross-sectorial policy framework,” Environ. Health Perspect. 121(4), 420–426 (2013).
[PubMed]

Du, Y.

C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
[Crossref] [PubMed]

Dunn, I. F.

L. S. Eberlin, I. Norton, D. Orringer, I. F. Dunn, X. Liu, J. L. Ide, A. K. Jarmusch, K. L. Ligon, F. A. Jolesz, A. J. Golby, S. Santagata, N. Y. Agar, and R. G. Cooks, “Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors,” Proc. Natl. Acad. Sci. U.S.A. 110(5), 1611–1616 (2013).
[Crossref] [PubMed]

Eberlin, L. S.

L. S. Eberlin, I. Norton, D. Orringer, I. F. Dunn, X. Liu, J. L. Ide, A. K. Jarmusch, K. L. Ligon, F. A. Jolesz, A. J. Golby, S. Santagata, N. Y. Agar, and R. G. Cooks, “Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors,” Proc. Natl. Acad. Sci. U.S.A. 110(5), 1611–1616 (2013).
[Crossref] [PubMed]

Einarsdóttír, M.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[Crossref] [PubMed]

Endo, T.

T. Inoue, T. Endo, K. Nagamatsu, M. Watanabe, and T. Tominaga, “5-aminolevulinic acid fluorescence-guided resection of intramedullary ependymoma: report of 9 cases,” Neurosurgery 72(2), ons159 (2013).
[PubMed]

Eng, L. F.

L. F. Eng, R. S. Ghirnikar, and Y. L. Lee, “Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000),” Neurochem. Res. 25(9/10), 1439–1451 (2000).
[Crossref] [PubMed]

Espina, C.

C. Espina, M. Porta, J. Schüz, I. H. Aguado, R. V. Percival, C. Dora, T. Slevin, J. R. Guzman, T. Meredith, P. J. Landrigan, and M. Neira, “Environmental and occupational interventions for primary prevention of cancer: a cross-sectorial policy framework,” Environ. Health Perspect. 121(4), 420–426 (2013).
[PubMed]

Ewelt, C.

C. Ewelt, W. Stummer, B. Klink, J. Felsberg, H. J. Steiger, and M. Sabel, “Cordectomy as final treatment option for diffuse intramedullary malignant glioma using 5-ALA fluorescence-guided resection,” Clin. Neurol. Neurosurg. 112(4), 357–361 (2010).
[Crossref] [PubMed]

Fan, Y.

Y. Fan, Y. Sun, W. Chang, X. Zhang, J. Tang, L. Zhang, and H. Liao, “Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden in a mouse model,” Theranostics 8(15), 4072–4085 (2018).

Felsberg, J.

M. Rapp, M. Klingenhöfer, J. Felsberg, H. J. Steiger, W. Stummer, and M. Sabel, “Fluorescence-guided resection of spinal metastases of malignant glioma: report of 2 cases,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 73(2), 103–105 (2012).
[Crossref] [PubMed]

C. Ewelt, W. Stummer, B. Klink, J. Felsberg, H. J. Steiger, and M. Sabel, “Cordectomy as final treatment option for diffuse intramedullary malignant glioma using 5-ALA fluorescence-guided resection,” Clin. Neurol. Neurosurg. 112(4), 357–361 (2010).
[Crossref] [PubMed]

Fiorani, S.

A. C. Croce, S. Fiorani, D. Locatelli, R. Nano, M. Ceroni, F. Tancioni, E. Giombelli, E. Benericetti, and G. Bottiroli, “Diagnostic potential of autofluorescence for an assisted intraoperative delineation of glioblastoma resection margins,” Photochem. Photobiol. 77(3), 309–318 (2003).
[Crossref] [PubMed]

Freitas, I.

A. C. Croce, U. De Simone, I. Freitas, E. Boncompagni, D. Neri, U. Cillo, and G. Bottiroli, “Human liver autofluorescence: an intrinsic tissue parameter discriminating normal and diseased conditions,” Lasers Surg. Med. 42(5), 371–378 (2010).
[Crossref] [PubMed]

Fujii, K.

S. Shimizu, S. Utsuki, K. Sato, H. Oka, K. Fujii, and K. Mii, “Photodynamic diagnosis in surgery for spinal ependymoma. case illustration,” J. Neurosurg. Spine 5(4), 380 (2006).
[Crossref] [PubMed]

Fujiwara, K.

H. Liao, K. Fujiwara, T. Ando, T. Maruyama, E. Kobayashi, Y. Muragaki, H. Iseki, and I. Sakuma, “Automatic laser scanning ablation system for high-precision treatment of brain tumors,” Lasers Med. Sci. 28(3), 891–900 (2013).
[Crossref] [PubMed]

Gardner, C. M.

Y. G. Chung, J. A. Schwartz, C. M. Gardner, R. E. Sawaya, and S. L. Jacques, “Diagnostic potential of laser-induced autofluorescence emission in brain tissue,” J. Korean Med. Sci. 12(2), 135–142 (1997).
[Crossref] [PubMed]

Ghirnikar, R. S.

L. F. Eng, R. S. Ghirnikar, and Y. L. Lee, “Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000),” Neurochem. Res. 25(9/10), 1439–1451 (2000).
[Crossref] [PubMed]

Giombelli, E.

A. C. Croce, S. Fiorani, D. Locatelli, R. Nano, M. Ceroni, F. Tancioni, E. Giombelli, E. Benericetti, and G. Bottiroli, “Diagnostic potential of autofluorescence for an assisted intraoperative delineation of glioblastoma resection margins,” Photochem. Photobiol. 77(3), 309–318 (2003).
[Crossref] [PubMed]

Golby, A.

P. A. Valdés, D. W. Roberts, F.-K. Lu, and A. Golby, “Optical technologies for intraoperative neurosurgical guidance,” Neurosurg. Focus 40(3), E8 (2016).
[Crossref] [PubMed]

Golby, A. J.

L. S. Eberlin, I. Norton, D. Orringer, I. F. Dunn, X. Liu, J. L. Ide, A. K. Jarmusch, K. L. Ligon, F. A. Jolesz, A. J. Golby, S. Santagata, N. Y. Agar, and R. G. Cooks, “Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors,” Proc. Natl. Acad. Sci. U.S.A. 110(5), 1611–1616 (2013).
[Crossref] [PubMed]

Gowani, Z.

Gupta, A. K.

