Abstract

We present a fast label-free computational flow cytometer based on a strategy of compressive imaging. Scattered light from flowing objects is sub-divided into user-defined basis patterns by a deformable mirror and routed to different detectors associated with each pattern. The patterns can be optimized to be matched to the object features of interest, thus facilitating object identification and separation. Compared to conventional scanning flow cytometers, our technique provides increased information capacity without sacrificing flow velocity. Unique features of our matched-filter strategy are that it can simultaneously probe multiple objects throughout large fields of view with long depths of field. In our proof-of-concept demonstrations, we achieve throughputs of over 10,000 particles/s, working at flow velocities of over 1m/s.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
On-chip light-sheet fluorescence imaging flow cytometry at a high flow speed of 1 m/s

Taichi Miura, Hideharu Mikami, Akihiro Isozaki, Takuro Ito, Yasuyuki Ozeki, and Keisuke Goda
Biomed. Opt. Express 9(7) 3424-3433 (2018)

Cameraless high-throughput three-dimensional imaging flow cytometry

Yuanyuan Han, Rui Tang, Yi Gu, Alex Ce Zhang, Wei Cai, Violet Castor, Sung Hwan Cho, William Alaynick, and Yu-Hwa Lo
Optica 6(10) 1297-1304 (2019)

Label-free light-sheet microfluidic cytometry for the automatic identification of senescent cells

Meiai Lin, Qiao Liu, Chao Liu, Xu Qiao, Changshun Shao, and Xuantao Su
Biomed. Opt. Express 9(4) 1692-1703 (2018)

References

  • View by:
  • |
  • |
  • |

  1. V. V. Tuchin, Advanced optical flow cytometry: methods and disease diagnoses (John Wiley & Sons, 2011).
    [Crossref]
  2. C. Alix-Panabières and K. Pantel, “Circulating tumor cells: liquid biopsy of cancer,” Clin. Chem. 59, 110 (2012).
  3. F. Hammes, M. Berney, Y. Wang, M. Vital, O. Köster, and T. Egli, “Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes,” Water Res. 42, 269–277 (2008).
    [Crossref]
  4. S. P. Perfetto, P. K. Chattopadhyay, and M. Roederer, “Seventeen-colour flow cytometry: unravelling the immune system,” Nat. Rev. Immunol. 4, 648 (2004).
    [Crossref] [PubMed]
  5. A. N. Shvalov, I. V. Surovtsev, A. V. Chernyshev, J. T. Soini, and V. P. Maltsev, “Particle classification from light scattering with the scanning flow cytometer,” Cytom. The J. Int. Soc. for Anal. Cytol. 37, 215–220 (1999).
  6. D. Dannhauser, D. Rossi, F. Causa, P. Memmolo, A. Finizio, T. Wriedt, J. Hellmers, Y. Eremin, P. Ferraro, and P. Netti, “Optical signature of erythrocytes by light scattering in microfluidic flows,” Lab on a Chip 15, 3278–3285 (2015).
    [Crossref] [PubMed]
  7. Y. Han, Y. Gu, A. C. Zhang, and Y.-H. Lo, “imaging technologies for flow cytometry,” Lab on a Chip 16, 4639–4647 (2016).
    [Crossref]
  8. T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. communications 7, 10256 (2016).
    [Crossref]
  9. F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and et al., “Tomographic flow cytometry by digital holography,” Light. Sci. & Appl. 6, e16241 (2017).
    [Crossref]
  10. M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab on a Chip 18, 126–131 (2018).
    [Crossref]
  11. L. Golan, D. Yeheskely-Hayon, L. Minai, and D. Yelin, “High-speed interferometric spectrally encoded flow cytometry,” Opt. letters 37, 5154–5156 (2012).
    [Crossref]
  12. L. Golan, D. Yeheskely-Hayon, L. Minai, E. J. Dann, and D. Yelin, “Noninvasive imaging of flowing blood cells using label-free spectrally encoded flow cytometry,” Biomed. optics express 3, 1455–1464 (2012).
    [Crossref]
  13. K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, and et al., “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. 109, 11630–11635 (2012).
    [Crossref] [PubMed]
  14. T. T. Wong, A. K. Lau, K. K. Ho, M. Y. Tang, J. D. Robles, X. Wei, A. C. Chan, A. H. Tang, E. Y. Lam, K. K. Wong, and et al., “Asymmetric-detection time-stretch optical microscopy (atom) for ultrafast high-contrast cellular imaging in flow,” Sci. reports 4, 3656 (2014).
    [Crossref]
  15. Y. Saeys, S. Van Gassen, and B. N. Lambrecht, “Computational flow cytometry: helping to make sense of high-dimensional immunology data,” Nat. Rev. Immunol. 16, 449 (2016).
    [Crossref] [PubMed]
  16. Y. Jo, J. Jung, M.-h. Kim, H. Park, S.-J. Kang, and Y. Park, “Label-free identification of individual bacteria using fourier transform light scattering,” Opt. express 23, 15792–15805 (2015).
    [Crossref] [PubMed]
  17. S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360, 1246–1251 (2018).
    [Crossref] [PubMed]
  18. D. I. Strokotov, A. E. Moskalensky, V. M. Nekrasov, and V. P. Maltsev, “Polarized light-scattering profile—advanced characterization of nonspherical particles with scanning flow cytometry,” Cytom. Part A 79, 570–579 (2011).
    [Crossref]
  19. J.-Y. Zheng, R. M. Pasternack, and N. N. Boustany, “Optical scatter imaging with a digital micromirror device,” Opt. express 17, 20401–20414 (2009).
    [Crossref] [PubMed]
  20. J. Zhou, Z. Cao, H. Xie, and L. Xu, “Digital micro-mirror device-based detector for particle-sizing instruments via fraunhofer diffraction,” Appl. optics 54, 5842–5849 (2015).
    [Crossref]
  21. D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in Computational Imaging IV, vol. 6065 (International Society for Optics and Photonics, 2006), p. 606509.
    [Crossref]
  22. M. A. Davenport, M. F. Duarte, M. B. Wakin, J. N. Laska, D. Takhar, K. F. Kelly, and R. G. Baraniuk, “The smashed filter for compressive classification and target recognition,” in Computational Imaging V, vol. 6498 (International Society for Optics and Photonics, 2007), p. 64980H.
    [Crossref]
  23. M. Copeland, I. Price, F. Rigaut, G. Bloxham, R. Boz, D. Bundy, B. Espeland, and R. Sharp, “Gmtifs: deformable mirror environmental testing for the on-instrument wavefront sensor,” in Adaptive Optics Systems V, vol. 9909 (International Society for Optics and Photonics, 2016), p. 990980.
    [Crossref]
  24. D. Tycko, M. Metz, E. Epstein, and A. Grinbaum, “Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration,” Appl. optics 24, 1355–1365 (1985).
    [Crossref]
  25. W. Huang, L. Yang, G. Yang, and F. Li, “Microfluidic multi-angle laser scattering system for rapid and label-free detection of waterborne parasites,” Biomed. optics express 9, 1520–1530 (2018).
    [Crossref]
  26. J. B. Stewart, T. G. Bifano, S. Cornelissen, P. Bierden, B. M. Levine, and T. Cook, “Design and development of a 331-segment tip–tilt–piston mirror array for space-based adaptive optics,” Sensors Actuators A: Phys. 138, 230–238 (2007).
    [Crossref]
  27. X.-W. Chang and T. Zhou, “Miles: Matlab package for solving mixed integer least squares problems,” GPS Solutions 11, 289–294 (2007).
    [Crossref]
  28. D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. 104, 18892–18897 (2007).
    [Crossref] [PubMed]
  29. W. Xie, J. A. Noble, and A. Zisserman, “Microscopy cell counting and detection with fully convolutional regression networks,” Comput. methods biomechanics biomedical engineering: Imaging & Vis. 6, 283–292 (2018).

