Abstract

Vascular supply is a critical component of the tumor microenvironment (TME) and is essential for tumor growth and metastasis, yet the endogenous genetic modifiers that impact vascular function in the TME are largely unknown. To identify the host TME modifiers of tumor vascular function, we combined a novel genetic mapping strategy [Consomic Xenograft Model] with near-infrared (NIR) fluorescence imaging and multiparametric analysis of pharmacokinetic modeling. To detect vascular flow, an intensified cooled camera based dynamic NIR imaging system with 785 nm laser diode based excitation was used to image the whole-body fluorescence emission of intravenously injected indocyanine green dye. Principal component analysis was used to extract the spatial segmentation information for the lungs, liver, and tumor regions-of-interest. Vascular function was then quantified by pK modeling of the imaging data, which revealed significantly altered tissue perfusion and vascular permeability that were caused by host genetic modifiers in the TME. Collectively, these data demonstrate that NIR fluorescent imaging can be used as a non-invasive means for characterizing host TME modifiers of vascular function that have been linked with tumor risk, progression, and response to therapy.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration

David J. Cuccia, Frederic Bevilacqua, Anthony J. Durkin, Sean Merritt, Bruce J. Tromberg, Gultekin Gulsen, Hon Yu, Jun Wang, and Orhan Nalcioglu
Appl. Opt. 42(16) 2940-2950 (2003)

Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy

Hanli Liu, Yulin Song, Katherine L. Worden, Xin Jiang, Anca Constantinescu, and Ralph P. Mason
Appl. Opt. 39(28) 5231-5243 (2000)

Mouse phenotyping with near-infrared fluorescence lymphatic imaging

Sunkuk Kwon and Eva M. Sevick-Muraca
Biomed. Opt. Express 2(6) 1403-1411 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
    [Crossref] [PubMed]
  2. B. Zhu and E. M. Sevick-Muraca, “A review of performance of near-infrared fluorescence imaging devices used in clinical studies,” Br. J. Radiol. 88(1045), 20140547 (2015).
    [Crossref] [PubMed]
  3. J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging,” Photochem. Photobiol. 77(4), 420–430 (2003).
    [Crossref] [PubMed]
  4. E. M. Hillman, C. B. Amoozegar, T. Wang, A. F. McCaslin, M. B. Bouchard, J. Mansfield, and R. M. Levenson, “In vivo optical imaging and dynamic contrast methods for biomedical research,” Philos Trans A Math Phys Eng Sci 369(1955), 4620–4643 (2011).
    [Crossref] [PubMed]
  5. K. Licha and C. Olbrich, “Optical imaging in drug discovery and diagnostic applications,” Adv. Drug Deliv. Rev. 57(8), 1087–1108 (2005).
    [Crossref] [PubMed]
  6. C. Fang, K. Wang, C. T. Zeng, C. W. Chi, W. T. Shang, J. Z. Ye, Y. M. Mao, Y. F. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. H. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6, 21013 (2016).
  7. E. Portnoy, N. Vakruk, A. Bishara, M. Shmuel, S. Magdassi, J. Golenser, and S. Eyal, “Indocyanine Green Liposomes for Diagnosis and Therapeutic Monitoring of Cerebral Malaria,” Theranostics 6(2), 167–176 (2016).
    [Crossref] [PubMed]
  8. S. C. Davis, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Tissue drug concentration determines whether fluorescence or absorption measurements are more sensitive in diffuse optical tomography of exogenous contrast agents,” Appl. Opt. 48(10), D262–D272 (2009).
    [Crossref] [PubMed]
  9. J. T. Elliott, K. Marra, L. T. Evans, S. C. Davis, K. S. Samkoe, J. Feldwisch, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Simultaneous In Vivo Fluorescent Markers for Perfusion, Protoporphyrin Metabolism, and EGFR Expression for Optically Guided Identification of Orthotopic Glioma,” Clin. Cancer Res. 23(9), 2203–2212 (2017).
    [Crossref] [PubMed]
  10. K. Welsher, S. P. Sherlock, and H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. U.S.A. 108(22), 8943–8948 (2011).
    [Crossref] [PubMed]
  11. B. Alacam, B. Yazici, X. Intes, and B. Chance, “Extended kalman filtering for the modeling and analysis of ICG pharmacokinetics in cancerous tumors using NIR optical methods,” IEEE Trans. Biomed. Eng. 53(10), 1861–1871 (2006).
    [Crossref] [PubMed]
  12. F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, M. Hutteman, B. A. Bonsing, F. W. van Leeuwen, J. V. Frangioni, C. J. van de Velde, R. J. Swijnenburg, and A. L. Vahrmeijer, “Image-guided hepatopancreatobiliary surgery using near-infrared fluorescent light,” J. Hepatobiliary Pancreat. Sci. 19(6), 626–637 (2012).
    [Crossref] [PubMed]
  13. J. Lee, T. Pöschinger, S. Hernandez, J. Huang, T. Johung, J. Kandel, D. J. Yamashiro, and A. H. Hielscher, “Dynamic Fluorescence Imaging for the Detection of Vascular Changes in Anti-Angiogenic,” Drug Ther. 2010, JMA74 (2010).
  14. T. Ali, T. Nakajima, K. Sano, K. Sato, P. L. Choyke, and H. Kobayashi, “Dynamic fluorescent imaging with indocyanine green for monitoring the therapeutic effects of photoimmunotherapy,” Contrast Media Mol. Imaging 9(4), 276–282 (2014).
    [Crossref] [PubMed]
  15. E. M. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photonics 1(9), 526–530 (2007).
    [Crossref] [PubMed]
  16. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, “In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42(16), 2940–2950 (2003).
    [Crossref] [PubMed]
  17. M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72(1), 94–102 (2000).
    [Crossref] [PubMed]
  18. M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt. 16(4), 046008 (2011).
    [Crossref] [PubMed]
  19. W. Cai, H. Guang, C. Cai, and J. Luo, “Effects of temperature on multiparametric evaluation of hindlimb ischemia with dynamic fluorescence imaging,” J. Biophotonics 10(6-7), 811–820 (2017).
    [Crossref] [PubMed]
  20. G. Zhang, F. Liu, B. Zhang, Y. He, J. Luo, and J. Bai, “Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system,” J. Biomed. Opt. 18(4), 040505 (2013).
    [Crossref] [PubMed]
  21. Y. Kang, M. Choi, J. Lee, G. Y. Koh, K. Kwon, and C. Choi, “Quantitative analysis of peripheral tissue perfusion using spatiotemporal molecular dynamics,” PLoS One 4(1), e4275 (2009).
    [Crossref] [PubMed]
  22. J. Seo, Y. An, J. Lee, T. Ku, Y. Kang, C. Ahn, and C. Choi, “Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy,” J. Biomed. Opt. 21(4), 046003 (2016).
    [Crossref] [PubMed]
  23. A. El-Desoky, A. M. Seifalian, M. Cope, D. T. Delpy, and B. R. Davidson, “Experimental study of liver dysfunction evaluated by direct indocyanine green clearance using near infrared spectroscopy,” Br. J. Surg. 86(8), 1005–1011 (1999).
    [Crossref] [PubMed]
  24. M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
    [Crossref] [PubMed]
  25. M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
    [Crossref] [PubMed]
  26. A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48(12), 1701–1720 (2003).
    [Crossref] [PubMed]
  27. Y. Gao, M. Chen, J. Wu, Y. Zhou, C. Cai, D. Wang, and J. Luo, “Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging,” J. Biomed. Opt. 22(9), 1–9 (2017).
    [Crossref] [PubMed]
  28. A. H. Andersen, D. M. Gash, and M. J. Avison, “Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework,” Magn. Reson. Imaging 17(6), 795–815 (1999).
    [Crossref] [PubMed]
  29. F. Pedersen, M. Bergström, E. Bengtsson, and B. Långström, “Principal component analysis of dynamic positron emission tomography images,” Eur. J. Nucl. Med. 21(12), 1285–1292 (1994).
    [Crossref] [PubMed]
  30. G. Hong, A. L. Antaris, and H. Dai, “Near-infrared fluorophores for biomedical imaging,” Nature Biomedical Engineering 1, 0010 (2017).
  31. C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, and Q. Wang, “In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window,” Biomaterials 35(1), 393–400 (2014).
    [Crossref] [PubMed]