A. Saraswathy, R. S. Jayasree, K. V. Baiju, A. K. Gupta, and V. P. Pillai, “Optimum wavelength for the differentiation of brain tumor tissue using autofluorescence spectroscopy,” Photomed. Laser Surg. 27(3), 425–433 (2009).
[Crossref] [PubMed]

Guzman, J. R.

C. Espina, M. Porta, J. Schüz, I. H. Aguado, R. V. Percival, C. Dora, T. Slevin, J. R. Guzman, T. Meredith, P. J. Landrigan, and M. Neira, “Environmental and occupational interventions for primary prevention of cancer: a cross-sectorial policy framework,” Environ. Health Perspect. 121(4), 420–426 (2013).
[PubMed]

Hainfellner, J. A.

M. Millesi, B. Kiesel, A. Woehrer, J. A. Hainfellner, K. Novak, M. Martínez-Moreno, S. Wolfsberger, E. Knosp, and G. Widhalm, “Analysis of 5-aminolevulinic acid-induced fluorescence in 55 different spinal tumors,” Neurosurg. Focus 36(2), E11 (2014).
[Crossref] [PubMed]

Hallahan, D. E.

M. Stoeckli, P. Chaurand, D. E. Hallahan, and R. M. Caprioli, “Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues,” Nat. Med. 7(4), 493–496 (2001).
[Crossref] [PubMed]

Holt, G.

Ide, J. L.

L. S. Eberlin, I. Norton, D. Orringer, I. F. Dunn, X. Liu, J. L. Ide, A. K. Jarmusch, K. L. Ligon, F. A. Jolesz, A. J. Golby, S. Santagata, N. Y. Agar, and R. G. Cooks, “Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors,” Proc. Natl. Acad. Sci. U.S.A. 110(5), 1611–1616 (2013).
[Crossref] [PubMed]

Inomata, T.

H. Liao, T. Inomata, I. Sakuma, and T. Dohi, “3-D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay,” IEEE Trans. Biomed. Eng. 57(6), 1476–1486 (2010).
[Crossref] [PubMed]

Inoue, T.

T. Inoue, T. Endo, K. Nagamatsu, M. Watanabe, and T. Tominaga, “5-aminolevulinic acid fluorescence-guided resection of intramedullary ependymoma: report of 9 cases,” Neurosurgery 72(2), ons159 (2013).
[PubMed]

Iseki, H.

H. Liao, K. Fujiwara, T. Ando, T. Maruyama, E. Kobayashi, Y. Muragaki, H. Iseki, and I. Sakuma, “Automatic laser scanning ablation system for high-precision treatment of brain tumors,” Lasers Med. Sci. 28(3), 891–900 (2013).
[Crossref] [PubMed]

H. Liao, M. Noguchi, T. Maruyama, Y. Muragaki, E. Kobayashi, H. Iseki, and I. Sakuma, “An integrated diagnosis and therapeutic system using intra-operative 5-aminolevulinic-acid-induced fluorescence guided robotic laser ablation for precision neurosurgery,” Med. Image Anal. 16(3), 754–766 (2012).
[Crossref] [PubMed]

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol. 28(1), 43–51 (2011).
[Crossref] [PubMed]

Jacques, S. L.

Y. G. Chung, J. A. Schwartz, C. M. Gardner, R. E. Sawaya, and S. L. Jacques, “Diagnostic potential of laser-induced autofluorescence emission in brain tissue,” J. Korean Med. Sci. 12(2), 135–142 (1997).
[Crossref] [PubMed]

Jansen, E. D.

W.-C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, “Brain tumor demarcation using optical spectroscopy; an in vitro study,” J. Biomed. Opt. 5(2), 214–220 (2000).
[Crossref] [PubMed]

Jarmusch, A. K.

L. S. Eberlin, I. Norton, D. Orringer, I. F. Dunn, X. Liu, J. L. Ide, A. K. Jarmusch, K. L. Ligon, F. A. Jolesz, A. J. Golby, S. Santagata, N. Y. Agar, and R. G. Cooks, “Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors,” Proc. Natl. Acad. Sci. U.S.A. 110(5), 1611–1616 (2013).
[Crossref] [PubMed]

Jayasree, R. S.

A. Saraswathy, R. S. Jayasree, K. V. Baiju, A. K. Gupta, and V. P. Pillai, “Optimum wavelength for the differentiation of brain tumor tissue using autofluorescence spectroscopy,” Photomed. Laser Surg. 27(3), 425–433 (2009).
[Crossref] [PubMed]

Jolesz, F. A.

L. S. Eberlin, I. Norton, D. Orringer, I. F. Dunn, X. Liu, J. L. Ide, A. K. Jarmusch, K. L. Ligon, F. A. Jolesz, A. J. Golby, S. Santagata, N. Y. Agar, and R. G. Cooks, “Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors,” Proc. Natl. Acad. Sci. U.S.A. 110(5), 1611–1616 (2013).
[Crossref] [PubMed]

Kiesel, B.

M. Millesi, B. Kiesel, A. Woehrer, J. A. Hainfellner, K. Novak, M. Martínez-Moreno, S. Wolfsberger, E. Knosp, and G. Widhalm, “Analysis of 5-aminolevulinic acid-induced fluorescence in 55 different spinal tumors,” Neurosurg. Focus 36(2), E11 (2014).
[Crossref] [PubMed]

Klingenhöfer, M.

M. Rapp, M. Klingenhöfer, J. Felsberg, H. J. Steiger, W. Stummer, and M. Sabel, “Fluorescence-guided resection of spinal metastases of malignant glioma: report of 2 cases,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 73(2), 103–105 (2012).
[Crossref] [PubMed]

Klink, B.

C. Ewelt, W. Stummer, B. Klink, J. Felsberg, H. J. Steiger, and M. Sabel, “Cordectomy as final treatment option for diffuse intramedullary malignant glioma using 5-ALA fluorescence-guided resection,” Clin. Neurol. Neurosurg. 112(4), 357–361 (2010).
[Crossref] [PubMed]

Knosp, E.

M. Millesi, B. Kiesel, A. Woehrer, J. A. Hainfellner, K. Novak, M. Martínez-Moreno, S. Wolfsberger, E. Knosp, and G. Widhalm, “Analysis of 5-aminolevulinic acid-induced fluorescence in 55 different spinal tumors,” Neurosurg. Focus 36(2), E11 (2014).
[Crossref] [PubMed]

Kobayashi, E.