2018 (4)

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab on a Chip 18, 126–131 (2018).
[Crossref]

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref] [PubMed]

W. Huang, L. Yang, G. Yang, and F. Li, “Microfluidic multi-angle laser scattering system for rapid and label-free detection of waterborne parasites,” Biomed. optics express 9, 1520–1530 (2018).
[Crossref]

W. Xie, J. A. Noble, and A. Zisserman, “Microscopy cell counting and detection with fully convolutional regression networks,” Comput. methods biomechanics biomedical engineering: Imaging & Vis. 6, 283–292 (2018).

2017 (1)

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and et al., “Tomographic flow cytometry by digital holography,” Light. Sci. & Appl. 6, e16241 (2017).
[Crossref]

2016 (3)

Y. Han, Y. Gu, A. C. Zhang, and Y.-H. Lo, “imaging technologies for flow cytometry,” Lab on a Chip 16, 4639–4647 (2016).
[Crossref]

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. communications 7, 10256 (2016).
[Crossref]

Y. Saeys, S. Van Gassen, and B. N. Lambrecht, “Computational flow cytometry: helping to make sense of high-dimensional immunology data,” Nat. Rev. Immunol. 16, 449 (2016).
[Crossref] [PubMed]

2015 (3)

Y. Jo, J. Jung, M.-h. Kim, H. Park, S.-J. Kang, and Y. Park, “Label-free identification of individual bacteria using fourier transform light scattering,” Opt. express 23, 15792–15805 (2015).
[Crossref] [PubMed]

D. Dannhauser, D. Rossi, F. Causa, P. Memmolo, A. Finizio, T. Wriedt, J. Hellmers, Y. Eremin, P. Ferraro, and P. Netti, “Optical signature of erythrocytes by light scattering in microfluidic flows,” Lab on a Chip 15, 3278–3285 (2015).
[Crossref] [PubMed]

J. Zhou, Z. Cao, H. Xie, and L. Xu, “Digital micro-mirror device-based detector for particle-sizing instruments via fraunhofer diffraction,” Appl. optics 54, 5842–5849 (2015).
[Crossref]

2014 (1)

T. T. Wong, A. K. Lau, K. K. Ho, M. Y. Tang, J. D. Robles, X. Wei, A. C. Chan, A. H. Tang, E. Y. Lam, K. K. Wong, and et al., “Asymmetric-detection time-stretch optical microscopy (atom) for ultrafast high-contrast cellular imaging in flow,” Sci. reports 4, 3656 (2014).
[Crossref]

2012 (4)

C. Alix-Panabières and K. Pantel, “Circulating tumor cells: liquid biopsy of cancer,” Clin. Chem. 59, 110 (2012).

L. Golan, D. Yeheskely-Hayon, L. Minai, and D. Yelin, “High-speed interferometric spectrally encoded flow cytometry,” Opt. letters 37, 5154–5156 (2012).
[Crossref]

L. Golan, D. Yeheskely-Hayon, L. Minai, E. J. Dann, and D. Yelin, “Noninvasive imaging of flowing blood cells using label-free spectrally encoded flow cytometry,” Biomed. optics express 3, 1455–1464 (2012).
[Crossref]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, and et al., “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. 109, 11630–11635 (2012).
[Crossref] [PubMed]

2011 (1)

D. I. Strokotov, A. E. Moskalensky, V. M. Nekrasov, and V. P. Maltsev, “Polarized light-scattering profile—advanced characterization of nonspherical particles with scanning flow cytometry,” Cytom. Part A 79, 570–579 (2011).
[Crossref]

2009 (1)

2008 (1)

F. Hammes, M. Berney, Y. Wang, M. Vital, O. Köster, and T. Egli, “Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes,” Water Res. 42, 269–277 (2008).
[Crossref]

2007 (3)

J. B. Stewart, T. G. Bifano, S. Cornelissen, P. Bierden, B. M. Levine, and T. Cook, “Design and development of a 331-segment tip–tilt–piston mirror array for space-based adaptive optics,” Sensors Actuators A: Phys. 138, 230–238 (2007).
[Crossref]

X.-W. Chang and T. Zhou, “Miles: Matlab package for solving mixed integer least squares problems,” GPS Solutions 11, 289–294 (2007).
[Crossref]

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. 104, 18892–18897 (2007).
[Crossref] [PubMed]

2004 (1)

S. P. Perfetto, P. K. Chattopadhyay, and M. Roederer, “Seventeen-colour flow cytometry: unravelling the immune system,” Nat. Rev. Immunol. 4, 648 (2004).
[Crossref] [PubMed]

1999 (1)

A. N. Shvalov, I. V. Surovtsev, A. V. Chernyshev, J. T. Soini, and V. P. Maltsev, “Particle classification from light scattering with the scanning flow cytometer,” Cytom. The J. Int. Soc. for Anal. Cytol. 37, 215–220 (1999).

1985 (1)

D. Tycko, M. Metz, E. Epstein, and A. Grinbaum, “Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration,” Appl. optics 24, 1355–1365 (1985).
[Crossref]

Adam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, and et al., “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. 109, 11630–11635 (2012).
[Crossref] [PubMed]

Alix-Panabières, C.

C. Alix-Panabières and K. Pantel, “Circulating tumor cells: liquid biopsy of cancer,” Clin. Chem. 59, 110 (2012).

Ayazi, A.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, and et al., “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. 109, 11630–11635 (2012).
[Crossref] [PubMed]

Baraniuk, R. G.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in Computational Imaging IV, vol. 6065 (International Society for Optics and Photonics, 2006), p. 606509.
[Crossref]

M. A. Davenport, M. F. Duarte, M. B. Wakin, J. N. Laska, D. Takhar, K. F. Kelly, and R. G. Baraniuk, “The smashed filter for compressive classification and target recognition,” in Computational Imaging V, vol. 6498 (International Society for Optics and Photonics, 2007), p. 64980H.
[Crossref]

Baron, D.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in Computational Imaging IV, vol. 6065 (International Society for Optics and Photonics, 2006), p. 606509.
[Crossref]

Berney, M.

