Abstract

We propose and experimentally prove an algorithm for demodulation of interferometric signals, modified for use in a totally implantable hearing aid device. A fiber optic configuration, which generates two quasi-quadrature signals by a passive 3x3 coupler, for a non-contact detection of the middle ear ossicle vibration is employed. We simulated the ossicle vibration and large movements and demonstrated the effectiveness of the algorithm to compensate changes of the signal DC values and the phase shift introduced by the coupler. Applying the proposed algorithm we obtained the output signal stability better than 0.5 dB, and the system equivalent input noise of about 31 dB (A) SPL @ 1 kHz.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Computer-aided classification of sickle cell retinopathy using quantitative features in optical coherence tomography angiography

Minhaj Alam, Damber Thapa, Jennifer I. Lim, Dingcai Cao, and Xincheng Yao
Biomed. Opt. Express 8(9) 4206-4216 (2017)

Non-invasive monitoring of skin inflammation using an oxygen-sensing paint-on bandage

Zongxi Li, Nalu Navarro-Alvarez, Emily J. Keeley, Nicholas H. Nowell, Beatriz M. M. Goncalves, Christene A. Huang, and Conor L. Evans
Biomed. Opt. Express 8(10) 4640-4651 (2017)

Vascular patterning of subcutaneous mouse fibrosarcomas expressing individual VEGF isoforms can be differentiated using angiographic optical coherence tomography

Robert A. Byers, Matthew Fisher, Nicola J. Brown, Gillian M. Tozer, and Stephen J. Matcher
Biomed. Opt. Express 8(10) 4551-4567 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Haynes, J. A. Young, G. B. Wanna, and M. E. Glasscock, “Middle ear Implantable hearing devices: an overview,” Trends Amplif. 13(3), 206–214 (2009).
    [Crossref] [PubMed]
  2. D. Calero, S. Paul, and J. A. Cordioli, “On implantable sensors for totally implantable hearing devices,” J. Acoust. Soc. Am. 140(4), 3034 (2016).
    [Crossref]
  3. N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
    [Crossref] [PubMed]
  4. U. B. Willi, “Middle-ear Mechanics: The Dynamic Behavior of the Incudo-Malleolar Joint and its Role During the Transmission of Sound,” PhD Thesis, Uni. Zürich (2003)
  5. K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3x3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
    [Crossref]
  6. L. A. Didyk, V. B. Bogdanov, V. A. Lysenko, N. P. Didyk, Y. P. Gorgo, and J. J. Dirckx, “The effects of slight pressure oscillations in the far infrasound frequency range on the pars flaccida in gerbil and rabbit ears,” Int. J. Biometeorol. 51(3), 221–231 (2006).
    [Crossref] [PubMed]
  7. A. Dandridge, C. C. Wang, A. B. Tveten, and A. M. Yurek, “Performance of 3x3 Couplers in Fiber Optic Sensor Systems,” Proc. SPIE 2360, 549–552 (1994).
    [Crossref]
  8. T. Požar, P. Gregorcic, and J. Možina, “A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer,” Appl. Phys. B 105(3), 575–585 (2011).
    [Crossref]
  9. A. K. Maini, “Laser Safety” in Lasers and Optoelectronics Fundamentals, Devices and Applications, A.K.Maini, ed. (John Wiley and Sons Ltd, West Susses, UK, 2013)
  10. Z. Djinovic, S. Mitic, R. Pavelka, and D. Vujanic, A. Vujanic, Ch. Kment, “Contactless technique for in-vivo mesurement of amplitude vibrations of the auditory ossicles”, Proc. 24th International Conference on Microelectronics (MIEL2004), vol. 1, Nis, Serbia and Montenegro, 16–19 May, 2004.
  11. ANSI S3.22–2003, Specification of hearing aid characteristics, American National Standards Institute, 2003.
  12. S. Rajan, S. Wang, R. Inkol, and A. Joyal, “Efficient Approximations for the Arctangent Function,” in Streamlining Digital Signal Processing, R. G. Lyons, ed. (IEEE, John Wiley & Sons, 2012)
  13. J. D. Lewis, S. S. Goodman, and R. A. Bentler, “Measurement of hearing aid internal noise,” J. Acoust. Soc. Am. 127(4), 2521–2528 (2010).
    [Crossref] [PubMed]
  14. J. C. Middlebrooks and D. M. Green, “Sound Localization by Human Listeners,” Annu. Rev. Psychol. 42(1), 135–159 (1991).
    [Crossref] [PubMed]