T. Zhou, T. Ando, K. Nakagawa, H. Liao, E. Kobayashi, and I. Sakuma, “Localizing fluorophore (centroid) inside a scattering medium by depth perturbation,” J. Biomed. Opt. 20(1), 017003 (2015).
[Crossref] [PubMed]

H. Liao, K. Fujiwara, T. Ando, T. Maruyama, E. Kobayashi, Y. Muragaki, H. Iseki, and I. Sakuma, “Automatic laser scanning ablation system for high-precision treatment of brain tumors,” Lasers Med. Sci. 28(3), 891–900 (2013).
[Crossref] [PubMed]

H. Liao, M. Noguchi, T. Maruyama, Y. Muragaki, E. Kobayashi, H. Iseki, and I. Sakuma, “An integrated diagnosis and therapeutic system using intra-operative 5-aminolevulinic-acid-induced fluorescence guided robotic laser ablation for precision neurosurgery,” Med. Image Anal. 16(3), 754–766 (2012).
[Crossref] [PubMed]

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol. 28(1), 43–51 (2011).
[Crossref] [PubMed]

Kou, D.

C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
[Crossref] [PubMed]

Kubo, O.

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol. 28(1), 43–51 (2011).
[Crossref] [PubMed]

Landrigan, P. J.

C. Espina, M. Porta, J. Schüz, I. H. Aguado, R. V. Percival, C. Dora, T. Slevin, J. R. Guzman, T. Meredith, P. J. Landrigan, and M. Neira, “Environmental and occupational interventions for primary prevention of cancer: a cross-sectorial policy framework,” Environ. Health Perspect. 121(4), 420–426 (2013).
[PubMed]

Lau, W.

W. Zheng, W. Lau, C. Cheng, K. C. Soo, and M. Olivo, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104(4), 477–481 (2003).
[Crossref] [PubMed]

Lee, Y. L.

L. F. Eng, R. S. Ghirnikar, and Y. L. Lee, “Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000),” Neurochem. Res. 25(9/10), 1439–1451 (2000).
[Crossref] [PubMed]

Li, B.-H.

B.-H. Li and S.-S. Xie, “Autofluorescence excitation-emission matrices for diagnosis of colonic cancer,” World J. Gastroenterol. 11(25), 3931–3934 (2005).
[Crossref] [PubMed]

Li, Y.

Y. Li, R. Rey-Dios, D. W. Roberts, P. A. Valdés, and A. A. Cohen-Gadol, “Intraoperative fluorescence-guided resection of high-grade gliomas: a comparison of the present techniques and evolution of future strategies,” World Neurosurg. 82(1-2), 175–185 (2014).
[Crossref] [PubMed]

Liao, H.

Y. Fan, Y. Sun, W. Chang, X. Zhang, J. Tang, L. Zhang, and H. Liao, “Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden in a mouse model,” Theranostics 8(15), 4072–4085 (2018).

T. Zhou, T. Ando, K. Nakagawa, H. Liao, E. Kobayashi, and I. Sakuma, “Localizing fluorophore (centroid) inside a scattering medium by depth perturbation,” J. Biomed. Opt. 20(1), 017003 (2015).
[Crossref] [PubMed]

H. Liao, “Integrated diagnostic and therapeutic techniques: Toward an intelligent medical system,” Comput. Med. Imaging Graph. 38(5), 421–422 (2014).
[Crossref] [PubMed]

H. Liao, K. Fujiwara, T. Ando, T. Maruyama, E. Kobayashi, Y. Muragaki, H. Iseki, and I. Sakuma, “Automatic laser scanning ablation system for high-precision treatment of brain tumors,” Lasers Med. Sci. 28(3), 891–900 (2013).
[Crossref] [PubMed]

H. Liao, M. Noguchi, T. Maruyama, Y. Muragaki, E. Kobayashi, H. Iseki, and I. Sakuma, “An integrated diagnosis and therapeutic system using intra-operative 5-aminolevulinic-acid-induced fluorescence guided robotic laser ablation for precision neurosurgery,” Med. Image Anal. 16(3), 754–766 (2012).
[Crossref] [PubMed]

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol. 28(1), 43–51 (2011).
[Crossref] [PubMed]

H. Liao, T. Inomata, I. Sakuma, and T. Dohi, “3-D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay,” IEEE Trans. Biomed. Eng. 57(6), 1476–1486 (2010).
[Crossref] [PubMed]

Ligon, K. L.

L. S. Eberlin, I. Norton, D. Orringer, I. F. Dunn, X. Liu, J. L. Ide, A. K. Jarmusch, K. L. Ligon, F. A. Jolesz, A. J. Golby, S. Santagata, N. Y. Agar, and R. G. Cooks, “Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors,” Proc. Natl. Acad. Sci. U.S.A. 110(5), 1611–1616 (2013).
[Crossref] [PubMed]

Lin, W.-C.

W.-C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, “Brain tumor demarcation using optical spectroscopy; an in vitro study,” J. Biomed. Opt. 5(2), 214–220 (2000).
[Crossref] [PubMed]

Liu, X.

L. S. Eberlin, I. Norton, D. Orringer, I. F. Dunn, X. Liu, J. L. Ide, A. K. Jarmusch, K. L. Ligon, F. A. Jolesz, A. J. Golby, S. Santagata, N. Y. Agar, and R. G. Cooks, “Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors,” Proc. Natl. Acad. Sci. U.S.A. 110(5), 1611–1616 (2013).
[Crossref] [PubMed]

Locatelli, D.

A. C. Croce, S. Fiorani, D. Locatelli, R. Nano, M. Ceroni, F. Tancioni, E. Giombelli, E. Benericetti, and G. Bottiroli, “Diagnostic potential of autofluorescence for an assisted intraoperative delineation of glioblastoma resection margins,” Photochem. Photobiol. 77(3), 309–318 (2003).
[Crossref] [PubMed]

Lu, F.-K.

P. A. Valdés, D. W. Roberts, F.-K. Lu, and A. Golby, “Optical technologies for intraoperative neurosurgical guidance,” Neurosurg. Focus 40(3), E8 (2016).
[Crossref] [PubMed]

Mahadevan-Jansen, A.