2017 (4)

J. T. Elliott, K. Marra, L. T. Evans, S. C. Davis, K. S. Samkoe, J. Feldwisch, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Simultaneous In Vivo Fluorescent Markers for Perfusion, Protoporphyrin Metabolism, and EGFR Expression for Optically Guided Identification of Orthotopic Glioma,” Clin. Cancer Res. 23(9), 2203–2212 (2017).
[Crossref] [PubMed]

W. Cai, H. Guang, C. Cai, and J. Luo, “Effects of temperature on multiparametric evaluation of hindlimb ischemia with dynamic fluorescence imaging,” J. Biophotonics 10(6-7), 811–820 (2017).
[Crossref] [PubMed]

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

Y. Gao, M. Chen, J. Wu, Y. Zhou, C. Cai, D. Wang, and J. Luo, “Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

2016 (3)

J. Seo, Y. An, J. Lee, T. Ku, Y. Kang, C. Ahn, and C. Choi, “Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy,” J. Biomed. Opt. 21(4), 046003 (2016).
[Crossref] [PubMed]

C. Fang, K. Wang, C. T. Zeng, C. W. Chi, W. T. Shang, J. Z. Ye, Y. M. Mao, Y. F. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. H. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6, 21013 (2016).

E. Portnoy, N. Vakruk, A. Bishara, M. Shmuel, S. Magdassi, J. Golenser, and S. Eyal, “Indocyanine Green Liposomes for Diagnosis and Therapeutic Monitoring of Cerebral Malaria,” Theranostics 6(2), 167–176 (2016).
[Crossref] [PubMed]

2015 (1)

B. Zhu and E. M. Sevick-Muraca, “A review of performance of near-infrared fluorescence imaging devices used in clinical studies,” Br. J. Radiol. 88(1045), 20140547 (2015).
[Crossref] [PubMed]

2014 (3)

T. Ali, T. Nakajima, K. Sano, K. Sato, P. L. Choyke, and H. Kobayashi, “Dynamic fluorescent imaging with indocyanine green for monitoring the therapeutic effects of photoimmunotherapy,” Contrast Media Mol. Imaging 9(4), 276–282 (2014).
[Crossref] [PubMed]

C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, and Q. Wang, “In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window,” Biomaterials 35(1), 393–400 (2014).
[Crossref] [PubMed]

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

2013 (2)

G. Zhang, F. Liu, B. Zhang, Y. He, J. Luo, and J. Bai, “Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system,” J. Biomed. Opt. 18(4), 040505 (2013).
[Crossref] [PubMed]

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref] [PubMed]

2012 (1)

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, M. Hutteman, B. A. Bonsing, F. W. van Leeuwen, J. V. Frangioni, C. J. van de Velde, R. J. Swijnenburg, and A. L. Vahrmeijer, “Image-guided hepatopancreatobiliary surgery using near-infrared fluorescent light,” J. Hepatobiliary Pancreat. Sci. 19(6), 626–637 (2012).
[Crossref] [PubMed]

2011 (3)

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt. 16(4), 046008 (2011).
[Crossref] [PubMed]

E. M. Hillman, C. B. Amoozegar, T. Wang, A. F. McCaslin, M. B. Bouchard, J. Mansfield, and R. M. Levenson, “In vivo optical imaging and dynamic contrast methods for biomedical research,” Philos Trans A Math Phys Eng Sci 369(1955), 4620–4643 (2011).
[Crossref] [PubMed]

K. Welsher, S. P. Sherlock, and H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. U.S.A. 108(22), 8943–8948 (2011).
[Crossref] [PubMed]

2010 (1)

J. Lee, T. Pöschinger, S. Hernandez, J. Huang, T. Johung, J. Kandel, D. J. Yamashiro, and A. H. Hielscher, “Dynamic Fluorescence Imaging for the Detection of Vascular Changes in Anti-Angiogenic,” Drug Ther. 2010, JMA74 (2010).

2009 (2)

2007 (1)

E. M. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photonics 1(9), 526–530 (2007).
[Crossref] [PubMed]

2006 (1)

B. Alacam, B. Yazici, X. Intes, and B. Chance, “Extended kalman filtering for the modeling and analysis of ICG pharmacokinetics in cancerous tumors using NIR optical methods,” IEEE Trans. Biomed. Eng. 53(10), 1861–1871 (2006).
[Crossref] [PubMed]

2005 (1)

K. Licha and C. Olbrich, “Optical imaging in drug discovery and diagnostic applications,” Adv. Drug Deliv. Rev. 57(8), 1087–1108 (2005).
[Crossref] [PubMed]

2003 (3)

J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging,” Photochem. Photobiol. 77(4), 420–430 (2003).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, “In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42(16), 2940–2950 (2003).
[Crossref] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48(12), 1701–1720 (2003).
[Crossref] [PubMed]

2000 (1)

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72(1), 94–102 (2000).
[Crossref] [PubMed]

1999 (2)

A. El-Desoky, A. M. Seifalian, M. Cope, D. T. Delpy, and B. R. Davidson, “Experimental study of liver dysfunction evaluated by direct indocyanine green clearance using near infrared spectroscopy,” Br. J. Surg. 86(8), 1005–1011 (1999).
[Crossref] [PubMed]

A. H. Andersen, D. M. Gash, and M. J. Avison, “Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework,” Magn. Reson. Imaging 17(6), 795–815 (1999).
[Crossref] [PubMed]

1994 (1)

F. Pedersen, M. Bergström, E. Bengtsson, and B. Långström, “Principal component analysis of dynamic positron emission tomography images,” Eur. J. Nucl. Med. 21(12), 1285–1292 (1994).
[Crossref] [PubMed]

Ahn, C.

J. Seo, Y. An, J. Lee, T. Ku, Y. Kang, C. Ahn, and C. Choi, “Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy,” J. Biomed. Opt. 21(4), 046003 (2016).
[Crossref] [PubMed]

Alacam, B.

B. Alacam, B. Yazici, X. Intes, and B. Chance, “Extended kalman filtering for the modeling and analysis of ICG pharmacokinetics in cancerous tumors using NIR optical methods,” IEEE Trans. Biomed. Eng. 53(10), 1861–1871 (2006).
[Crossref] [PubMed]

Al-Gizawiy, M.

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

Ali, T.

T. Ali, T. Nakajima, K. Sano, K. Sato, P. L. Choyke, and H. Kobayashi, “Dynamic fluorescent imaging with indocyanine green for monitoring the therapeutic effects of photoimmunotherapy,” Contrast Media Mol. Imaging 9(4), 276–282 (2014).
[Crossref] [PubMed]

Amoozegar, C. B.

E. M. Hillman, C. B. Amoozegar, T. Wang, A. F. McCaslin, M. B. Bouchard, J. Mansfield, and R. M. Levenson, “In vivo optical imaging and dynamic contrast methods for biomedical research,” Philos Trans A Math Phys Eng Sci 369(1955), 4620–4643 (2011).
[Crossref] [PubMed]

An, Y.

J. Seo, Y. An, J. Lee, T. Ku, Y. Kang, C. Ahn, and C. Choi, “Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy,” J. Biomed. Opt. 21(4), 046003 (2016).
[Crossref] [PubMed]

Andersen, A. H.

A. H. Andersen, D. M. Gash, and M. J. Avison, “Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework,” Magn. Reson. Imaging 17(6), 795–815 (1999).
[Crossref] [PubMed]

Avison, M. J.

A. H. Andersen, D. M. Gash, and M. J. Avison, “Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework,” Magn. Reson. Imaging 17(6), 795–815 (1999).
[Crossref] [PubMed]

Bai, J.

G. Zhang, F. Liu, B. Zhang, Y. He, J. Luo, and J. Bai, “Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system,” J. Biomed. Opt. 18(4), 040505 (2013).
[Crossref] [PubMed]

Bengtsson, E.

F. Pedersen, M. Bergström, E. Bengtsson, and B. Långström, “Principal component analysis of dynamic positron emission tomography images,” Eur. J. Nucl. Med. 21(12), 1285–1292 (1994).
[Crossref] [PubMed]

Bergom, C.