F. Hammes, M. Berney, Y. Wang, M. Vital, O. Köster, and T. Egli, “Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes,” Water Res. 42, 269–277 (2008).
[Crossref]

Bierden, P.

J. B. Stewart, T. G. Bifano, S. Cornelissen, P. Bierden, B. M. Levine, and T. Cook, “Design and development of a 331-segment tip–tilt–piston mirror array for space-based adaptive optics,” Sensors Actuators A: Phys. 138, 230–238 (2007).
[Crossref]

Bifano, T. G.

J. B. Stewart, T. G. Bifano, S. Cornelissen, P. Bierden, B. M. Levine, and T. Cook, “Design and development of a 331-segment tip–tilt–piston mirror array for space-based adaptive optics,” Sensors Actuators A: Phys. 138, 230–238 (2007).
[Crossref]

Blasi, T.

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. communications 7, 10256 (2016).
[Crossref]

Bloxham, G.

M. Copeland, I. Price, F. Rigaut, G. Bloxham, R. Boz, D. Bundy, B. Espeland, and R. Sharp, “Gmtifs: deformable mirror environmental testing for the on-instrument wavefront sensor,” in Adaptive Optics Systems V, vol. 9909 (International Society for Optics and Photonics, 2016), p. 990980.
[Crossref]

Boustany, N. N.

Boz, R.

M. Copeland, I. Price, F. Rigaut, G. Bloxham, R. Boz, D. Bundy, B. Espeland, and R. Sharp, “Gmtifs: deformable mirror environmental testing for the on-instrument wavefront sensor,” in Adaptive Optics Systems V, vol. 9909 (International Society for Optics and Photonics, 2016), p. 990980.
[Crossref]

Bundy, D.

M. Copeland, I. Price, F. Rigaut, G. Bloxham, R. Boz, D. Bundy, B. Espeland, and R. Sharp, “Gmtifs: deformable mirror environmental testing for the on-instrument wavefront sensor,” in Adaptive Optics Systems V, vol. 9909 (International Society for Optics and Photonics, 2016), p. 990980.
[Crossref]

Cao, Z.

J. Zhou, Z. Cao, H. Xie, and L. Xu, “Digital micro-mirror device-based detector for particle-sizing instruments via fraunhofer diffraction,” Appl. optics 54, 5842–5849 (2015).
[Crossref]

Carpenter, A. E.

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. communications 7, 10256 (2016).
[Crossref]

Causa, F.

D. Dannhauser, D. Rossi, F. Causa, P. Memmolo, A. Finizio, T. Wriedt, J. Hellmers, Y. Eremin, P. Ferraro, and P. Netti, “Optical signature of erythrocytes by light scattering in microfluidic flows,” Lab on a Chip 15, 3278–3285 (2015).
[Crossref] [PubMed]

Cerveira, J.

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. communications 7, 10256 (2016).
[Crossref]

Chan, A. C.

T. T. Wong, A. K. Lau, K. K. Ho, M. Y. Tang, J. D. Robles, X. Wei, A. C. Chan, A. H. Tang, E. Y. Lam, K. K. Wong, and et al., “Asymmetric-detection time-stretch optical microscopy (atom) for ultrafast high-contrast cellular imaging in flow,” Sci. reports 4, 3656 (2014).
[Crossref]

Chang, X.-W.

X.-W. Chang and T. Zhou, “Miles: Matlab package for solving mixed integer least squares problems,” GPS Solutions 11, 289–294 (2007).
[Crossref]

Chattopadhyay, P. K.

S. P. Perfetto, P. K. Chattopadhyay, and M. Roederer, “Seventeen-colour flow cytometry: unravelling the immune system,” Nat. Rev. Immunol. 4, 648 (2004).
[Crossref] [PubMed]

Chernyshev, A. V.

A. N. Shvalov, I. V. Surovtsev, A. V. Chernyshev, J. T. Soini, and V. P. Maltsev, “Particle classification from light scattering with the scanning flow cytometer,” Cytom. The J. Int. Soc. for Anal. Cytol. 37, 215–220 (1999).

Cook, T.

J. B. Stewart, T. G. Bifano, S. Cornelissen, P. Bierden, B. M. Levine, and T. Cook, “Design and development of a 331-segment tip–tilt–piston mirror array for space-based adaptive optics,” Sensors Actuators A: Phys. 138, 230–238 (2007).
[Crossref]

Copeland, M.

M. Copeland, I. Price, F. Rigaut, G. Bloxham, R. Boz, D. Bundy, B. Espeland, and R. Sharp, “Gmtifs: deformable mirror environmental testing for the on-instrument wavefront sensor,” in Adaptive Optics Systems V, vol. 9909 (International Society for Optics and Photonics, 2016), p. 990980.
[Crossref]

Cornelissen, S.

J. B. Stewart, T. G. Bifano, S. Cornelissen, P. Bierden, B. M. Levine, and T. Cook, “Design and development of a 331-segment tip–tilt–piston mirror array for space-based adaptive optics,” Sensors Actuators A: Phys. 138, 230–238 (2007).
[Crossref]

D’ippolito, G.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and et al., “Tomographic flow cytometry by digital holography,” Light. Sci. & Appl. 6, e16241 (2017).
[Crossref]

Dann, E. J.

L. Golan, D. Yeheskely-Hayon, L. Minai, E. J. Dann, and D. Yelin, “Noninvasive imaging of flowing blood cells using label-free spectrally encoded flow cytometry,” Biomed. optics express 3, 1455–1464 (2012).
[Crossref]

Dannhauser, D.

D. Dannhauser, D. Rossi, F. Causa, P. Memmolo, A. Finizio, T. Wriedt, J. Hellmers, Y. Eremin, P. Ferraro, and P. Netti, “Optical signature of erythrocytes by light scattering in microfluidic flows,” Lab on a Chip 15, 3278–3285 (2015).
[Crossref] [PubMed]

Davenport, M. A.

M. A. Davenport, M. F. Duarte, M. B. Wakin, J. N. Laska, D. Takhar, K. F. Kelly, and R. G. Baraniuk, “The smashed filter for compressive classification and target recognition,” in Computational Imaging V, vol. 6498 (International Society for Optics and Photonics, 2007), p. 64980H.
[Crossref]

Davies, D.

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. communications 7, 10256 (2016).
[Crossref]

Di Carlo, D.

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. 104, 18892–18897 (2007).
[Crossref] [PubMed]

Duarte, M. F.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in Computational Imaging IV, vol. 6065 (International Society for Optics and Photonics, 2006), p. 606509.
[Crossref]

M. A. Davenport, M. F. Duarte, M. B. Wakin, J. N. Laska, D. Takhar, K. F. Kelly, and R. G. Baraniuk, “The smashed filter for compressive classification and target recognition,” in Computational Imaging V, vol. 6498 (International Society for Optics and Photonics, 2007), p. 64980H.
[Crossref]

Egli, T.