J. Q. Nguyen, Z. Gowani, M. O’Connor, I. Pence, T. Q. Nguyen, G. Holt, and A. Mahadevan-Jansen, “Near-infrared autofluorescence spectroscopy of in vivo soft tissue sarcomas,” Opt. Lett. 40(23), 5498–5501 (2015).
[Crossref] [PubMed]

W.-C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, “Brain tumor demarcation using optical spectroscopy; an in vitro study,” J. Biomed. Opt. 5(2), 214–220 (2000).
[Crossref] [PubMed]

Martínez-Moreno, M.

M. Millesi, B. Kiesel, A. Woehrer, J. A. Hainfellner, K. Novak, M. Martínez-Moreno, S. Wolfsberger, E. Knosp, and G. Widhalm, “Analysis of 5-aminolevulinic acid-induced fluorescence in 55 different spinal tumors,” Neurosurg. Focus 36(2), E11 (2014).
[Crossref] [PubMed]

Maruyama, T.

H. Liao, K. Fujiwara, T. Ando, T. Maruyama, E. Kobayashi, Y. Muragaki, H. Iseki, and I. Sakuma, “Automatic laser scanning ablation system for high-precision treatment of brain tumors,” Lasers Med. Sci. 28(3), 891–900 (2013).
[Crossref] [PubMed]

H. Liao, M. Noguchi, T. Maruyama, Y. Muragaki, E. Kobayashi, H. Iseki, and I. Sakuma, “An integrated diagnosis and therapeutic system using intra-operative 5-aminolevulinic-acid-induced fluorescence guided robotic laser ablation for precision neurosurgery,” Med. Image Anal. 16(3), 754–766 (2012).
[Crossref] [PubMed]

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol. 28(1), 43–51 (2011).
[Crossref] [PubMed]

Meinel, T.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H.-J. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Meredith, T.

C. Espina, M. Porta, J. Schüz, I. H. Aguado, R. V. Percival, C. Dora, T. Slevin, J. R. Guzman, T. Meredith, P. J. Landrigan, and M. Neira, “Environmental and occupational interventions for primary prevention of cancer: a cross-sectorial policy framework,” Environ. Health Perspect. 121(4), 420–426 (2013).
[PubMed]

Mii, K.

S. Shimizu, S. Utsuki, K. Sato, H. Oka, K. Fujii, and K. Mii, “Photodynamic diagnosis in surgery for spinal ependymoma. case illustration,” J. Neurosurg. Spine 5(4), 380 (2006).
[Crossref] [PubMed]

Millesi, M.

M. Millesi, B. Kiesel, A. Woehrer, J. A. Hainfellner, K. Novak, M. Martínez-Moreno, S. Wolfsberger, E. Knosp, and G. Widhalm, “Analysis of 5-aminolevulinic acid-induced fluorescence in 55 different spinal tumors,” Neurosurg. Focus 36(2), E11 (2014).
[Crossref] [PubMed]

Motamedi, M.

W.-C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, “Brain tumor demarcation using optical spectroscopy; an in vitro study,” J. Biomed. Opt. 5(2), 214–220 (2000).
[Crossref] [PubMed]

Muragaki, Y.

H. Liao, K. Fujiwara, T. Ando, T. Maruyama, E. Kobayashi, Y. Muragaki, H. Iseki, and I. Sakuma, “Automatic laser scanning ablation system for high-precision treatment of brain tumors,” Lasers Med. Sci. 28(3), 891–900 (2013).
[Crossref] [PubMed]

H. Liao, M. Noguchi, T. Maruyama, Y. Muragaki, E. Kobayashi, H. Iseki, and I. Sakuma, “An integrated diagnosis and therapeutic system using intra-operative 5-aminolevulinic-acid-induced fluorescence guided robotic laser ablation for precision neurosurgery,” Med. Image Anal. 16(3), 754–766 (2012).
[Crossref] [PubMed]

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol. 28(1), 43–51 (2011).
[Crossref] [PubMed]

Nagamatsu, K.

T. Inoue, T. Endo, K. Nagamatsu, M. Watanabe, and T. Tominaga, “5-aminolevulinic acid fluorescence-guided resection of intramedullary ependymoma: report of 9 cases,” Neurosurgery 72(2), ons159 (2013).
[PubMed]

Nakagawa, K.

T. Zhou, T. Ando, K. Nakagawa, H. Liao, E. Kobayashi, and I. Sakuma, “Localizing fluorophore (centroid) inside a scattering medium by depth perturbation,” J. Biomed. Opt. 20(1), 017003 (2015).
[Crossref] [PubMed]

Nano, R.

A. C. Croce, S. Fiorani, D. Locatelli, R. Nano, M. Ceroni, F. Tancioni, E. Giombelli, E. Benericetti, and G. Bottiroli, “Diagnostic potential of autofluorescence for an assisted intraoperative delineation of glioblastoma resection margins,” Photochem. Photobiol. 77(3), 309–318 (2003).
[Crossref] [PubMed]

Neira, M.

C. Espina, M. Porta, J. Schüz, I. H. Aguado, R. V. Percival, C. Dora, T. Slevin, J. R. Guzman, T. Meredith, P. J. Landrigan, and M. Neira, “Environmental and occupational interventions for primary prevention of cancer: a cross-sectorial policy framework,” Environ. Health Perspect. 121(4), 420–426 (2013).
[PubMed]

Neri, D.

A. C. Croce, U. De Simone, I. Freitas, E. Boncompagni, D. Neri, U. Cillo, and G. Bottiroli, “Human liver autofluorescence: an intrinsic tissue parameter discriminating normal and diseased conditions,” Lasers Surg. Med. 42(5), 371–378 (2010).
[Crossref] [PubMed]

Nguyen, J. Q.

Nguyen, T. Q.

Noguchi, M.

H. Liao, M. Noguchi, T. Maruyama, Y. Muragaki, E. Kobayashi, H. Iseki, and I. Sakuma, “An integrated diagnosis and therapeutic system using intra-operative 5-aminolevulinic-acid-induced fluorescence guided robotic laser ablation for precision neurosurgery,” Med. Image Anal. 16(3), 754–766 (2012).
[Crossref] [PubMed]

Norton, I.

L. S. Eberlin, I. Norton, D. Orringer, I. F. Dunn, X. Liu, J. L. Ide, A. K. Jarmusch, K. L. Ligon, F. A. Jolesz, A. J. Golby, S. Santagata, N. Y. Agar, and R. G. Cooks, “Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors,” Proc. Natl. Acad. Sci. U.S.A. 110(5), 1611–1616 (2013).
[Crossref] [PubMed]

Novak, K.