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

Bergström, M.

F. Pedersen, M. Bergström, E. Bengtsson, and B. Långström, “Principal component analysis of dynamic positron emission tomography images,” Eur. J. Nucl. Med. 21(12), 1285–1292 (1994).
[Crossref] [PubMed]

Bevilacqua, F.

Bishara, A.

E. Portnoy, N. Vakruk, A. Bishara, M. Shmuel, S. Magdassi, J. Golenser, and S. Eyal, “Indocyanine Green Liposomes for Diagnosis and Therapeutic Monitoring of Cerebral Malaria,” Theranostics 6(2), 167–176 (2016).
[Crossref] [PubMed]

Bonsing, B. A.

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, M. Hutteman, B. A. Bonsing, F. W. van Leeuwen, J. V. Frangioni, C. J. van de Velde, R. J. Swijnenburg, and A. L. Vahrmeijer, “Image-guided hepatopancreatobiliary surgery using near-infrared fluorescent light,” J. Hepatobiliary Pancreat. Sci. 19(6), 626–637 (2012).
[Crossref] [PubMed]

Bouchard, M. B.

E. M. Hillman, C. B. Amoozegar, T. Wang, A. F. McCaslin, M. B. Bouchard, J. Mansfield, and R. M. Levenson, “In vivo optical imaging and dynamic contrast methods for biomedical research,” Philos Trans A Math Phys Eng Sci 369(1955), 4620–4643 (2011).
[Crossref] [PubMed]

Cai, C.

W. Cai, H. Guang, C. Cai, and J. Luo, “Effects of temperature on multiparametric evaluation of hindlimb ischemia with dynamic fluorescence imaging,” J. Biophotonics 10(6-7), 811–820 (2017).
[Crossref] [PubMed]

Y. Gao, M. Chen, J. Wu, Y. Zhou, C. Cai, D. Wang, and J. Luo, “Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

Cai, W.

W. Cai, H. Guang, C. Cai, and J. Luo, “Effects of temperature on multiparametric evaluation of hindlimb ischemia with dynamic fluorescence imaging,” J. Biophotonics 10(6-7), 811–820 (2017).
[Crossref] [PubMed]

Carlson, D. F.

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Chance, B.

B. Alacam, B. Yazici, X. Intes, and B. Chance, “Extended kalman filtering for the modeling and analysis of ICG pharmacokinetics in cancerous tumors using NIR optical methods,” IEEE Trans. Biomed. Eng. 53(10), 1861–1871 (2006).
[Crossref] [PubMed]

Chen, G.

C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, and Q. Wang, “In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window,” Biomaterials 35(1), 393–400 (2014).
[Crossref] [PubMed]

Chen, M.

Y. Gao, M. Chen, J. Wu, Y. Zhou, C. Cai, D. Wang, and J. Luo, “Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

Chi, C. W.

C. Fang, K. Wang, C. T. Zeng, C. W. Chi, W. T. Shang, J. Z. Ye, Y. M. Mao, Y. F. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. H. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6, 21013 (2016).

Choi, C.

J. Seo, Y. An, J. Lee, T. Ku, Y. Kang, C. Ahn, and C. Choi, “Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy,” J. Biomed. Opt. 21(4), 046003 (2016).
[Crossref] [PubMed]

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt. 16(4), 046008 (2011).
[Crossref] [PubMed]

Y. Kang, M. Choi, J. Lee, G. Y. Koh, K. Kwon, and C. Choi, “Quantitative analysis of peripheral tissue perfusion using spatiotemporal molecular dynamics,” PLoS One 4(1), e4275 (2009).
[Crossref] [PubMed]

Choi, K.

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt. 16(4), 046008 (2011).
[Crossref] [PubMed]

Choi, M.

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt. 16(4), 046008 (2011).
[Crossref] [PubMed]

Y. Kang, M. Choi, J. Lee, G. Y. Koh, K. Kwon, and C. Choi, “Quantitative analysis of peripheral tissue perfusion using spatiotemporal molecular dynamics,” PLoS One 4(1), e4275 (2009).
[Crossref] [PubMed]

Choyke, P. L.

T. Ali, T. Nakajima, K. Sano, K. Sato, P. L. Choyke, and H. Kobayashi, “Dynamic fluorescent imaging with indocyanine green for monitoring the therapeutic effects of photoimmunotherapy,” Contrast Media Mol. Imaging 9(4), 276–282 (2014).
[Crossref] [PubMed]

Cope, M.

A. El-Desoky, A. M. Seifalian, M. Cope, D. T. Delpy, and B. R. Davidson, “Experimental study of liver dysfunction evaluated by direct indocyanine green clearance using near infrared spectroscopy,” Br. J. Surg. 86(8), 1005–1011 (1999).
[Crossref] [PubMed]

Cuccia, D. J.

Dai, H.

K. Welsher, S. P. Sherlock, and H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. U.S.A. 108(22), 8943–8948 (2011).
[Crossref] [PubMed]

Davidson, B. R.

A. El-Desoky, A. M. Seifalian, M. Cope, D. T. Delpy, and B. R. Davidson, “Experimental study of liver dysfunction evaluated by direct indocyanine green clearance using near infrared spectroscopy,” Br. J. Surg. 86(8), 1005–1011 (1999).
[Crossref] [PubMed]

Davis, S. C.

J. T. Elliott, K. Marra, L. T. Evans, S. C. Davis, K. S. Samkoe, J. Feldwisch, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Simultaneous In Vivo Fluorescent Markers for Perfusion, Protoporphyrin Metabolism, and EGFR Expression for Optically Guided Identification of Orthotopic Glioma,” Clin. Cancer Res. 23(9), 2203–2212 (2017).
[Crossref] [PubMed]

S. C. Davis, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Tissue drug concentration determines whether fluorescence or absorption measurements are more sensitive in diffuse optical tomography of exogenous contrast agents,” Appl. Opt. 48(10), D262–D272 (2009).
[Crossref] [PubMed]

De Pons, J.

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Dehghani, H.

Delpy, D. T.

A. El-Desoky, A. M. Seifalian, M. Cope, D. T. Delpy, and B. R. Davidson, “Experimental study of liver dysfunction evaluated by direct indocyanine green clearance using near infrared spectroscopy,” Br. J. Surg. 86(8), 1005–1011 (1999).
[Crossref] [PubMed]

Durkin, A. J.

Dwinell, M. B.

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Dwinell, M. R.

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

El-Desoky, A.

A. El-Desoky, A. M. Seifalian, M. Cope, D. T. Delpy, and B. R. Davidson, “Experimental study of liver dysfunction evaluated by direct indocyanine green clearance using near infrared spectroscopy,” Br. J. Surg. 86(8), 1005–1011 (1999).
[Crossref] [PubMed]

Elliott, J. T.

J. T. Elliott, K. Marra, L. T. Evans, S. C. Davis, K. S. Samkoe, J. Feldwisch, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Simultaneous In Vivo Fluorescent Markers for Perfusion, Protoporphyrin Metabolism, and EGFR Expression for Optically Guided Identification of Orthotopic Glioma,” Clin. Cancer Res. 23(9), 2203–2212 (2017).
[Crossref] [PubMed]

Endres, B. T.

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Eppstein, M. J.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48(12), 1701–1720 (2003).
[Crossref] [PubMed]

Evans, L. T.

J. T. Elliott, K. Marra, L. T. Evans, S. C. Davis, K. S. Samkoe, J. Feldwisch, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Simultaneous In Vivo Fluorescent Markers for Perfusion, Protoporphyrin Metabolism, and EGFR Expression for Optically Guided Identification of Orthotopic Glioma,” Clin. Cancer Res. 23(9), 2203–2212 (2017).
[Crossref] [PubMed]

Eyal, S.

E. Portnoy, N. Vakruk, A. Bishara, M. Shmuel, S. Magdassi, J. Golenser, and S. Eyal, “Indocyanine Green Liposomes for Diagnosis and Therapeutic Monitoring of Cerebral Malaria,” Theranostics 6(2), 167–176 (2016).
[Crossref] [PubMed]

Fahrenkrug, S. C.