F. Hammes, M. Berney, Y. Wang, M. Vital, O. Köster, and T. Egli, “Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes,” Water Res. 42, 269–277 (2008).
[Crossref]

Epstein, E.

D. Tycko, M. Metz, E. Epstein, and A. Grinbaum, “Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration,” Appl. optics 24, 1355–1365 (1985).
[Crossref]

Eremin, Y.

D. Dannhauser, D. Rossi, F. Causa, P. Memmolo, A. Finizio, T. Wriedt, J. Hellmers, Y. Eremin, P. Ferraro, and P. Netti, “Optical signature of erythrocytes by light scattering in microfluidic flows,” Lab on a Chip 15, 3278–3285 (2015).
[Crossref] [PubMed]

Espeland, B.

M. Copeland, I. Price, F. Rigaut, G. Bloxham, R. Boz, D. Bundy, B. Espeland, and R. Sharp, “Gmtifs: deformable mirror environmental testing for the on-instrument wavefront sensor,” in Adaptive Optics Systems V, vol. 9909 (International Society for Optics and Photonics, 2016), p. 990980.
[Crossref]

Fard, A. M.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, and et al., “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. 109, 11630–11635 (2012).
[Crossref] [PubMed]

Ferraro, P.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab on a Chip 18, 126–131 (2018).
[Crossref]

D. Dannhauser, D. Rossi, F. Causa, P. Memmolo, A. Finizio, T. Wriedt, J. Hellmers, Y. Eremin, P. Ferraro, and P. Netti, “Optical signature of erythrocytes by light scattering in microfluidic flows,” Lab on a Chip 15, 3278–3285 (2015).
[Crossref] [PubMed]

Filby, A.

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. communications 7, 10256 (2016).
[Crossref]

Finizio, A.

D. Dannhauser, D. Rossi, F. Causa, P. Memmolo, A. Finizio, T. Wriedt, J. Hellmers, Y. Eremin, P. Ferraro, and P. Netti, “Optical signature of erythrocytes by light scattering in microfluidic flows,” Lab on a Chip 15, 3278–3285 (2015).
[Crossref] [PubMed]

Fontana, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and et al., “Tomographic flow cytometry by digital holography,” Light. Sci. & Appl. 6, e16241 (2017).
[Crossref]

Fujiu, K.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref] [PubMed]

Gambale, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and et al., “Tomographic flow cytometry by digital holography,” Light. Sci. & Appl. 6, e16241 (2017).
[Crossref]

Goda, K.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, and et al., “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. 109, 11630–11635 (2012).
[Crossref] [PubMed]

Golan, L.

L. Golan, D. Yeheskely-Hayon, L. Minai, E. J. Dann, and D. Yelin, “Noninvasive imaging of flowing blood cells using label-free spectrally encoded flow cytometry,” Biomed. optics express 3, 1455–1464 (2012).
[Crossref]

L. Golan, D. Yeheskely-Hayon, L. Minai, and D. Yelin, “High-speed interferometric spectrally encoded flow cytometry,” Opt. letters 37, 5154–5156 (2012).
[Crossref]

Gossett, D. R.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, and et al., “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. 109, 11630–11635 (2012).
[Crossref] [PubMed]

Grinbaum, A.

D. Tycko, M. Metz, E. Epstein, and A. Grinbaum, “Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration,” Appl. optics 24, 1355–1365 (1985).
[Crossref]

Gu, Y.

Y. Han, Y. Gu, A. C. Zhang, and Y.-H. Lo, “imaging technologies for flow cytometry,” Lab on a Chip 16, 4639–4647 (2016).
[Crossref]

Hammes, F.

F. Hammes, M. Berney, Y. Wang, M. Vital, O. Köster, and T. Egli, “Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes,” Water Res. 42, 269–277 (2008).
[Crossref]

Han, Y.

Y. Han, Y. Gu, A. C. Zhang, and Y.-H. Lo, “imaging technologies for flow cytometry,” Lab on a Chip 16, 4639–4647 (2016).
[Crossref]

Hashimoto, K.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref] [PubMed]

Hellmers, J.

D. Dannhauser, D. Rossi, F. Causa, P. Memmolo, A. Finizio, T. Wriedt, J. Hellmers, Y. Eremin, P. Ferraro, and P. Netti, “Optical signature of erythrocytes by light scattering in microfluidic flows,” Lab on a Chip 15, 3278–3285 (2015).
[Crossref] [PubMed]

Hennig, H.

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. communications 7, 10256 (2016).
[Crossref]

Ho, K. K.

T. T. Wong, A. K. Lau, K. K. Ho, M. Y. Tang, J. D. Robles, X. Wei, A. C. Chan, A. H. Tang, E. Y. Lam, K. K. Wong, and et al., “Asymmetric-detection time-stretch optical microscopy (atom) for ultrafast high-contrast cellular imaging in flow,” Sci. reports 4, 3656 (2014).
[Crossref]

Horisaki, R.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref] [PubMed]

Huang, W.

W. Huang, L. Yang, G. Yang, and F. Li, “Microfluidic multi-angle laser scattering system for rapid and label-free detection of waterborne parasites,” Biomed. optics express 9, 1520–1530 (2018).
[Crossref]

Hur, S. C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, and et al., “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. 109, 11630–11635 (2012).
[Crossref] [PubMed]

Iolascon, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and et al., “Tomographic flow cytometry by digital holography,” Light. Sci. & Appl. 6, e16241 (2017).
[Crossref]

Irimia, D.

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. 104, 18892–18897 (2007).
[Crossref] [PubMed]

Jo, Y.

Jung, J.

Kamesawa, R.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref] [PubMed]

Kang, S.-J.

Kawamura, Y.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref] [PubMed]

Kelly, K. F.

M. A. Davenport, M. F. Duarte, M. B. Wakin, J. N. Laska, D. Takhar, K. F. Kelly, and R. G. Baraniuk, “The smashed filter for compressive classification and target recognition,” in Computational Imaging V, vol. 6498 (International Society for Optics and Photonics, 2007), p. 64980H.
[Crossref]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in Computational Imaging IV, vol. 6065 (International Society for Optics and Photonics, 2006), p. 606509.
[Crossref]

Kim, M.-h.

Köster, O.

F. Hammes, M. Berney, Y. Wang, M. Vital, O. Köster, and T. Egli, “Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes,” Water Res. 42, 269–277 (2008).
[Crossref]

Lam, E. Y.

T. T. Wong, A. K. Lau, K. K. Ho, M. Y. Tang, J. D. Robles, X. Wei, A. C. Chan, A. H. Tang, E. Y. Lam, K. K. Wong, and et al., “Asymmetric-detection time-stretch optical microscopy (atom) for ultrafast high-contrast cellular imaging in flow,” Sci. reports 4, 3656 (2014).
[Crossref]

Lambrecht, B. N.