M. Millesi, B. Kiesel, A. Woehrer, J. A. Hainfellner, K. Novak, M. Martínez-Moreno, S. Wolfsberger, E. Knosp, and G. Widhalm, “Analysis of 5-aminolevulinic acid-induced fluorescence in 55 different spinal tumors,” Neurosurg. Focus 36(2), E11 (2014).
[Crossref] [PubMed]

O’Connor, M.

Oka, H.

S. Shimizu, S. Utsuki, K. Sato, H. Oka, K. Fujii, and K. Mii, “Photodynamic diagnosis in surgery for spinal ependymoma. case illustration,” J. Neurosurg. Spine 5(4), 380 (2006).
[Crossref] [PubMed]

Olivo, M.

W. Zheng, W. Lau, C. Cheng, K. C. Soo, and M. Olivo, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104(4), 477–481 (2003).
[Crossref] [PubMed]

Orringer, D.

L. S. Eberlin, I. Norton, D. Orringer, I. F. Dunn, X. Liu, J. L. Ide, A. K. Jarmusch, K. L. Ligon, F. A. Jolesz, A. J. Golby, S. Santagata, N. Y. Agar, and R. G. Cooks, “Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors,” Proc. Natl. Acad. Sci. U.S.A. 110(5), 1611–1616 (2013).
[Crossref] [PubMed]

Pence, I.

Percival, R. V.

C. Espina, M. Porta, J. Schüz, I. H. Aguado, R. V. Percival, C. Dora, T. Slevin, J. R. Guzman, T. Meredith, P. J. Landrigan, and M. Neira, “Environmental and occupational interventions for primary prevention of cancer: a cross-sectorial policy framework,” Environ. Health Perspect. 121(4), 420–426 (2013).
[PubMed]

Pichlmeier, U.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H.-J. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Pillai, V. P.

A. Saraswathy, R. S. Jayasree, K. V. Baiju, A. K. Gupta, and V. P. Pillai, “Optimum wavelength for the differentiation of brain tumor tissue using autofluorescence spectroscopy,” Photomed. Laser Surg. 27(3), 425–433 (2009).
[Crossref] [PubMed]

Porta, M.

C. Espina, M. Porta, J. Schüz, I. H. Aguado, R. V. Percival, C. Dora, T. Slevin, J. R. Guzman, T. Meredith, P. J. Landrigan, and M. Neira, “Environmental and occupational interventions for primary prevention of cancer: a cross-sectorial policy framework,” Environ. Health Perspect. 121(4), 420–426 (2013).
[PubMed]

Qiu, J.

C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
[Crossref] [PubMed]

Rapp, M.

M. Rapp, M. Klingenhöfer, J. Felsberg, H. J. Steiger, W. Stummer, and M. Sabel, “Fluorescence-guided resection of spinal metastases of malignant glioma: report of 2 cases,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 73(2), 103–105 (2012).
[Crossref] [PubMed]

Reulen, H.-J.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H.-J. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Rey-Dios, R.

Y. Li, R. Rey-Dios, D. W. Roberts, P. A. Valdés, and A. A. Cohen-Gadol, “Intraoperative fluorescence-guided resection of high-grade gliomas: a comparison of the present techniques and evolution of future strategies,” World Neurosurg. 82(1-2), 175–185 (2014).
[Crossref] [PubMed]

Roberts, D. W.

P. A. Valdés, D. W. Roberts, F.-K. Lu, and A. Golby, “Optical technologies for intraoperative neurosurgical guidance,” Neurosurg. Focus 40(3), E8 (2016).
[Crossref] [PubMed]

Y. Li, R. Rey-Dios, D. W. Roberts, P. A. Valdés, and A. A. Cohen-Gadol, “Intraoperative fluorescence-guided resection of high-grade gliomas: a comparison of the present techniques and evolution of future strategies,” World Neurosurg. 82(1-2), 175–185 (2014).
[Crossref] [PubMed]

Sabel, M.

M. Rapp, M. Klingenhöfer, J. Felsberg, H. J. Steiger, W. Stummer, and M. Sabel, “Fluorescence-guided resection of spinal metastases of malignant glioma: report of 2 cases,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 73(2), 103–105 (2012).
[Crossref] [PubMed]

C. Ewelt, W. Stummer, B. Klink, J. Felsberg, H. J. Steiger, and M. Sabel, “Cordectomy as final treatment option for diffuse intramedullary malignant glioma using 5-ALA fluorescence-guided resection,” Clin. Neurol. Neurosurg. 112(4), 357–361 (2010).
[Crossref] [PubMed]

Sakuma, I.

T. Zhou, T. Ando, K. Nakagawa, H. Liao, E. Kobayashi, and I. Sakuma, “Localizing fluorophore (centroid) inside a scattering medium by depth perturbation,” J. Biomed. Opt. 20(1), 017003 (2015).
[Crossref] [PubMed]

H. Liao, K. Fujiwara, T. Ando, T. Maruyama, E. Kobayashi, Y. Muragaki, H. Iseki, and I. Sakuma, “Automatic laser scanning ablation system for high-precision treatment of brain tumors,” Lasers Med. Sci. 28(3), 891–900 (2013).
[Crossref] [PubMed]

H. Liao, M. Noguchi, T. Maruyama, Y. Muragaki, E. Kobayashi, H. Iseki, and I. Sakuma, “An integrated diagnosis and therapeutic system using intra-operative 5-aminolevulinic-acid-induced fluorescence guided robotic laser ablation for precision neurosurgery,” Med. Image Anal. 16(3), 754–766 (2012).
[Crossref] [PubMed]

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol. 28(1), 43–51 (2011).
[Crossref] [PubMed]

H. Liao, T. Inomata, I. Sakuma, and T. Dohi, “3-D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay,” IEEE Trans. Biomed. Eng. 57(6), 1476–1486 (2010).
[Crossref] [PubMed]

Santagata, S.

L. S. Eberlin, I. Norton, D. Orringer, I. F. Dunn, X. Liu, J. L. Ide, A. K. Jarmusch, K. L. Ligon, F. A. Jolesz, A. J. Golby, S. Santagata, N. Y. Agar, and R. G. Cooks, “Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors,” Proc. Natl. Acad. Sci. U.S.A. 110(5), 1611–1616 (2013).
[Crossref] [PubMed]

Saraswathy, A.