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Fan, Y. F.

C. Fang, K. Wang, C. T. Zeng, C. W. Chi, W. T. Shang, J. Z. Ye, Y. M. Mao, Y. F. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. H. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6, 21013 (2016).

Fang, C.

C. Fang, K. Wang, C. T. Zeng, C. W. Chi, W. T. Shang, J. Z. Ye, Y. M. Mao, Y. F. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. H. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6, 21013 (2016).

Fang, C. H.

C. Fang, K. Wang, C. T. Zeng, C. W. Chi, W. T. Shang, J. Z. Ye, Y. M. Mao, Y. F. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. H. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6, 21013 (2016).

Feldwisch, J.

J. T. Elliott, K. Marra, L. T. Evans, S. C. Davis, K. S. Samkoe, J. Feldwisch, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Simultaneous In Vivo Fluorescent Markers for Perfusion, Protoporphyrin Metabolism, and EGFR Expression for Optically Guided Identification of Orthotopic Glioma,” Clin. Cancer Res. 23(9), 2203–2212 (2017).
[Crossref] [PubMed]

Flister, M. J.

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Frangioni, J. V.

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref] [PubMed]

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, M. Hutteman, B. A. Bonsing, F. W. van Leeuwen, J. V. Frangioni, C. J. van de Velde, R. J. Swijnenburg, and A. L. Vahrmeijer, “Image-guided hepatopancreatobiliary surgery using near-infrared fluorescent light,” J. Hepatobiliary Pancreat. Sci. 19(6), 626–637 (2012).
[Crossref] [PubMed]

Gao, Y.

Y. Gao, M. Chen, J. Wu, Y. Zhou, C. Cai, D. Wang, and J. Luo, “Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

Gash, D. M.

A. H. Andersen, D. M. Gash, and M. J. Avison, “Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework,” Magn. Reson. Imaging 17(6), 795–815 (1999).
[Crossref] [PubMed]

Geurts, A. M.

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Godavarty, A.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48(12), 1701–1720 (2003).
[Crossref] [PubMed]

Golenser, J.

E. Portnoy, N. Vakruk, A. Bishara, M. Shmuel, S. Magdassi, J. Golenser, and S. Eyal, “Indocyanine Green Liposomes for Diagnosis and Therapeutic Monitoring of Cerebral Malaria,” Theranostics 6(2), 167–176 (2016).
[Crossref] [PubMed]

Greene, A. S.

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

Guang, H.

W. Cai, H. Guang, C. Cai, and J. Luo, “Effects of temperature on multiparametric evaluation of hindlimb ischemia with dynamic fluorescence imaging,” J. Biophotonics 10(6-7), 811–820 (2017).
[Crossref] [PubMed]

Gulsen, G.

Gurfinkel, M.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48(12), 1701–1720 (2003).
[Crossref] [PubMed]

J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging,” Photochem. Photobiol. 77(4), 420–430 (2003).
[Crossref] [PubMed]

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72(1), 94–102 (2000).
[Crossref] [PubMed]

Gust, J. D.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72(1), 94–102 (2000).
[Crossref] [PubMed]

Hawrysz, D. J.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72(1), 94–102 (2000).
[Crossref] [PubMed]

He, Y.

G. Zhang, F. Liu, B. Zhang, Y. He, J. Luo, and J. Bai, “Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system,” J. Biomed. Opt. 18(4), 040505 (2013).
[Crossref] [PubMed]

Hernandez, S.

J. Lee, T. Pöschinger, S. Hernandez, J. Huang, T. Johung, J. Kandel, D. J. Yamashiro, and A. H. Hielscher, “Dynamic Fluorescence Imaging for the Detection of Vascular Changes in Anti-Angiogenic,” Drug Ther. 2010, JMA74 (2010).

Hielscher, A. H.

J. Lee, T. Pöschinger, S. Hernandez, J. Huang, T. Johung, J. Kandel, D. J. Yamashiro, and A. H. Hielscher, “Dynamic Fluorescence Imaging for the Detection of Vascular Changes in Anti-Angiogenic,” Drug Ther. 2010, JMA74 (2010).

Hillman, E. M.

E. M. Hillman, C. B. Amoozegar, T. Wang, A. F. McCaslin, M. B. Bouchard, J. Mansfield, and R. M. Levenson, “In vivo optical imaging and dynamic contrast methods for biomedical research,” Philos Trans A Math Phys Eng Sci 369(1955), 4620–4643 (2011).
[Crossref] [PubMed]

E. M. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photonics 1(9), 526–530 (2007).
[Crossref] [PubMed]

Houston, J. P.

J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging,” Photochem. Photobiol. 77(4), 420–430 (2003).
[Crossref] [PubMed]

Huang, J.

J. Lee, T. Pöschinger, S. Hernandez, J. Huang, T. Johung, J. Kandel, D. J. Yamashiro, and A. H. Hielscher, “Dynamic Fluorescence Imaging for the Detection of Vascular Changes in Anti-Angiogenic,” Drug Ther. 2010, JMA74 (2010).

Hutteman, M.

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref] [PubMed]

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, M. Hutteman, B. A. Bonsing, F. W. van Leeuwen, J. V. Frangioni, C. J. van de Velde, R. J. Swijnenburg, and A. L. Vahrmeijer, “Image-guided hepatopancreatobiliary surgery using near-infrared fluorescent light,” J. Hepatobiliary Pancreat. Sci. 19(6), 626–637 (2012).
[Crossref] [PubMed]

Intes, X.

B. Alacam, B. Yazici, X. Intes, and B. Chance, “Extended kalman filtering for the modeling and analysis of ICG pharmacokinetics in cancerous tumors using NIR optical methods,” IEEE Trans. Biomed. Eng. 53(10), 1861–1871 (2006).
[Crossref] [PubMed]

Jacob, H. J.

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Jagtap, J.

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

Johung, T.

J. Lee, T. Pöschinger, S. Hernandez, J. Huang, T. Johung, J. Kandel, D. J. Yamashiro, and A. H. Hielscher, “Dynamic Fluorescence Imaging for the Detection of Vascular Changes in Anti-Angiogenic,” Drug Ther. 2010, JMA74 (2010).

Joshi, A.

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

Kandel, J.

J. Lee, T. Pöschinger, S. Hernandez, J. Huang, T. Johung, J. Kandel, D. J. Yamashiro, and A. H. Hielscher, “Dynamic Fluorescence Imaging for the Detection of Vascular Changes in Anti-Angiogenic,” Drug Ther. 2010, JMA74 (2010).

Kang, Y.

J. Seo, Y. An, J. Lee, T. Ku, Y. Kang, C. Ahn, and C. Choi, “Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy,” J. Biomed. Opt. 21(4), 046003 (2016).
[Crossref] [PubMed]

Y. Kang, M. Choi, J. Lee, G. Y. Koh, K. Kwon, and C. Choi, “Quantitative analysis of peripheral tissue perfusion using spatiotemporal molecular dynamics,” PLoS One 4(1), e4275 (2009).
[Crossref] [PubMed]

Kobayashi, H.

T. Ali, T. Nakajima, K. Sano, K. Sato, P. L. Choyke, and H. Kobayashi, “Dynamic fluorescent imaging with indocyanine green for monitoring the therapeutic effects of photoimmunotherapy,” Contrast Media Mol. Imaging 9(4), 276–282 (2014).
[Crossref] [PubMed]

Koh, G. Y.

Y. Kang, M. Choi, J. Lee, G. Y. Koh, K. Kwon, and C. Choi, “Quantitative analysis of peripheral tissue perfusion using spatiotemporal molecular dynamics,” PLoS One 4(1), e4275 (2009).
[Crossref] [PubMed]

Ku, T.

J. Seo, Y. An, J. Lee, T. Ku, Y. Kang, C. Ahn, and C. Choi, “Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy,” J. Biomed. Opt. 21(4), 046003 (2016).
[Crossref] [PubMed]

Kwon, K.

Y. Kang, M. Choi, J. Lee, G. Y. Koh, K. Kwon, and C. Choi, “Quantitative analysis of peripheral tissue perfusion using spatiotemporal molecular dynamics,” PLoS One 4(1), e4275 (2009).
[Crossref] [PubMed]

Långström, B.