Y. Saeys, S. Van Gassen, and B. N. Lambrecht, “Computational flow cytometry: helping to make sense of high-dimensional immunology data,” Nat. Rev. Immunol. 16, 449 (2016).
[Crossref] [PubMed]

Laska, J. N.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in Computational Imaging IV, vol. 6065 (International Society for Optics and Photonics, 2006), p. 606509.
[Crossref]

M. A. Davenport, M. F. Duarte, M. B. Wakin, J. N. Laska, D. Takhar, K. F. Kelly, and R. G. Baraniuk, “The smashed filter for compressive classification and target recognition,” in Computational Imaging V, vol. 6498 (International Society for Optics and Photonics, 2007), p. 64980H.
[Crossref]

Lau, A. K.

T. T. Wong, A. K. Lau, K. K. Ho, M. Y. Tang, J. D. Robles, X. Wei, A. C. Chan, A. H. Tang, E. Y. Lam, K. K. Wong, and et al., “Asymmetric-detection time-stretch optical microscopy (atom) for ultrafast high-contrast cellular imaging in flow,” Sci. reports 4, 3656 (2014).
[Crossref]

Levine, B. M.

J. B. Stewart, T. G. Bifano, S. Cornelissen, P. Bierden, B. M. Levine, and T. Cook, “Design and development of a 331-segment tip–tilt–piston mirror array for space-based adaptive optics,” Sensors Actuators A: Phys. 138, 230–238 (2007).
[Crossref]

Li, F.

W. Huang, L. Yang, G. Yang, and F. Li, “Microfluidic multi-angle laser scattering system for rapid and label-free detection of waterborne parasites,” Biomed. optics express 9, 1520–1530 (2018).
[Crossref]

Lo, Y.-H.

Y. Han, Y. Gu, A. C. Zhang, and Y.-H. Lo, “imaging technologies for flow cytometry,” Lab on a Chip 16, 4639–4647 (2016).
[Crossref]

Lonappan, C. K.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, and et al., “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. 109, 11630–11635 (2012).
[Crossref] [PubMed]

Maffettone, P. L.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab on a Chip 18, 126–131 (2018).
[Crossref]

Maltsev, V. P.

D. I. Strokotov, A. E. Moskalensky, V. M. Nekrasov, and V. P. Maltsev, “Polarized light-scattering profile—advanced characterization of nonspherical particles with scanning flow cytometry,” Cytom. Part A 79, 570–579 (2011).
[Crossref]

A. N. Shvalov, I. V. Surovtsev, A. V. Chernyshev, J. T. Soini, and V. P. Maltsev, “Particle classification from light scattering with the scanning flow cytometer,” Cytom. The J. Int. Soc. for Anal. Cytol. 37, 215–220 (1999).

Memmolo, P.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab on a Chip 18, 126–131 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and et al., “Tomographic flow cytometry by digital holography,” Light. Sci. & Appl. 6, e16241 (2017).
[Crossref]

D. Dannhauser, D. Rossi, F. Causa, P. Memmolo, A. Finizio, T. Wriedt, J. Hellmers, Y. Eremin, P. Ferraro, and P. Netti, “Optical signature of erythrocytes by light scattering in microfluidic flows,” Lab on a Chip 15, 3278–3285 (2015).
[Crossref] [PubMed]

Merola, F.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab on a Chip 18, 126–131 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and et al., “Tomographic flow cytometry by digital holography,” Light. Sci. & Appl. 6, e16241 (2017).
[Crossref]

Metz, M.

D. Tycko, M. Metz, E. Epstein, and A. Grinbaum, “Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration,” Appl. optics 24, 1355–1365 (1985).
[Crossref]

Miccio, L.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab on a Chip 18, 126–131 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and et al., “Tomographic flow cytometry by digital holography,” Light. Sci. & Appl. 6, e16241 (2017).
[Crossref]

Minai, L.

L. Golan, D. Yeheskely-Hayon, L. Minai, and D. Yelin, “High-speed interferometric spectrally encoded flow cytometry,” Opt. letters 37, 5154–5156 (2012).
[Crossref]

L. Golan, D. Yeheskely-Hayon, L. Minai, E. J. Dann, and D. Yelin, “Noninvasive imaging of flowing blood cells using label-free spectrally encoded flow cytometry,” Biomed. optics express 3, 1455–1464 (2012).
[Crossref]

Moskalensky, A. E.

D. I. Strokotov, A. E. Moskalensky, V. M. Nekrasov, and V. P. Maltsev, “Polarized light-scattering profile—advanced characterization of nonspherical particles with scanning flow cytometry,” Cytom. Part A 79, 570–579 (2011).
[Crossref]

Mugnano, M.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab on a Chip 18, 126–131 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and et al., “Tomographic flow cytometry by digital holography,” Light. Sci. & Appl. 6, e16241 (2017).
[Crossref]

Murray, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, and et al., “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. 109, 11630–11635 (2012).
[Crossref] [PubMed]

Nekrasov, V. M.

D. I. Strokotov, A. E. Moskalensky, V. M. Nekrasov, and V. P. Maltsev, “Polarized light-scattering profile—advanced characterization of nonspherical particles with scanning flow cytometry,” Cytom. Part A 79, 570–579 (2011).
[Crossref]

Netti, P.

D. Dannhauser, D. Rossi, F. Causa, P. Memmolo, A. Finizio, T. Wriedt, J. Hellmers, Y. Eremin, P. Ferraro, and P. Netti, “Optical signature of erythrocytes by light scattering in microfluidic flows,” Lab on a Chip 15, 3278–3285 (2015).
[Crossref] [PubMed]

Noble, J. A.

W. Xie, J. A. Noble, and A. Zisserman, “Microscopy cell counting and detection with fully convolutional regression networks,” Comput. methods biomechanics biomedical engineering: Imaging & Vis. 6, 283–292 (2018).

Noji, H.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref] [PubMed]

Ota, S.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref] [PubMed]

Pantel, K.

C. Alix-Panabières and K. Pantel, “Circulating tumor cells: liquid biopsy of cancer,” Clin. Chem. 59, 110 (2012).

Park, H.

Park, Y.

Pasternack, R. M.

Patterson, J. O.

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. communications 7, 10256 (2016).
[Crossref]

Perfetto, S. P.

S. P. Perfetto, P. K. Chattopadhyay, and M. Roederer, “Seventeen-colour flow cytometry: unravelling the immune system,” Nat. Rev. Immunol. 4, 648 (2004).
[Crossref] [PubMed]

Price, I.

M. Copeland, I. Price, F. Rigaut, G. Bloxham, R. Boz, D. Bundy, B. Espeland, and R. Sharp, “Gmtifs: deformable mirror environmental testing for the on-instrument wavefront sensor,” in Adaptive Optics Systems V, vol. 9909 (International Society for Optics and Photonics, 2016), p. 990980.
[Crossref]

Rees, P.