2016 (1)

D. Calero, S. Paul, and J. A. Cordioli, “On implantable sensors for totally implantable hearing devices,” J. Acoust. Soc. Am. 140(4), 3034 (2016).
[Crossref]

2011 (1)

T. Požar, P. Gregorcic, and J. Možina, “A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer,” Appl. Phys. B 105(3), 575–585 (2011).
[Crossref]

2010 (1)

J. D. Lewis, S. S. Goodman, and R. A. Bentler, “Measurement of hearing aid internal noise,” J. Acoust. Soc. Am. 127(4), 2521–2528 (2010).
[Crossref] [PubMed]

2009 (1)

D. S. Haynes, J. A. Young, G. B. Wanna, and M. E. Glasscock, “Middle ear Implantable hearing devices: an overview,” Trends Amplif. 13(3), 206–214 (2009).
[Crossref] [PubMed]

2006 (2)

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

L. A. Didyk, V. B. Bogdanov, V. A. Lysenko, N. P. Didyk, Y. P. Gorgo, and J. J. Dirckx, “The effects of slight pressure oscillations in the far infrasound frequency range on the pars flaccida in gerbil and rabbit ears,” Int. J. Biometeorol. 51(3), 221–231 (2006).
[Crossref] [PubMed]

1994 (1)

A. Dandridge, C. C. Wang, A. B. Tveten, and A. M. Yurek, “Performance of 3x3 Couplers in Fiber Optic Sensor Systems,” Proc. SPIE 2360, 549–552 (1994).
[Crossref]

1991 (1)

J. C. Middlebrooks and D. M. Green, “Sound Localization by Human Listeners,” Annu. Rev. Psychol. 42(1), 135–159 (1991).
[Crossref] [PubMed]

1982 (1)

K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3x3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
[Crossref]

Bentler, R. A.

J. D. Lewis, S. S. Goodman, and R. A. Bentler, “Measurement of hearing aid internal noise,” J. Acoust. Soc. Am. 127(4), 2521–2528 (2010).
[Crossref] [PubMed]

Bogdanov, V. B.

L. A. Didyk, V. B. Bogdanov, V. A. Lysenko, N. P. Didyk, Y. P. Gorgo, and J. J. Dirckx, “The effects of slight pressure oscillations in the far infrasound frequency range on the pars flaccida in gerbil and rabbit ears,” Int. J. Biometeorol. 51(3), 221–231 (2006).
[Crossref] [PubMed]

Calero, D.

D. Calero, S. Paul, and J. A. Cordioli, “On implantable sensors for totally implantable hearing devices,” J. Acoust. Soc. Am. 140(4), 3034 (2016).
[Crossref]

Chen, F.

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Choudhury, N.

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Cordioli, J. A.

D. Calero, S. Paul, and J. A. Cordioli, “On implantable sensors for totally implantable hearing devices,” J. Acoust. Soc. Am. 140(4), 3034 (2016).
[Crossref]

Dandridge, A.

A. Dandridge, C. C. Wang, A. B. Tveten, and A. M. Yurek, “Performance of 3x3 Couplers in Fiber Optic Sensor Systems,” Proc. SPIE 2360, 549–552 (1994).
[Crossref]

K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3x3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
[Crossref]

Didyk, L. A.

L. A. Didyk, V. B. Bogdanov, V. A. Lysenko, N. P. Didyk, Y. P. Gorgo, and J. J. Dirckx, “The effects of slight pressure oscillations in the far infrasound frequency range on the pars flaccida in gerbil and rabbit ears,” Int. J. Biometeorol. 51(3), 221–231 (2006).
[Crossref] [PubMed]

Didyk, N. P.

L. A. Didyk, V. B. Bogdanov, V. A. Lysenko, N. P. Didyk, Y. P. Gorgo, and J. J. Dirckx, “The effects of slight pressure oscillations in the far infrasound frequency range on the pars flaccida in gerbil and rabbit ears,” Int. J. Biometeorol. 51(3), 221–231 (2006).
[Crossref] [PubMed]

Dirckx, J. J.

L. A. Didyk, V. B. Bogdanov, V. A. Lysenko, N. P. Didyk, Y. P. Gorgo, and J. J. Dirckx, “The effects of slight pressure oscillations in the far infrasound frequency range on the pars flaccida in gerbil and rabbit ears,” Int. J. Biometeorol. 51(3), 221–231 (2006).
[Crossref] [PubMed]

Glasscock, M. E.