F. Pedersen, M. Bergström, E. Bengtsson, and B. Långström, “Principal component analysis of dynamic positron emission tomography images,” Eur. J. Nucl. Med. 21(12), 1285–1292 (1994).
[Crossref] [PubMed]

LaViolette, P. S.

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Lazar, J.

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Lazarova, Z.

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Lee, J.

J. Seo, Y. An, J. Lee, T. Ku, Y. Kang, C. Ahn, and C. Choi, “Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy,” J. Biomed. Opt. 21(4), 046003 (2016).
[Crossref] [PubMed]

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt. 16(4), 046008 (2011).
[Crossref] [PubMed]

J. Lee, T. Pöschinger, S. Hernandez, J. Huang, T. Johung, J. Kandel, D. J. Yamashiro, and A. H. Hielscher, “Dynamic Fluorescence Imaging for the Detection of Vascular Changes in Anti-Angiogenic,” Drug Ther. 2010, JMA74 (2010).

Y. Kang, M. Choi, J. Lee, G. Y. Koh, K. Kwon, and C. Choi, “Quantitative analysis of peripheral tissue perfusion using spatiotemporal molecular dynamics,” PLoS One 4(1), e4275 (2009).
[Crossref] [PubMed]

Lemke, A.

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Levenson, R. M.

E. M. Hillman, C. B. Amoozegar, T. Wang, A. F. McCaslin, M. B. Bouchard, J. Mansfield, and R. M. Levenson, “In vivo optical imaging and dynamic contrast methods for biomedical research,” Philos Trans A Math Phys Eng Sci 369(1955), 4620–4643 (2011).
[Crossref] [PubMed]

Li, C.

C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, and Q. Wang, “In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window,” Biomaterials 35(1), 393–400 (2014).
[Crossref] [PubMed]

Li, L.

C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, and Q. Wang, “In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window,” Biomaterials 35(1), 393–400 (2014).
[Crossref] [PubMed]

Licha, K.

K. Licha and C. Olbrich, “Optical imaging in drug discovery and diagnostic applications,” Adv. Drug Deliv. Rev. 57(8), 1087–1108 (2005).
[Crossref] [PubMed]

Liu, F.

G. Zhang, F. Liu, B. Zhang, Y. He, J. Luo, and J. Bai, “Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system,” J. Biomed. Opt. 18(4), 040505 (2013).
[Crossref] [PubMed]

Luo, J.

W. Cai, H. Guang, C. Cai, and J. Luo, “Effects of temperature on multiparametric evaluation of hindlimb ischemia with dynamic fluorescence imaging,” J. Biophotonics 10(6-7), 811–820 (2017).
[Crossref] [PubMed]

Y. Gao, M. Chen, J. Wu, Y. Zhou, C. Cai, D. Wang, and J. Luo, “Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

G. Zhang, F. Liu, B. Zhang, Y. He, J. Luo, and J. Bai, “Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system,” J. Biomed. Opt. 18(4), 040505 (2013).
[Crossref] [PubMed]

Magdassi, S.

E. Portnoy, N. Vakruk, A. Bishara, M. Shmuel, S. Magdassi, J. Golenser, and S. Eyal, “Indocyanine Green Liposomes for Diagnosis and Therapeutic Monitoring of Cerebral Malaria,” Theranostics 6(2), 167–176 (2016).
[Crossref] [PubMed]

Mansfield, J.

E. M. Hillman, C. B. Amoozegar, T. Wang, A. F. McCaslin, M. B. Bouchard, J. Mansfield, and R. M. Levenson, “In vivo optical imaging and dynamic contrast methods for biomedical research,” Philos Trans A Math Phys Eng Sci 369(1955), 4620–4643 (2011).
[Crossref] [PubMed]

Mao, Y. M.

C. Fang, K. Wang, C. T. Zeng, C. W. Chi, W. T. Shang, J. Z. Ye, Y. M. Mao, Y. F. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. H. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6, 21013 (2016).

Marra, K.

J. T. Elliott, K. Marra, L. T. Evans, S. C. Davis, K. S. Samkoe, J. Feldwisch, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Simultaneous In Vivo Fluorescent Markers for Perfusion, Protoporphyrin Metabolism, and EGFR Expression for Optically Guided Identification of Orthotopic Glioma,” Clin. Cancer Res. 23(9), 2203–2212 (2017).
[Crossref] [PubMed]

Mayer, R. H.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72(1), 94–102 (2000).
[Crossref] [PubMed]

McCaslin, A. F.

E. M. Hillman, C. B. Amoozegar, T. Wang, A. F. McCaslin, M. B. Bouchard, J. Mansfield, and R. M. Levenson, “In vivo optical imaging and dynamic contrast methods for biomedical research,” Philos Trans A Math Phys Eng Sci 369(1955), 4620–4643 (2011).
[Crossref] [PubMed]

Merritt, S.

Moore, A.

E. M. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photonics 1(9), 526–530 (2007).
[Crossref] [PubMed]

Moore, A. L.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72(1), 94–102 (2000).
[Crossref] [PubMed]

Moore, T. A.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72(1), 94–102 (2000).
[Crossref] [PubMed]

Moreno, C.

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Muggenburg, B.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72(1), 94–102 (2000).
[Crossref] [PubMed]

Murphy, D.

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

Nakajima, T.

T. Ali, T. Nakajima, K. Sano, K. Sato, P. L. Choyke, and H. Kobayashi, “Dynamic fluorescent imaging with indocyanine green for monitoring the therapeutic effects of photoimmunotherapy,” Contrast Media Mol. Imaging 9(4), 276–282 (2014).
[Crossref] [PubMed]

Nalcioglu, O.

Nikula, K.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72(1), 94–102 (2000).
[Crossref] [PubMed]

North, P. E.

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Olbrich, C.

K. Licha and C. Olbrich, “Optical imaging in drug discovery and diagnostic applications,” Adv. Drug Deliv. Rev. 57(8), 1087–1108 (2005).
[Crossref] [PubMed]

Pandey, R.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72(1), 94–102 (2000).
[Crossref] [PubMed]

Parchur, A. K.

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

Paulsen, K. D.

J. T. Elliott, K. Marra, L. T. Evans, S. C. Davis, K. S. Samkoe, J. Feldwisch, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Simultaneous In Vivo Fluorescent Markers for Perfusion, Protoporphyrin Metabolism, and EGFR Expression for Optically Guided Identification of Orthotopic Glioma,” Clin. Cancer Res. 23(9), 2203–2212 (2017).
[Crossref] [PubMed]

S. C. Davis, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Tissue drug concentration determines whether fluorescence or absorption measurements are more sensitive in diffuse optical tomography of exogenous contrast agents,” Appl. Opt. 48(10), D262–D272 (2009).
[Crossref] [PubMed]

Pedersen, F.

F. Pedersen, M. Bergström, E. Bengtsson, and B. Långström, “Principal component analysis of dynamic positron emission tomography images,” Eur. J. Nucl. Med. 21(12), 1285–1292 (1994).
[Crossref] [PubMed]

Plasterer, C.

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

Pogue, B. W.

J. T. Elliott, K. Marra, L. T. Evans, S. C. Davis, K. S. Samkoe, J. Feldwisch, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Simultaneous In Vivo Fluorescent Markers for Perfusion, Protoporphyrin Metabolism, and EGFR Expression for Optically Guided Identification of Orthotopic Glioma,” Clin. Cancer Res. 23(9), 2203–2212 (2017).
[Crossref] [PubMed]

S. C. Davis, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Tissue drug concentration determines whether fluorescence or absorption measurements are more sensitive in diffuse optical tomography of exogenous contrast agents,” Appl. Opt. 48(10), D262–D272 (2009).
[Crossref] [PubMed]

Portnoy, E.

E. Portnoy, N. Vakruk, A. Bishara, M. Shmuel, S. Magdassi, J. Golenser, and S. Eyal, “Indocyanine Green Liposomes for Diagnosis and Therapeutic Monitoring of Cerebral Malaria,” Theranostics 6(2), 167–176 (2016).
[Crossref] [PubMed]

Pöschinger, T.