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. communications 7, 10256 (2016).
[Crossref]

Rigaut, F.

M. Copeland, I. Price, F. Rigaut, G. Bloxham, R. Boz, D. Bundy, B. Espeland, and R. Sharp, “Gmtifs: deformable mirror environmental testing for the on-instrument wavefront sensor,” in Adaptive Optics Systems V, vol. 9909 (International Society for Optics and Photonics, 2016), p. 990980.
[Crossref]

Robles, J. D.

T. T. Wong, A. K. Lau, K. K. Ho, M. Y. Tang, J. D. Robles, X. Wei, A. C. Chan, A. H. Tang, E. Y. Lam, K. K. Wong, and et al., “Asymmetric-detection time-stretch optical microscopy (atom) for ultrafast high-contrast cellular imaging in flow,” Sci. reports 4, 3656 (2014).
[Crossref]

Roederer, M.

S. P. Perfetto, P. K. Chattopadhyay, and M. Roederer, “Seventeen-colour flow cytometry: unravelling the immune system,” Nat. Rev. Immunol. 4, 648 (2004).
[Crossref] [PubMed]

Rossi, D.

D. Dannhauser, D. Rossi, F. Causa, P. Memmolo, A. Finizio, T. Wriedt, J. Hellmers, Y. Eremin, P. Ferraro, and P. Netti, “Optical signature of erythrocytes by light scattering in microfluidic flows,” Lab on a Chip 15, 3278–3285 (2015).
[Crossref] [PubMed]

Sadasivam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, and et al., “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. 109, 11630–11635 (2012).
[Crossref] [PubMed]

Saeys, Y.

Y. Saeys, S. Van Gassen, and B. N. Lambrecht, “Computational flow cytometry: helping to make sense of high-dimensional immunology data,” Nat. Rev. Immunol. 16, 449 (2016).
[Crossref] [PubMed]

Sardo, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and et al., “Tomographic flow cytometry by digital holography,” Light. Sci. & Appl. 6, e16241 (2017).
[Crossref]

Sarvotham, S.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in Computational Imaging IV, vol. 6065 (International Society for Optics and Photonics, 2006), p. 606509.
[Crossref]

Sato, I.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref] [PubMed]

Savoia, R.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and et al., “Tomographic flow cytometry by digital holography,” Light. Sci. & Appl. 6, e16241 (2017).
[Crossref]

Setoyama, K.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref] [PubMed]

Sharp, R.

M. Copeland, I. Price, F. Rigaut, G. Bloxham, R. Boz, D. Bundy, B. Espeland, and R. Sharp, “Gmtifs: deformable mirror environmental testing for the on-instrument wavefront sensor,” in Adaptive Optics Systems V, vol. 9909 (International Society for Optics and Photonics, 2016), p. 990980.
[Crossref]

Shvalov, A. N.

A. N. Shvalov, I. V. Surovtsev, A. V. Chernyshev, J. T. Soini, and V. P. Maltsev, “Particle classification from light scattering with the scanning flow cytometer,” Cytom. The J. Int. Soc. for Anal. Cytol. 37, 215–220 (1999).

Soini, J. T.

A. N. Shvalov, I. V. Surovtsev, A. V. Chernyshev, J. T. Soini, and V. P. Maltsev, “Particle classification from light scattering with the scanning flow cytometer,” Cytom. The J. Int. Soc. for Anal. Cytol. 37, 215–220 (1999).

Sollier, E.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, and et al., “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. 109, 11630–11635 (2012).
[Crossref] [PubMed]

Stewart, J. B.

J. B. Stewart, T. G. Bifano, S. Cornelissen, P. Bierden, B. M. Levine, and T. Cook, “Design and development of a 331-segment tip–tilt–piston mirror array for space-based adaptive optics,” Sensors Actuators A: Phys. 138, 230–238 (2007).
[Crossref]

Strokotov, D. I.

D. I. Strokotov, A. E. Moskalensky, V. M. Nekrasov, and V. P. Maltsev, “Polarized light-scattering profile—advanced characterization of nonspherical particles with scanning flow cytometry,” Cytom. Part A 79, 570–579 (2011).
[Crossref]

Summers, H. D.

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. communications 7, 10256 (2016).
[Crossref]

Surovtsev, I. V.

A. N. Shvalov, I. V. Surovtsev, A. V. Chernyshev, J. T. Soini, and V. P. Maltsev, “Particle classification from light scattering with the scanning flow cytometer,” Cytom. The J. Int. Soc. for Anal. Cytol. 37, 215–220 (1999).

Takhar, D.

M. A. Davenport, M. F. Duarte, M. B. Wakin, J. N. Laska, D. Takhar, K. F. Kelly, and R. G. Baraniuk, “The smashed filter for compressive classification and target recognition,” in Computational Imaging V, vol. 6498 (International Society for Optics and Photonics, 2007), p. 64980H.
[Crossref]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in Computational Imaging IV, vol. 6065 (International Society for Optics and Photonics, 2006), p. 606509.
[Crossref]

Tang, A. H.

T. T. Wong, A. K. Lau, K. K. Ho, M. Y. Tang, J. D. Robles, X. Wei, A. C. Chan, A. H. Tang, E. Y. Lam, K. K. Wong, and et al., “Asymmetric-detection time-stretch optical microscopy (atom) for ultrafast high-contrast cellular imaging in flow,” Sci. reports 4, 3656 (2014).
[Crossref]

Tang, M. Y.

T. T. Wong, A. K. Lau, K. K. Ho, M. Y. Tang, J. D. Robles, X. Wei, A. C. Chan, A. H. Tang, E. Y. Lam, K. K. Wong, and et al., “Asymmetric-detection time-stretch optical microscopy (atom) for ultrafast high-contrast cellular imaging in flow,” Sci. reports 4, 3656 (2014).
[Crossref]

Theis, F. J.

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. communications 7, 10256 (2016).
[Crossref]

Tompkins, R. G.

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. 104, 18892–18897 (2007).
[Crossref] [PubMed]

Toner, M.

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. 104, 18892–18897 (2007).
[Crossref] [PubMed]

Tuchin, V. V.

V. V. Tuchin, Advanced optical flow cytometry: methods and disease diagnoses (John Wiley & Sons, 2011).
[Crossref]

Tycko, D.

D. Tycko, M. Metz, E. Epstein, and A. Grinbaum, “Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration,” Appl. optics 24, 1355–1365 (1985).
[Crossref]

Ugawa, M.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref] [PubMed]

Van Gassen, S.

Y. Saeys, S. Van Gassen, and B. N. Lambrecht, “Computational flow cytometry: helping to make sense of high-dimensional immunology data,” Nat. Rev. Immunol. 16, 449 (2016).
[Crossref] [PubMed]

Villone, M. M.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab on a Chip 18, 126–131 (2018).
[Crossref]

Vital, M.