A. Saraswathy, R. S. Jayasree, K. V. Baiju, A. K. Gupta, and V. P. Pillai, “Optimum wavelength for the differentiation of brain tumor tissue using autofluorescence spectroscopy,” Photomed. Laser Surg. 27(3), 425–433 (2009).
[Crossref] [PubMed]

Sato, K.

S. Shimizu, S. Utsuki, K. Sato, H. Oka, K. Fujii, and K. Mii, “Photodynamic diagnosis in surgery for spinal ependymoma. case illustration,” J. Neurosurg. Spine 5(4), 380 (2006).
[Crossref] [PubMed]

Sawaya, R. E.

Y. G. Chung, J. A. Schwartz, C. M. Gardner, R. E. Sawaya, and S. L. Jacques, “Diagnostic potential of laser-induced autofluorescence emission in brain tissue,” J. Korean Med. Sci. 12(2), 135–142 (1997).
[Crossref] [PubMed]

Schüz, J.

C. Espina, M. Porta, J. Schüz, I. H. Aguado, R. V. Percival, C. Dora, T. Slevin, J. R. Guzman, T. Meredith, P. J. Landrigan, and M. Neira, “Environmental and occupational interventions for primary prevention of cancer: a cross-sectorial policy framework,” Environ. Health Perspect. 121(4), 420–426 (2013).
[PubMed]

Schwartz, J. A.

Y. G. Chung, J. A. Schwartz, C. M. Gardner, R. E. Sawaya, and S. L. Jacques, “Diagnostic potential of laser-induced autofluorescence emission in brain tissue,” J. Korean Med. Sci. 12(2), 135–142 (1997).
[Crossref] [PubMed]

Shimizu, S.

S. Shimizu, S. Utsuki, K. Sato, H. Oka, K. Fujii, and K. Mii, “Photodynamic diagnosis in surgery for spinal ependymoma. case illustration,” J. Neurosurg. Spine 5(4), 380 (2006).
[Crossref] [PubMed]

Slevin, T.

C. Espina, M. Porta, J. Schüz, I. H. Aguado, R. V. Percival, C. Dora, T. Slevin, J. R. Guzman, T. Meredith, P. J. Landrigan, and M. Neira, “Environmental and occupational interventions for primary prevention of cancer: a cross-sectorial policy framework,” Environ. Health Perspect. 121(4), 420–426 (2013).
[PubMed]

Soo, K. C.

W. Zheng, W. Lau, C. Cheng, K. C. Soo, and M. Olivo, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104(4), 477–481 (2003).
[Crossref] [PubMed]

Steiger, H. J.

M. Rapp, M. Klingenhöfer, J. Felsberg, H. J. Steiger, W. Stummer, and M. Sabel, “Fluorescence-guided resection of spinal metastases of malignant glioma: report of 2 cases,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 73(2), 103–105 (2012).
[Crossref] [PubMed]

C. Ewelt, W. Stummer, B. Klink, J. Felsberg, H. J. Steiger, and M. Sabel, “Cordectomy as final treatment option for diffuse intramedullary malignant glioma using 5-ALA fluorescence-guided resection,” Clin. Neurol. Neurosurg. 112(4), 357–361 (2010).
[Crossref] [PubMed]

Stoeckli, M.

M. Stoeckli, P. Chaurand, D. E. Hallahan, and R. M. Caprioli, “Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues,” Nat. Med. 7(4), 493–496 (2001).
[Crossref] [PubMed]

Stummer, W.

M. Rapp, M. Klingenhöfer, J. Felsberg, H. J. Steiger, W. Stummer, and M. Sabel, “Fluorescence-guided resection of spinal metastases of malignant glioma: report of 2 cases,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 73(2), 103–105 (2012).
[Crossref] [PubMed]

C. Ewelt, W. Stummer, B. Klink, J. Felsberg, H. J. Steiger, and M. Sabel, “Cordectomy as final treatment option for diffuse intramedullary malignant glioma using 5-ALA fluorescence-guided resection,” Clin. Neurol. Neurosurg. 112(4), 357–361 (2010).
[Crossref] [PubMed]

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H.-J. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Sun, Y.

Y. Fan, Y. Sun, W. Chang, X. Zhang, J. Tang, L. Zhang, and H. Liao, “Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden in a mouse model,” Theranostics 8(15), 4072–4085 (2018).

Svanberg, K.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[Crossref] [PubMed]

Svensson, T.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[Crossref] [PubMed]

Tancioni, F.

A. C. Croce, S. Fiorani, D. Locatelli, R. Nano, M. Ceroni, F. Tancioni, E. Giombelli, E. Benericetti, and G. Bottiroli, “Diagnostic potential of autofluorescence for an assisted intraoperative delineation of glioblastoma resection margins,” Photochem. Photobiol. 77(3), 309–318 (2003).
[Crossref] [PubMed]

Tang, J.

Y. Fan, Y. Sun, W. Chang, X. Zhang, J. Tang, L. Zhang, and H. Liao, “Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden in a mouse model,” Theranostics 8(15), 4072–4085 (2018).

Tian, J.

C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
[Crossref] [PubMed]

Tominaga, T.

T. Inoue, T. Endo, K. Nagamatsu, M. Watanabe, and T. Tominaga, “5-aminolevulinic acid fluorescence-guided resection of intramedullary ependymoma: report of 9 cases,” Neurosurgery 72(2), ons159 (2013).
[PubMed]

Toms, S. A.

W.-C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, “Brain tumor demarcation using optical spectroscopy; an in vitro study,” J. Biomed. Opt. 5(2), 214–220 (2000).
[Crossref] [PubMed]

Utsuki, S.

S. Shimizu, S. Utsuki, K. Sato, H. Oka, K. Fujii, and K. Mii, “Photodynamic diagnosis in surgery for spinal ependymoma. case illustration,” J. Neurosurg. Spine 5(4), 380 (2006).
[Crossref] [PubMed]

Valdés, P. A.

P. A. Valdés, D. W. Roberts, F.-K. Lu, and A. Golby, “Optical technologies for intraoperative neurosurgical guidance,” Neurosurg. Focus 40(3), E8 (2016).
[Crossref] [PubMed]

Y. Li, R. Rey-Dios, D. W. Roberts, P. A. Valdés, and A. A. Cohen-Gadol, “Intraoperative fluorescence-guided resection of high-grade gliomas: a comparison of the present techniques and evolution of future strategies,” World Neurosurg. 82(1-2), 175–185 (2014).
[Crossref] [PubMed]

Wang, J.