J. Lee, T. Pöschinger, S. Hernandez, J. Huang, T. Johung, J. Kandel, D. J. Yamashiro, and A. H. Hielscher, “Dynamic Fluorescence Imaging for the Detection of Vascular Changes in Anti-Angiogenic,” Drug Ther. 2010, JMA74 (2010).

Prisco, A. R.

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

Ralston, W.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72(1), 94–102 (2000).
[Crossref] [PubMed]

Ran, S.

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Reynolds, J. S.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72(1), 94–102 (2000).
[Crossref] [PubMed]

Roberts, D. W.

J. T. Elliott, K. Marra, L. T. Evans, S. C. Davis, K. S. Samkoe, J. Feldwisch, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Simultaneous In Vivo Fluorescent Markers for Perfusion, Protoporphyrin Metabolism, and EGFR Expression for Optically Guided Identification of Orthotopic Glioma,” Clin. Cancer Res. 23(9), 2203–2212 (2017).
[Crossref] [PubMed]

Roy, I.

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Rudemiller, N.

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Ryu, S. W.

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt. 16(4), 046008 (2011).
[Crossref] [PubMed]

Samkoe, K. S.

J. T. Elliott, K. Marra, L. T. Evans, S. C. Davis, K. S. Samkoe, J. Feldwisch, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Simultaneous In Vivo Fluorescent Markers for Perfusion, Protoporphyrin Metabolism, and EGFR Expression for Optically Guided Identification of Orthotopic Glioma,” Clin. Cancer Res. 23(9), 2203–2212 (2017).
[Crossref] [PubMed]

Sano, K.

T. Ali, T. Nakajima, K. Sano, K. Sato, P. L. Choyke, and H. Kobayashi, “Dynamic fluorescent imaging with indocyanine green for monitoring the therapeutic effects of photoimmunotherapy,” Contrast Media Mol. Imaging 9(4), 276–282 (2014).
[Crossref] [PubMed]

Santarriaga, S.

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Sarkis, A. B.

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Sato, K.

T. Ali, T. Nakajima, K. Sano, K. Sato, P. L. Choyke, and H. Kobayashi, “Dynamic fluorescent imaging with indocyanine green for monitoring the therapeutic effects of photoimmunotherapy,” Contrast Media Mol. Imaging 9(4), 276–282 (2014).
[Crossref] [PubMed]

Schaafsma, B. E.

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, M. Hutteman, B. A. Bonsing, F. W. van Leeuwen, J. V. Frangioni, C. J. van de Velde, R. J. Swijnenburg, and A. L. Vahrmeijer, “Image-guided hepatopancreatobiliary surgery using near-infrared fluorescent light,” J. Hepatobiliary Pancreat. Sci. 19(6), 626–637 (2012).
[Crossref] [PubMed]

Seifalian, A. M.

A. El-Desoky, A. M. Seifalian, M. Cope, D. T. Delpy, and B. R. Davidson, “Experimental study of liver dysfunction evaluated by direct indocyanine green clearance using near infrared spectroscopy,” Br. J. Surg. 86(8), 1005–1011 (1999).
[Crossref] [PubMed]

Seo, J.

J. Seo, Y. An, J. Lee, T. Ku, Y. Kang, C. Ahn, and C. Choi, “Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy,” J. Biomed. Opt. 21(4), 046003 (2016).
[Crossref] [PubMed]

Sevick-Muraca, E. M.

B. Zhu and E. M. Sevick-Muraca, “A review of performance of near-infrared fluorescence imaging devices used in clinical studies,” Br. J. Radiol. 88(1045), 20140547 (2015).
[Crossref] [PubMed]

J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging,” Photochem. Photobiol. 77(4), 420–430 (2003).
[Crossref] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48(12), 1701–1720 (2003).
[Crossref] [PubMed]

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72(1), 94–102 (2000).
[Crossref] [PubMed]

Shang, W. T.

C. Fang, K. Wang, C. T. Zeng, C. W. Chi, W. T. Shang, J. Z. Ye, Y. M. Mao, Y. F. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. H. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6, 21013 (2016).

Sharma, G.

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

Sherlock, S. P.

K. Welsher, S. P. Sherlock, and H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. U.S.A. 108(22), 8943–8948 (2011).
[Crossref] [PubMed]

Shmuel, M.

E. Portnoy, N. Vakruk, A. Bishara, M. Shmuel, S. Magdassi, J. Golenser, and S. Eyal, “Indocyanine Green Liposomes for Diagnosis and Therapeutic Monitoring of Cerebral Malaria,” Theranostics 6(2), 167–176 (2016).
[Crossref] [PubMed]

Shull, J. D.

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Stoddard, A.

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

Straza, M.

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

Swijnenburg, R. J.

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, M. Hutteman, B. A. Bonsing, F. W. van Leeuwen, J. V. Frangioni, C. J. van de Velde, R. J. Swijnenburg, and A. L. Vahrmeijer, “Image-guided hepatopancreatobiliary surgery using near-infrared fluorescent light,” J. Hepatobiliary Pancreat. Sci. 19(6), 626–637 (2012).
[Crossref] [PubMed]

Tan, W.

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Tatman, D.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72(1), 94–102 (2000).
[Crossref] [PubMed]

Theru, S.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48(12), 1701–1720 (2003).
[Crossref] [PubMed]

Thompson, A. B.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48(12), 1701–1720 (2003).
[Crossref] [PubMed]

J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging,” Photochem. Photobiol. 77(4), 420–430 (2003).
[Crossref] [PubMed]

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72(1), 94–102 (2000).
[Crossref] [PubMed]

Tian, J.

C. Fang, K. Wang, C. T. Zeng, C. W. Chi, W. T. Shang, J. Z. Ye, Y. M. Mao, Y. F. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. H. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6, 21013 (2016).

Tromberg, B. J.

Troy, T. L.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72(1), 94–102 (2000).
[Crossref] [PubMed]

Tsaih, S. W.

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Vahrmeijer, A. L.

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref] [PubMed]

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, M. Hutteman, B. A. Bonsing, F. W. van Leeuwen, J. V. Frangioni, C. J. van de Velde, R. J. Swijnenburg, and A. L. Vahrmeijer, “Image-guided hepatopancreatobiliary surgery using near-infrared fluorescent light,” J. Hepatobiliary Pancreat. Sci. 19(6), 626–637 (2012).
[Crossref] [PubMed]

Vakruk, N.

E. Portnoy, N. Vakruk, A. Bishara, M. Shmuel, S. Magdassi, J. Golenser, and S. Eyal, “Indocyanine Green Liposomes for Diagnosis and Therapeutic Monitoring of Cerebral Malaria,” Theranostics 6(2), 167–176 (2016).
[Crossref] [PubMed]

van de Velde, C. J.

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref] [PubMed]

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, M. Hutteman, B. A. Bonsing, F. W. van Leeuwen, J. V. Frangioni, C. J. van de Velde, R. J. Swijnenburg, and A. L. Vahrmeijer, “Image-guided hepatopancreatobiliary surgery using near-infrared fluorescent light,” J. Hepatobiliary Pancreat. Sci. 19(6), 626–637 (2012).
[Crossref] [PubMed]

van der Vorst, J. R.

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref] [PubMed]

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, M. Hutteman, B. A. Bonsing, F. W. van Leeuwen, J. V. Frangioni, C. J. van de Velde, R. J. Swijnenburg, and A. L. Vahrmeijer, “Image-guided hepatopancreatobiliary surgery using near-infrared fluorescent light,” J. Hepatobiliary Pancreat. Sci. 19(6), 626–637 (2012).
[Crossref] [PubMed]

van Leeuwen, F. W.

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, M. Hutteman, B. A. Bonsing, F. W. van Leeuwen, J. V. Frangioni, C. J. van de Velde, R. J. Swijnenburg, and A. L. Vahrmeijer, “Image-guided hepatopancreatobiliary surgery using near-infrared fluorescent light,” J. Hepatobiliary Pancreat. Sci. 19(6), 626–637 (2012).
[Crossref] [PubMed]

Verbeek, F. P.