F. Hammes, M. Berney, Y. Wang, M. Vital, O. Köster, and T. Egli, “Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes,” Water Res. 42, 269–277 (2008).
[Crossref]

Waki, K.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref] [PubMed]

Wakin, M. B.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in Computational Imaging IV, vol. 6065 (International Society for Optics and Photonics, 2006), p. 606509.
[Crossref]

M. A. Davenport, M. F. Duarte, M. B. Wakin, J. N. Laska, D. Takhar, K. F. Kelly, and R. G. Baraniuk, “The smashed filter for compressive classification and target recognition,” in Computational Imaging V, vol. 6498 (International Society for Optics and Photonics, 2007), p. 64980H.
[Crossref]

Wang, Y.

F. Hammes, M. Berney, Y. Wang, M. Vital, O. Köster, and T. Egli, “Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes,” Water Res. 42, 269–277 (2008).
[Crossref]

Wei, X.

T. T. Wong, A. K. Lau, K. K. Ho, M. Y. Tang, J. D. Robles, X. Wei, A. C. Chan, A. H. Tang, E. Y. Lam, K. K. Wong, and et al., “Asymmetric-detection time-stretch optical microscopy (atom) for ultrafast high-contrast cellular imaging in flow,” Sci. reports 4, 3656 (2014).
[Crossref]

Wong, K. K.

T. T. Wong, A. K. Lau, K. K. Ho, M. Y. Tang, J. D. Robles, X. Wei, A. C. Chan, A. H. Tang, E. Y. Lam, K. K. Wong, and et al., “Asymmetric-detection time-stretch optical microscopy (atom) for ultrafast high-contrast cellular imaging in flow,” Sci. reports 4, 3656 (2014).
[Crossref]

Wong, T. T.

T. T. Wong, A. K. Lau, K. K. Ho, M. Y. Tang, J. D. Robles, X. Wei, A. C. Chan, A. H. Tang, E. Y. Lam, K. K. Wong, and et al., “Asymmetric-detection time-stretch optical microscopy (atom) for ultrafast high-contrast cellular imaging in flow,” Sci. reports 4, 3656 (2014).
[Crossref]

Wriedt, T.

D. Dannhauser, D. Rossi, F. Causa, P. Memmolo, A. Finizio, T. Wriedt, J. Hellmers, Y. Eremin, P. Ferraro, and P. Netti, “Optical signature of erythrocytes by light scattering in microfluidic flows,” Lab on a Chip 15, 3278–3285 (2015).
[Crossref] [PubMed]

Xie, H.

J. Zhou, Z. Cao, H. Xie, and L. Xu, “Digital micro-mirror device-based detector for particle-sizing instruments via fraunhofer diffraction,” Appl. optics 54, 5842–5849 (2015).
[Crossref]

Xie, W.

W. Xie, J. A. Noble, and A. Zisserman, “Microscopy cell counting and detection with fully convolutional regression networks,” Comput. methods biomechanics biomedical engineering: Imaging & Vis. 6, 283–292 (2018).

Xu, L.

J. Zhou, Z. Cao, H. Xie, and L. Xu, “Digital micro-mirror device-based detector for particle-sizing instruments via fraunhofer diffraction,” Appl. optics 54, 5842–5849 (2015).
[Crossref]

Yamaguchi, S.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref] [PubMed]

Yang, G.

W. Huang, L. Yang, G. Yang, and F. Li, “Microfluidic multi-angle laser scattering system for rapid and label-free detection of waterborne parasites,” Biomed. optics express 9, 1520–1530 (2018).
[Crossref]

Yang, L.

W. Huang, L. Yang, G. Yang, and F. Li, “Microfluidic multi-angle laser scattering system for rapid and label-free detection of waterborne parasites,” Biomed. optics express 9, 1520–1530 (2018).
[Crossref]

Yeheskely-Hayon, D.

L. Golan, D. Yeheskely-Hayon, L. Minai, and D. Yelin, “High-speed interferometric spectrally encoded flow cytometry,” Opt. letters 37, 5154–5156 (2012).
[Crossref]

L. Golan, D. Yeheskely-Hayon, L. Minai, E. J. Dann, and D. Yelin, “Noninvasive imaging of flowing blood cells using label-free spectrally encoded flow cytometry,” Biomed. optics express 3, 1455–1464 (2012).
[Crossref]

Yelin, D.

L. Golan, D. Yeheskely-Hayon, L. Minai, and D. Yelin, “High-speed interferometric spectrally encoded flow cytometry,” Opt. letters 37, 5154–5156 (2012).
[Crossref]

L. Golan, D. Yeheskely-Hayon, L. Minai, E. J. Dann, and D. Yelin, “Noninvasive imaging of flowing blood cells using label-free spectrally encoded flow cytometry,” Biomed. optics express 3, 1455–1464 (2012).
[Crossref]

Zhang, A. C.

Y. Han, Y. Gu, A. C. Zhang, and Y.-H. Lo, “imaging technologies for flow cytometry,” Lab on a Chip 16, 4639–4647 (2016).
[Crossref]

Zheng, J.-Y.

Zhou, J.

J. Zhou, Z. Cao, H. Xie, and L. Xu, “Digital micro-mirror device-based detector for particle-sizing instruments via fraunhofer diffraction,” Appl. optics 54, 5842–5849 (2015).
[Crossref]

Zhou, T.

X.-W. Chang and T. Zhou, “Miles: Matlab package for solving mixed integer least squares problems,” GPS Solutions 11, 289–294 (2007).
[Crossref]

Zisserman, A.

W. Xie, J. A. Noble, and A. Zisserman, “Microscopy cell counting and detection with fully convolutional regression networks,” Comput. methods biomechanics biomedical engineering: Imaging & Vis. 6, 283–292 (2018).

Appl. optics (2)

J. Zhou, Z. Cao, H. Xie, and L. Xu, “Digital micro-mirror device-based detector for particle-sizing instruments via fraunhofer diffraction,” Appl. optics 54, 5842–5849 (2015).
[Crossref]

D. Tycko, M. Metz, E. Epstein, and A. Grinbaum, “Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration,” Appl. optics 24, 1355–1365 (1985).
[Crossref]

Biomed. optics express (2)

W. Huang, L. Yang, G. Yang, and F. Li, “Microfluidic multi-angle laser scattering system for rapid and label-free detection of waterborne parasites,” Biomed. optics express 9, 1520–1530 (2018).
[Crossref]

L. Golan, D. Yeheskely-Hayon, L. Minai, E. J. Dann, and D. Yelin, “Noninvasive imaging of flowing blood cells using label-free spectrally encoded flow cytometry,” Biomed. optics express 3, 1455–1464 (2012).
[Crossref]

Clin. Chem. (1)

C. Alix-Panabières and K. Pantel, “Circulating tumor cells: liquid biopsy of cancer,” Clin. Chem. 59, 110 (2012).

Comput. methods biomechanics biomedical engineering: Imaging & Vis. (1)

W. Xie, J. A. Noble, and A. Zisserman, “Microscopy cell counting and detection with fully convolutional regression networks,” Comput. methods biomechanics biomedical engineering: Imaging & Vis. 6, 283–292 (2018).