C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
[Crossref] [PubMed]

Watanabe, M.

T. Inoue, T. Endo, K. Nagamatsu, M. Watanabe, and T. Tominaga, “5-aminolevulinic acid fluorescence-guided resection of intramedullary ependymoma: report of 9 cases,” Neurosurgery 72(2), ons159 (2013).
[PubMed]

Widhalm, G.

M. Millesi, B. Kiesel, A. Woehrer, J. A. Hainfellner, K. Novak, M. Martínez-Moreno, S. Wolfsberger, E. Knosp, and G. Widhalm, “Analysis of 5-aminolevulinic acid-induced fluorescence in 55 different spinal tumors,” Neurosurg. Focus 36(2), E11 (2014).
[Crossref] [PubMed]

Wiestler, O. D.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H.-J. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Woehrer, A.

M. Millesi, B. Kiesel, A. Woehrer, J. A. Hainfellner, K. Novak, M. Martínez-Moreno, S. Wolfsberger, E. Knosp, and G. Widhalm, “Analysis of 5-aminolevulinic acid-induced fluorescence in 55 different spinal tumors,” Neurosurg. Focus 36(2), E11 (2014).
[Crossref] [PubMed]

Wolfsberger, S.

M. Millesi, B. Kiesel, A. Woehrer, J. A. Hainfellner, K. Novak, M. Martínez-Moreno, S. Wolfsberger, E. Knosp, and G. Widhalm, “Analysis of 5-aminolevulinic acid-induced fluorescence in 55 different spinal tumors,” Neurosurg. Focus 36(2), E11 (2014).
[Crossref] [PubMed]

Xie, S.-S.

B.-H. Li and S.-S. Xie, “Autofluorescence excitation-emission matrices for diagnosis of colonic cancer,” World J. Gastroenterol. 11(25), 3931–3934 (2005).
[Crossref] [PubMed]

Ye, J.

C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
[Crossref] [PubMed]

Zanella, F.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H.-J. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Zhang, L.

Y. Fan, Y. Sun, W. Chang, X. Zhang, J. Tang, L. Zhang, and H. Liao, “Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden in a mouse model,” Theranostics 8(15), 4072–4085 (2018).

Zhang, X.

Y. Fan, Y. Sun, W. Chang, X. Zhang, J. Tang, L. Zhang, and H. Liao, “Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden in a mouse model,” Theranostics 8(15), 4072–4085 (2018).

Zheng, W.

W. Zheng, W. Lau, C. Cheng, K. C. Soo, and M. Olivo, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104(4), 477–481 (2003).
[Crossref] [PubMed]

Zhou, T.

T. Zhou, T. Ando, K. Nakagawa, H. Liao, E. Kobayashi, and I. Sakuma, “Localizing fluorophore (centroid) inside a scattering medium by depth perturbation,” J. Biomed. Opt. 20(1), 017003 (2015).
[Crossref] [PubMed]

Brain Tumor Pathol. (1)

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol. 28(1), 43–51 (2011).
[Crossref] [PubMed]

Clin. Neurol. Neurosurg. (1)

C. Ewelt, W. Stummer, B. Klink, J. Felsberg, H. J. Steiger, and M. Sabel, “Cordectomy as final treatment option for diffuse intramedullary malignant glioma using 5-ALA fluorescence-guided resection,” Clin. Neurol. Neurosurg. 112(4), 357–361 (2010).
[Crossref] [PubMed]

Comput. Med. Imaging Graph. (1)

H. Liao, “Integrated diagnostic and therapeutic techniques: Toward an intelligent medical system,” Comput. Med. Imaging Graph. 38(5), 421–422 (2014).
[Crossref] [PubMed]

Environ. Health Perspect. (1)

C. Espina, M. Porta, J. Schüz, I. H. Aguado, R. V. Percival, C. Dora, T. Slevin, J. R. Guzman, T. Meredith, P. J. Landrigan, and M. Neira, “Environmental and occupational interventions for primary prevention of cancer: a cross-sectorial policy framework,” Environ. Health Perspect. 121(4), 420–426 (2013).
[PubMed]

Eur. J. Histochem. (1)

A. C. Croce and G. Bottiroli, “Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis,” Eur. J. Histochem. 58(4), 2461 (2014).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

H. Liao, T. Inomata, I. Sakuma, and T. Dohi, “3-D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay,” IEEE Trans. Biomed. Eng. 57(6), 1476–1486 (2010).
[Crossref] [PubMed]

Int. J. Cancer (1)

W. Zheng, W. Lau, C. Cheng, K. C. Soo, and M. Olivo, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104(4), 477–481 (2003).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[Crossref] [PubMed]

T. Zhou, T. Ando, K. Nakagawa, H. Liao, E. Kobayashi, and I. Sakuma, “Localizing fluorophore (centroid) inside a scattering medium by depth perturbation,” J. Biomed. Opt. 20(1), 017003 (2015).
[Crossref] [PubMed]

W.-C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, “Brain tumor demarcation using optical spectroscopy; an in vitro study,” J. Biomed. Opt. 5(2), 214–220 (2000).
[Crossref] [PubMed]

J. Korean Med. Sci. (1)

Y. G. Chung, J. A. Schwartz, C. M. Gardner, R. E. Sawaya, and S. L. Jacques, “Diagnostic potential of laser-induced autofluorescence emission in brain tissue,” J. Korean Med. Sci. 12(2), 135–142 (1997).
[Crossref] [PubMed]

J. Neurol. Surg. A Cent. Eur. Neurosurg. (1)

M. Rapp, M. Klingenhöfer, J. Felsberg, H. J. Steiger, W. Stummer, and M. Sabel, “Fluorescence-guided resection of spinal metastases of malignant glioma: report of 2 cases,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 73(2), 103–105 (2012).
[Crossref] [PubMed]

J. Neurosurg. Spine (1)

S. Shimizu, S. Utsuki, K. Sato, H. Oka, K. Fujii, and K. Mii, “Photodynamic diagnosis in surgery for spinal ependymoma. case illustration,” J. Neurosurg. Spine 5(4), 380 (2006).
[Crossref] [PubMed]

Lancet Oncol. (1)

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H.-J. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Lasers Med. Sci. (1)