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, M. Hutteman, B. A. Bonsing, F. W. van Leeuwen, J. V. Frangioni, C. J. van de Velde, R. J. Swijnenburg, and A. L. Vahrmeijer, “Image-guided hepatopancreatobiliary surgery using near-infrared fluorescent light,” J. Hepatobiliary Pancreat. Sci. 19(6), 626–637 (2012).
[Crossref] [PubMed]

Wang, D.

Y. Gao, M. Chen, J. Wu, Y. Zhou, C. Cai, D. Wang, and J. Luo, “Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

Wang, J.

Wang, K.

C. Fang, K. Wang, C. T. Zeng, C. W. Chi, W. T. Shang, J. Z. Ye, Y. M. Mao, Y. F. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. H. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6, 21013 (2016).

Wang, M.

C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, and Q. Wang, “In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window,” Biomaterials 35(1), 393–400 (2014).
[Crossref] [PubMed]

Wang, Q.

C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, and Q. Wang, “In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window,” Biomaterials 35(1), 393–400 (2014).
[Crossref] [PubMed]

Wang, T.

E. M. Hillman, C. B. Amoozegar, T. Wang, A. F. McCaslin, M. B. Bouchard, J. Mansfield, and R. M. Levenson, “In vivo optical imaging and dynamic contrast methods for biomedical research,” Philos Trans A Math Phys Eng Sci 369(1955), 4620–4643 (2011).
[Crossref] [PubMed]

Welsher, K.

K. Welsher, S. P. Sherlock, and H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. U.S.A. 108(22), 8943–8948 (2011).
[Crossref] [PubMed]

Wu, D.

C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, and Q. Wang, “In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window,” Biomaterials 35(1), 393–400 (2014).
[Crossref] [PubMed]

Wu, J.

Y. Gao, M. Chen, J. Wu, Y. Zhou, C. Cai, D. Wang, and J. Luo, “Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

Xiang, N.

C. Fang, K. Wang, C. T. Zeng, C. W. Chi, W. T. Shang, J. Z. Ye, Y. M. Mao, Y. F. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. H. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6, 21013 (2016).

Yamashiro, D. J.

J. Lee, T. Pöschinger, S. Hernandez, J. Huang, T. Johung, J. Kandel, D. J. Yamashiro, and A. H. Hielscher, “Dynamic Fluorescence Imaging for the Detection of Vascular Changes in Anti-Angiogenic,” Drug Ther. 2010, JMA74 (2010).

Yang, J.

C. Fang, K. Wang, C. T. Zeng, C. W. Chi, W. T. Shang, J. Z. Ye, Y. M. Mao, Y. F. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. H. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6, 21013 (2016).

Yazici, B.

B. Alacam, B. Yazici, X. Intes, and B. Chance, “Extended kalman filtering for the modeling and analysis of ICG pharmacokinetics in cancerous tumors using NIR optical methods,” IEEE Trans. Biomed. Eng. 53(10), 1861–1871 (2006).
[Crossref] [PubMed]

Ye, J. Z.

C. Fang, K. Wang, C. T. Zeng, C. W. Chi, W. T. Shang, J. Z. Ye, Y. M. Mao, Y. F. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. H. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6, 21013 (2016).

Yu, H.

Zeng, C. T.

C. Fang, K. Wang, C. T. Zeng, C. W. Chi, W. T. Shang, J. Z. Ye, Y. M. Mao, Y. F. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. H. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6, 21013 (2016).

Zeng, N.

C. Fang, K. Wang, C. T. Zeng, C. W. Chi, W. T. Shang, J. Z. Ye, Y. M. Mao, Y. F. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. H. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6, 21013 (2016).

Zhang, B.

G. Zhang, F. Liu, B. Zhang, Y. He, J. Luo, and J. Bai, “Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system,” J. Biomed. Opt. 18(4), 040505 (2013).
[Crossref] [PubMed]

Zhang, C.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48(12), 1701–1720 (2003).
[Crossref] [PubMed]

Zhang, G.

G. Zhang, F. Liu, B. Zhang, Y. He, J. Luo, and J. Bai, “Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system,” J. Biomed. Opt. 18(4), 040505 (2013).
[Crossref] [PubMed]

Zhang, Y.

C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, and Q. Wang, “In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window,” Biomaterials 35(1), 393–400 (2014).
[Crossref] [PubMed]

C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, and Q. Wang, “In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window,” Biomaterials 35(1), 393–400 (2014).
[Crossref] [PubMed]

Zhou, Y.

Y. Gao, M. Chen, J. Wu, Y. Zhou, C. Cai, D. Wang, and J. Luo, “Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

Zhu, B.

B. Zhu and E. M. Sevick-Muraca, “A review of performance of near-infrared fluorescence imaging devices used in clinical studies,” Br. J. Radiol. 88(1045), 20140547 (2015).
[Crossref] [PubMed]

Zhu, W.

C. Fang, K. Wang, C. T. Zeng, C. W. Chi, W. T. Shang, J. Z. Ye, Y. M. Mao, Y. F. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. H. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6, 21013 (2016).

Adv. Drug Deliv. Rev. (1)

K. Licha and C. Olbrich, “Optical imaging in drug discovery and diagnostic applications,” Adv. Drug Deliv. Rev. 57(8), 1087–1108 (2005).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomaterials (1)

C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, and Q. Wang, “In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window,” Biomaterials 35(1), 393–400 (2014).
[Crossref] [PubMed]

Br. J. Radiol. (1)

B. Zhu and E. M. Sevick-Muraca, “A review of performance of near-infrared fluorescence imaging devices used in clinical studies,” Br. J. Radiol. 88(1045), 20140547 (2015).
[Crossref] [PubMed]

Br. J. Surg. (1)

A. El-Desoky, A. M. Seifalian, M. Cope, D. T. Delpy, and B. R. Davidson, “Experimental study of liver dysfunction evaluated by direct indocyanine green clearance using near infrared spectroscopy,” Br. J. Surg. 86(8), 1005–1011 (1999).
[Crossref] [PubMed]

Breast Cancer Res. Treat. (1)

M. J. Flister, S. W. Tsaih, A. Stoddard, C. Plasterer, J. Jagtap, A. K. Parchur, G. Sharma, A. R. Prisco, A. Lemke, D. Murphy, M. Al-Gizawiy, M. Straza, S. Ran, A. M. Geurts, M. R. Dwinell, A. S. Greene, C. Bergom, P. S. LaViolette, and A. Joshi, “Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer,” Breast Cancer Res. Treat. 165(1), 53–64 (2017).
[Crossref] [PubMed]

Cancer Res. (1)

M. J. Flister, B. T. Endres, N. Rudemiller, A. B. Sarkis, S. Santarriaga, I. Roy, A. Lemke, A. M. Geurts, C. Moreno, S. Ran, S. W. Tsaih, J. De Pons, D. F. Carlson, W. Tan, S. C. Fahrenkrug, Z. Lazarova, J. Lazar, P. E. North, P. S. LaViolette, M. B. Dwinell, J. D. Shull, and H. J. Jacob, “CXM: a new tool for mapping breast cancer risk in the tumor microenvironment,” Cancer Res. 74(22), 6419–6429 (2014).
[Crossref] [PubMed]

Clin. Cancer Res. (1)

J. T. Elliott, K. Marra, L. T. Evans, S. C. Davis, K. S. Samkoe, J. Feldwisch, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Simultaneous In Vivo Fluorescent Markers for Perfusion, Protoporphyrin Metabolism, and EGFR Expression for Optically Guided Identification of Orthotopic Glioma,” Clin. Cancer Res. 23(9), 2203–2212 (2017).
[Crossref] [PubMed]

Contrast Media Mol. Imaging (1)

T. Ali, T. Nakajima, K. Sano, K. Sato, P. L. Choyke, and H. Kobayashi, “Dynamic fluorescent imaging with indocyanine green for monitoring the therapeutic effects of photoimmunotherapy,” Contrast Media Mol. Imaging 9(4), 276–282 (2014).
[Crossref] [PubMed]

Drug Ther. (1)

J. Lee, T. Pöschinger, S. Hernandez, J. Huang, T. Johung, J. Kandel, D. J. Yamashiro, and A. H. Hielscher, “Dynamic Fluorescence Imaging for the Detection of Vascular Changes in Anti-Angiogenic,” Drug Ther. 2010, JMA74 (2010).