Cytom. Part A (1)

D. I. Strokotov, A. E. Moskalensky, V. M. Nekrasov, and V. P. Maltsev, “Polarized light-scattering profile—advanced characterization of nonspherical particles with scanning flow cytometry,” Cytom. Part A 79, 570–579 (2011).
[Crossref]

Cytom. The J. Int. Soc. for Anal. Cytol. (1)

A. N. Shvalov, I. V. Surovtsev, A. V. Chernyshev, J. T. Soini, and V. P. Maltsev, “Particle classification from light scattering with the scanning flow cytometer,” Cytom. The J. Int. Soc. for Anal. Cytol. 37, 215–220 (1999).

GPS Solutions (1)

X.-W. Chang and T. Zhou, “Miles: Matlab package for solving mixed integer least squares problems,” GPS Solutions 11, 289–294 (2007).
[Crossref]

Lab on a Chip (3)

D. Dannhauser, D. Rossi, F. Causa, P. Memmolo, A. Finizio, T. Wriedt, J. Hellmers, Y. Eremin, P. Ferraro, and P. Netti, “Optical signature of erythrocytes by light scattering in microfluidic flows,” Lab on a Chip 15, 3278–3285 (2015).
[Crossref] [PubMed]

Y. Han, Y. Gu, A. C. Zhang, and Y.-H. Lo, “imaging technologies for flow cytometry,” Lab on a Chip 16, 4639–4647 (2016).
[Crossref]

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab on a Chip 18, 126–131 (2018).
[Crossref]

Light. Sci. & Appl. (1)

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and et al., “Tomographic flow cytometry by digital holography,” Light. Sci. & Appl. 6, e16241 (2017).
[Crossref]

Nat. communications (1)

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter, and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. communications 7, 10256 (2016).
[Crossref]

Nat. Rev. Immunol. (2)

S. P. Perfetto, P. K. Chattopadhyay, and M. Roederer, “Seventeen-colour flow cytometry: unravelling the immune system,” Nat. Rev. Immunol. 4, 648 (2004).
[Crossref] [PubMed]

Y. Saeys, S. Van Gassen, and B. N. Lambrecht, “Computational flow cytometry: helping to make sense of high-dimensional immunology data,” Nat. Rev. Immunol. 16, 449 (2016).
[Crossref] [PubMed]

Opt. express (2)

Opt. letters (1)

L. Golan, D. Yeheskely-Hayon, L. Minai, and D. Yelin, “High-speed interferometric spectrally encoded flow cytometry,” Opt. letters 37, 5154–5156 (2012).
[Crossref]

Proc. Natl. Acad. Sci. (2)

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, and et al., “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. 109, 11630–11635 (2012).
[Crossref] [PubMed]

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. 104, 18892–18897 (2007).
[Crossref] [PubMed]

Sci. reports (1)

T. T. Wong, A. K. Lau, K. K. Ho, M. Y. Tang, J. D. Robles, X. Wei, A. C. Chan, A. H. Tang, E. Y. Lam, K. K. Wong, and et al., “Asymmetric-detection time-stretch optical microscopy (atom) for ultrafast high-contrast cellular imaging in flow,” Sci. reports 4, 3656 (2014).
[Crossref]

Science (1)

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref] [PubMed]

Sensors Actuators A: Phys. (1)

J. B. Stewart, T. G. Bifano, S. Cornelissen, P. Bierden, B. M. Levine, and T. Cook, “Design and development of a 331-segment tip–tilt–piston mirror array for space-based adaptive optics,” Sensors Actuators A: Phys. 138, 230–238 (2007).
[Crossref]

Water Res. (1)

F. Hammes, M. Berney, Y. Wang, M. Vital, O. Köster, and T. Egli, “Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes,” Water Res. 42, 269–277 (2008).
[Crossref]

Other (4)

V. V. Tuchin, Advanced optical flow cytometry: methods and disease diagnoses (John Wiley & Sons, 2011).
[Crossref]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in Computational Imaging IV, vol. 6065 (International Society for Optics and Photonics, 2006), p. 606509.
[Crossref]

M. A. Davenport, M. F. Duarte, M. B. Wakin, J. N. Laska, D. Takhar, K. F. Kelly, and R. G. Baraniuk, “The smashed filter for compressive classification and target recognition,” in Computational Imaging V, vol. 6498 (International Society for Optics and Photonics, 2007), p. 64980H.
[Crossref]

M. Copeland, I. Price, F. Rigaut, G. Bloxham, R. Boz, D. Bundy, B. Espeland, and R. Sharp, “Gmtifs: deformable mirror environmental testing for the on-instrument wavefront sensor,” in Adaptive Optics Systems V, vol. 9909 (International Society for Optics and Photonics, 2016), p. 990980.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematics of the scattering patterns with fully and partially coherent illumination. Fully coherent laser illumination causes scattered light from different particles to interfere. With partially coherent illumination, patterns add linearly, facilitating the identification of multiple particles within a large FOV.
Fig. 2
Fig. 2 (a) Schematic of our MFCI flow cytometry setup. Dotted lines indicate conjugate object/image planes. For simplicity, the camera that images the DM plane is not shown. (b) Schematic of four basis patterns on the DM. Actuator tilts are applied such that each group of similarly tilted segments redirects light onto an associated detector/channel. (c) Image of the DM plane without the application of actuator voltages (i.e. flat). The size of the bright spot is an indication of spatial coherence range, controlled by the adjustable iris, which is adjusted here to focus most of the light power onto the central DM segment (ch1)
Fig. 3
Fig. 3 (a) Corrected signals from the four channels. Conventional least square (LS) reconstruction is applied to the signals. Two traces representing the number of 6μm beads and 10μm beads are shown in (b) and (c), respectively. To the right of each trace is the corresponding histogram, showing that most numbers cluster about non-negative integers. (d) and (e) are the LS reconstruction results with non-negative integer constraint. (f) compares our reconstruction results with results obtained from ground truth images. Five example images (acquired by the CCD camera) are shown, associated with the red dotted lines in (d) and (e). A reconstruction is considered accurate when both number and types of beads are correct. We achieved 91% accuracy in this experiment.
Fig. 4
Fig. 4 Estimation of flow velocity and throughput. (a) Number of 6μm beads, with peaks indicated. (b) Distribution of the width of the peaks. The median peak width is used to estimate local flow velocity. (c) Estimated throughput is obtained by summing the peak values in (a), and inferred to be more than 10,000 particles/s.
Fig. 5
Fig. 5 Comparison of the depth of field (DOF) allowed for MCFI flow cytometry versus camera-based widefield imaging (IFC). Top trace shows reconstructed particle number as a function of defocus (correct answer is 2). Bottom trace shows image contrast within red-circle delimited FOV (also shown are representative images associated with dashed lines).

Metrics