D. S. Haynes, J. A. Young, G. B. Wanna, and M. E. Glasscock, “Middle ear Implantable hearing devices: an overview,” Trends Amplif. 13(3), 206–214 (2009).
[Crossref] [PubMed]

Goodman, S. S.

J. D. Lewis, S. S. Goodman, and R. A. Bentler, “Measurement of hearing aid internal noise,” J. Acoust. Soc. Am. 127(4), 2521–2528 (2010).
[Crossref] [PubMed]

Gorgo, Y. P.

L. A. Didyk, V. B. Bogdanov, V. A. Lysenko, N. P. Didyk, Y. P. Gorgo, and J. J. Dirckx, “The effects of slight pressure oscillations in the far infrasound frequency range on the pars flaccida in gerbil and rabbit ears,” Int. J. Biometeorol. 51(3), 221–231 (2006).
[Crossref] [PubMed]

Green, D. M.

J. C. Middlebrooks and D. M. Green, “Sound Localization by Human Listeners,” Annu. Rev. Psychol. 42(1), 135–159 (1991).
[Crossref] [PubMed]

Gregorcic, P.

T. Požar, P. Gregorcic, and J. Možina, “A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer,” Appl. Phys. B 105(3), 575–585 (2011).
[Crossref]

Haynes, D. S.

D. S. Haynes, J. A. Young, G. B. Wanna, and M. E. Glasscock, “Middle ear Implantable hearing devices: an overview,” Trends Amplif. 13(3), 206–214 (2009).
[Crossref] [PubMed]

Jacques, S. L.

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Koo, K. P.

K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3x3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
[Crossref]

Lewis, J. D.

J. D. Lewis, S. S. Goodman, and R. A. Bentler, “Measurement of hearing aid internal noise,” J. Acoust. Soc. Am. 127(4), 2521–2528 (2010).
[Crossref] [PubMed]

Lysenko, V. A.

L. A. Didyk, V. B. Bogdanov, V. A. Lysenko, N. P. Didyk, Y. P. Gorgo, and J. J. Dirckx, “The effects of slight pressure oscillations in the far infrasound frequency range on the pars flaccida in gerbil and rabbit ears,” Int. J. Biometeorol. 51(3), 221–231 (2006).
[Crossref] [PubMed]

Matthews, S.

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Middlebrooks, J. C.

J. C. Middlebrooks and D. M. Green, “Sound Localization by Human Listeners,” Annu. Rev. Psychol. 42(1), 135–159 (1991).
[Crossref] [PubMed]

Možina, J.

T. Požar, P. Gregorcic, and J. Možina, “A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer,” Appl. Phys. B 105(3), 575–585 (2011).
[Crossref]

Nuttall, A. L.

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Paul, S.

D. Calero, S. Paul, and J. A. Cordioli, “On implantable sensors for totally implantable hearing devices,” J. Acoust. Soc. Am. 140(4), 3034 (2016).
[Crossref]

Požar, T.

T. Požar, P. Gregorcic, and J. Možina, “A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer,” Appl. Phys. B 105(3), 575–585 (2011).
[Crossref]

Song, G.

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Tschinkel, T.

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Tveten, A. B.

A. Dandridge, C. C. Wang, A. B. Tveten, and A. M. Yurek, “Performance of 3x3 Couplers in Fiber Optic Sensor Systems,” Proc. SPIE 2360, 549–552 (1994).
[Crossref]

K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3x3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
[Crossref]

Wang, C. C.

A. Dandridge, C. C. Wang, A. B. Tveten, and A. M. Yurek, “Performance of 3x3 Couplers in Fiber Optic Sensor Systems,” Proc. SPIE 2360, 549–552 (1994).
[Crossref]

Wanna, G. B.

D. S. Haynes, J. A. Young, G. B. Wanna, and M. E. Glasscock, “Middle ear Implantable hearing devices: an overview,” Trends Amplif. 13(3), 206–214 (2009).
[Crossref] [PubMed]

Young, J. A.

D. S. Haynes, J. A. Young, G. B. Wanna, and M. E. Glasscock, “Middle ear Implantable hearing devices: an overview,” Trends Amplif. 13(3), 206–214 (2009).
[Crossref] [PubMed]

Yurek, A. M.