Eur. J. Nucl. Med. (1)

F. Pedersen, M. Bergström, E. Bengtsson, and B. Långström, “Principal component analysis of dynamic positron emission tomography images,” Eur. J. Nucl. Med. 21(12), 1285–1292 (1994).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

B. Alacam, B. Yazici, X. Intes, and B. Chance, “Extended kalman filtering for the modeling and analysis of ICG pharmacokinetics in cancerous tumors using NIR optical methods,” IEEE Trans. Biomed. Eng. 53(10), 1861–1871 (2006).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt. 16(4), 046008 (2011).
[Crossref] [PubMed]

G. Zhang, F. Liu, B. Zhang, Y. He, J. Luo, and J. Bai, “Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system,” J. Biomed. Opt. 18(4), 040505 (2013).
[Crossref] [PubMed]

J. Seo, Y. An, J. Lee, T. Ku, Y. Kang, C. Ahn, and C. Choi, “Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy,” J. Biomed. Opt. 21(4), 046003 (2016).
[Crossref] [PubMed]

Y. Gao, M. Chen, J. Wu, Y. Zhou, C. Cai, D. Wang, and J. Luo, “Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

J. Biophotonics (1)

W. Cai, H. Guang, C. Cai, and J. Luo, “Effects of temperature on multiparametric evaluation of hindlimb ischemia with dynamic fluorescence imaging,” J. Biophotonics 10(6-7), 811–820 (2017).
[Crossref] [PubMed]

J. Hepatobiliary Pancreat. Sci. (1)

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, M. Hutteman, B. A. Bonsing, F. W. van Leeuwen, J. V. Frangioni, C. J. van de Velde, R. J. Swijnenburg, and A. L. Vahrmeijer, “Image-guided hepatopancreatobiliary surgery using near-infrared fluorescent light,” J. Hepatobiliary Pancreat. Sci. 19(6), 626–637 (2012).
[Crossref] [PubMed]

Magn. Reson. Imaging (1)

A. H. Andersen, D. M. Gash, and M. J. Avison, “Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework,” Magn. Reson. Imaging 17(6), 795–815 (1999).
[Crossref] [PubMed]

Nat. Photonics (1)

E. M. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photonics 1(9), 526–530 (2007).
[Crossref] [PubMed]

Nat. Rev. Clin. Oncol. (1)

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref] [PubMed]

Philos Trans A Math Phys Eng Sci (1)

E. M. Hillman, C. B. Amoozegar, T. Wang, A. F. McCaslin, M. B. Bouchard, J. Mansfield, and R. M. Levenson, “In vivo optical imaging and dynamic contrast methods for biomedical research,” Philos Trans A Math Phys Eng Sci 369(1955), 4620–4643 (2011).
[Crossref] [PubMed]

Photochem. Photobiol. (2)

J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging,” Photochem. Photobiol. 77(4), 420–430 (2003).
[Crossref] [PubMed]

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72(1), 94–102 (2000).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48(12), 1701–1720 (2003).
[Crossref] [PubMed]

PLoS One (1)

Y. Kang, M. Choi, J. Lee, G. Y. Koh, K. Kwon, and C. Choi, “Quantitative analysis of peripheral tissue perfusion using spatiotemporal molecular dynamics,” PLoS One 4(1), e4275 (2009).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

K. Welsher, S. P. Sherlock, and H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. U.S.A. 108(22), 8943–8948 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

C. Fang, K. Wang, C. T. Zeng, C. W. Chi, W. T. Shang, J. Z. Ye, Y. M. Mao, Y. F. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. H. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6, 21013 (2016).

Theranostics (1)

E. Portnoy, N. Vakruk, A. Bishara, M. Shmuel, S. Magdassi, J. Golenser, and S. Eyal, “Indocyanine Green Liposomes for Diagnosis and Therapeutic Monitoring of Cerebral Malaria,” Theranostics 6(2), 167–176 (2016).
[Crossref] [PubMed]

Other (1)

G. Hong, A. L. Antaris, and H. Dai, “Near-infrared fluorophores for biomedical imaging,” Nature Biomedical Engineering 1, 0010 (2017).

Supplementary Material (2)

NameDescription
» Visualization 1       Visualization 1. Respiratory motion corrected time course images of ICG biodistribution in whole SS and SS.BN3 rats.
» Visualization 2       Visualization 2. The differences in raw time course imaging (left) vs respiratory motion corrected imaging (right))

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic diagram of dynamic fluorescence imaging setup. (b) First six principal components with time basis. (c) Variance (energy) associated with first 10 PCs. (d) Color coded and merged principal component images used to anatomically segment tumors and other organs from a single view/projection. PC-4, 5, and 6 merged as red, green, and blue channels of a true color (RGB) image (e) Three compartment Pharmacokinetic model used to fit on ICG dynamic fluorescence data and extract vascular density, perfusion P, and permeability parameters K extra + K intra etc. (f) Experimentally determined blood clearance profiles, and first order kinetic model fit of ICG concentration in the plasma isolated from the SSIL2Rγ and SS.BN3IL2Rγ rat strains at different time points following tail vein injections, this time constant was used to solve the model depicted in (e). (*p ≤ 0.05; Two-way ANOVA, Error bars, s.e.m)

Fig. 2
Fig. 2

The ICG biodistribution fluorescence kinetic data acquired for 343 s are plotted for (a) lung, (b) liver, (c) MDA-MB-231 tumors and (d) ZR75.1 tumors in SSIL2Rγ and SS.BN3IL2Rγ rat strains. (n = 8 in each group, ****p < 0.0001; Two-way ANOVA; Error bars, s.e.m)

Fig. 3
Fig. 3

Multiparametric Pharmacokinetics parameter mapping for volume fraction of (a) arterial (b) capillary-vein (c) extravascular compartment and rates of (d) perfusion and permeability in (e) extravasation and (f) intravasation shows significant differences for MDA-MB231 tumor in SSIL2Rγ and SSBN3IL2Rγ strain of rats. The pK parameters values compared in SSIL2Rγ and SS.BN3IL2Rγ strain of rats shows significant differences in perfusion rate from (g) tumor, (h) liver and (i) lungs. CXM model was also tested with (j) ZR75.1 (ER + cell line) tumor for microenvironment effect and the rates of ICG permeability and perfusion shows similar trend and significant differences in perfusion and permeability of SSIL2Rγ and SS.BN3IL2Rγ rats. (n = 8 in each group, *p ≤ 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; Two-way ANOVA; Error bars, s.e.m).

Fig. 4
Fig. 4

MRI and NIR images (PCs 2-3) acquired from (a) SSIL2Rγ and (b) SS.BN3IL2Rγ rats showing intensity distribution from the (c) tumor and (d) liver area acquired in MRI imaging. The washout rate is higher in SSIL2Rγ compared to in SS.BN3IL2Rγ. (n = 3 in each group, *p ≤ 0.05, ****p < 0.0001; Two-way ANOVA; Error bars, s.e.m)

Fig. 5
Fig. 5

Contribution of first 10 PC in segmenting patterns from tumor, liver and lungs.

Fig. 6
Fig. 6

The pK model fit and function value (minimized value in-between raw and fitted curve) for the MDA-MB-231 tumor region from SSIL2Rγ and SS.BN3IL2Rγ strains of rats.

Fig. 7
Fig. 7

(a) The absorption spectra of the standard ICG prepared in distilled water at concentrations; 140, 120, 100, 80, 60, 40, 20, 15, 5, 1, 0.5, and 0 µg/mL. (b) The absorption spectra of plasma (diluted with blank plasma, 5x) collected at different time points. (c) The area under the curve (AUC) from standard ICG absorbance fitted with linear equation. (d) The first-order exponential decay of ICG concentration in the plasma at each time point.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

C Capillary ' =P( C Vessel - C Capillary )- K extra C Capillary + K intra C Organs
C Organs ' = K extra C Capillary - K intra C Organs
I= V Vessel C Vessel + V Capillary C Capillary + V Organs C Organs
C Vessel = C 0 e -t/τ