H. Liao, K. Fujiwara, T. Ando, T. Maruyama, E. Kobayashi, Y. Muragaki, H. Iseki, and I. Sakuma, “Automatic laser scanning ablation system for high-precision treatment of brain tumors,” Lasers Med. Sci. 28(3), 891–900 (2013).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

A. C. Croce, U. De Simone, I. Freitas, E. Boncompagni, D. Neri, U. Cillo, and G. Bottiroli, “Human liver autofluorescence: an intrinsic tissue parameter discriminating normal and diseased conditions,” Lasers Surg. Med. 42(5), 371–378 (2010).
[Crossref] [PubMed]

Med. Image Anal. (1)

H. Liao, M. Noguchi, T. Maruyama, Y. Muragaki, E. Kobayashi, H. Iseki, and I. Sakuma, “An integrated diagnosis and therapeutic system using intra-operative 5-aminolevulinic-acid-induced fluorescence guided robotic laser ablation for precision neurosurgery,” Med. Image Anal. 16(3), 754–766 (2012).
[Crossref] [PubMed]

Nat. Med. (1)

M. Stoeckli, P. Chaurand, D. E. Hallahan, and R. M. Caprioli, “Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues,” Nat. Med. 7(4), 493–496 (2001).
[Crossref] [PubMed]

Neurochem. Res. (1)

L. F. Eng, R. S. Ghirnikar, and Y. L. Lee, “Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000),” Neurochem. Res. 25(9/10), 1439–1451 (2000).
[Crossref] [PubMed]

Neurosurg. Focus (2)

P. A. Valdés, D. W. Roberts, F.-K. Lu, and A. Golby, “Optical technologies for intraoperative neurosurgical guidance,” Neurosurg. Focus 40(3), E8 (2016).
[Crossref] [PubMed]

M. Millesi, B. Kiesel, A. Woehrer, J. A. Hainfellner, K. Novak, M. Martínez-Moreno, S. Wolfsberger, E. Knosp, and G. Widhalm, “Analysis of 5-aminolevulinic acid-induced fluorescence in 55 different spinal tumors,” Neurosurg. Focus 36(2), E11 (2014).
[Crossref] [PubMed]

Neurosurgery (1)

T. Inoue, T. Endo, K. Nagamatsu, M. Watanabe, and T. Tominaga, “5-aminolevulinic acid fluorescence-guided resection of intramedullary ependymoma: report of 9 cases,” Neurosurgery 72(2), ons159 (2013).
[PubMed]

Opt. Lett. (1)

Photochem. Photobiol. (1)

A. C. Croce, S. Fiorani, D. Locatelli, R. Nano, M. Ceroni, F. Tancioni, E. Giombelli, E. Benericetti, and G. Bottiroli, “Diagnostic potential of autofluorescence for an assisted intraoperative delineation of glioblastoma resection margins,” Photochem. Photobiol. 77(3), 309–318 (2003).
[Crossref] [PubMed]

Photomed. Laser Surg. (1)

A. Saraswathy, R. S. Jayasree, K. V. Baiju, A. K. Gupta, and V. P. Pillai, “Optimum wavelength for the differentiation of brain tumor tissue using autofluorescence spectroscopy,” Photomed. Laser Surg. 27(3), 425–433 (2009).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

L. S. Eberlin, I. Norton, D. Orringer, I. F. Dunn, X. Liu, J. L. Ide, A. K. Jarmusch, K. L. Ligon, F. A. Jolesz, A. J. Golby, S. Santagata, N. Y. Agar, and R. G. Cooks, “Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors,” Proc. Natl. Acad. Sci. U.S.A. 110(5), 1611–1616 (2013).
[Crossref] [PubMed]

Theranostics (2)

Y. Fan, Y. Sun, W. Chang, X. Zhang, J. Tang, L. Zhang, and H. Liao, “Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden in a mouse model,” Theranostics 8(15), 4072–4085 (2018).

C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
[Crossref] [PubMed]

World J. Gastroenterol. (1)

B.-H. Li and S.-S. Xie, “Autofluorescence excitation-emission matrices for diagnosis of colonic cancer,” World J. Gastroenterol. 11(25), 3931–3934 (2005).
[Crossref] [PubMed]

World Neurosurg. (1)

Y. Li, R. Rey-Dios, D. W. Roberts, P. A. Valdés, and A. A. Cohen-Gadol, “Intraoperative fluorescence-guided resection of high-grade gliomas: a comparison of the present techniques and evolution of future strategies,” World Neurosurg. 82(1-2), 175–185 (2014).
[Crossref] [PubMed]

Other (1)

K. Vishwanath and N. Ramanujam, “Fluorescence spectroscopy in vivo,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley & Sons Ltd. 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Configuration of the measurement system and analysis methods.
Fig. 2
Fig. 2 (a,b) Two spinal cord tumor samples with different sizes. At least five measurement points were used to acquire an effective spectral data.
Fig. 3
Fig. 3 (a) Prototype of the proposed measurement system, (b) measurement setting in the sample chamber, and (c) tumor specimen on the holder.
Fig. 4
Fig. 4 EEMs (left) and the corresponding pathological images (right) of six types of spinal cord tumors: (a) Schwannoma, (b) Meningeoma, (c) Lipomyoma, (d) Ependymoma, (e) CNS embryonal tumor, and (f) Glioblastoma multiforme. Red arrows refer to the three common peaks, while the orange and yellow arrows refer to the specific peaks of two groups of tumors.
Fig. 5
Fig. 5 Normalized average spectral curves: (a) 280-nm excitation wavelength, (b) 330-nm excitation wavelength, (c) 350-nm excitation wavelength, (d) 400-nm excitation wavelength and (e) 450-nm excitation wavelength. Red and blue curves may possibly indicate that six types of tumors can be classified into two classes.
Fig. 6
Fig. 6 Distribution of the values of some peak intensity ratios: (a) R1, (b) R2, (c) R3, (d) R4, (e) R5, (f) R6, (g) R7, and (h) R8. (C = CNSET, E = Ependymoma, G = GBM, L = Lipomyoma, M = Meningioma, S = Schwannoma).

Tables (2)

Tables Icon

Table 1 Information about spinal cord tumor tissues

Tables Icon

Table 2 Pearson’s R Coefficient Between Peak Intensity Ratios (PIR) and Immunohistochemical Indexes (IMI)

Metrics