A. Dandridge, C. C. Wang, A. B. Tveten, and A. M. Yurek, “Performance of 3x3 Couplers in Fiber Optic Sensor Systems,” Proc. SPIE 2360, 549–552 (1994).
[Crossref]

Zheng, J.

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Annu. Rev. Psychol. (1)

J. C. Middlebrooks and D. M. Green, “Sound Localization by Human Listeners,” Annu. Rev. Psychol. 42(1), 135–159 (1991).
[Crossref] [PubMed]

Appl. Phys. B (1)

T. Požar, P. Gregorcic, and J. Možina, “A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer,” Appl. Phys. B 105(3), 575–585 (2011).
[Crossref]

Appl. Phys. Lett. (1)

K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3x3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
[Crossref]

Hear. Res. (1)

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Int. J. Biometeorol. (1)

L. A. Didyk, V. B. Bogdanov, V. A. Lysenko, N. P. Didyk, Y. P. Gorgo, and J. J. Dirckx, “The effects of slight pressure oscillations in the far infrasound frequency range on the pars flaccida in gerbil and rabbit ears,” Int. J. Biometeorol. 51(3), 221–231 (2006).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (2)

J. D. Lewis, S. S. Goodman, and R. A. Bentler, “Measurement of hearing aid internal noise,” J. Acoust. Soc. Am. 127(4), 2521–2528 (2010).
[Crossref] [PubMed]

D. Calero, S. Paul, and J. A. Cordioli, “On implantable sensors for totally implantable hearing devices,” J. Acoust. Soc. Am. 140(4), 3034 (2016).
[Crossref]

Proc. SPIE (1)

A. Dandridge, C. C. Wang, A. B. Tveten, and A. M. Yurek, “Performance of 3x3 Couplers in Fiber Optic Sensor Systems,” Proc. SPIE 2360, 549–552 (1994).
[Crossref]

Trends Amplif. (1)

D. S. Haynes, J. A. Young, G. B. Wanna, and M. E. Glasscock, “Middle ear Implantable hearing devices: an overview,” Trends Amplif. 13(3), 206–214 (2009).
[Crossref] [PubMed]

Other (5)

U. B. Willi, “Middle-ear Mechanics: The Dynamic Behavior of the Incudo-Malleolar Joint and its Role During the Transmission of Sound,” PhD Thesis, Uni. Zürich (2003)

A. K. Maini, “Laser Safety” in Lasers and Optoelectronics Fundamentals, Devices and Applications, A.K.Maini, ed. (John Wiley and Sons Ltd, West Susses, UK, 2013)

Z. Djinovic, S. Mitic, R. Pavelka, and D. Vujanic, A. Vujanic, Ch. Kment, “Contactless technique for in-vivo mesurement of amplitude vibrations of the auditory ossicles”, Proc. 24th International Conference on Microelectronics (MIEL2004), vol. 1, Nis, Serbia and Montenegro, 16–19 May, 2004.

ANSI S3.22–2003, Specification of hearing aid characteristics, American National Standards Institute, 2003.

S. Rajan, S. Wang, R. Inkol, and A. Joyal, “Efficient Approximations for the Arctangent Function,” in Streamlining Digital Signal Processing, R. G. Lyons, ed. (IEEE, John Wiley & Sons, 2012)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental set-up: FOC 3x3-fiber optic coupler, VCSEL-optical source, OI-optical isolator, PD-photodiodes, DAQ-acquisition card, MG-index matching gel, SA-sensing arm, RA-reference arm, PZT-piezotransducer, MTP-motorized positioner, M-mirror, SG-signal generator.
Fig. 2
Fig. 2 Lissajous representation of two raw quasi-quadrature photodetector signals (left) during 20 s of simultaneous target vibration and moving. The ellipses, representing the minimum and maximum coupler phase shift, are labeled. The corresponding variations of the 3x3 coupler phase shift and changes of the DC levels, during the 500 μm long scan, calculated by the proposed algorithm, are shown in the right graph.
Fig. 3
Fig. 3 The amplitude spectral density of one of the raw photodetector signals (left) and the output audio signals, before and after the A-weighting (right). The output audio signal is obtained by using the proposed algorithm, where the coupler phase shift and photodetector signal DC values are dynamically adjusted.
Fig. 4
Fig. 4 The acoustical signal after the full processing, obtained by using the proposed algorithm, with the adjustable phase shift (red), and using the classical approach, with the fixed phase shift of 120 °(black). The right graph is a zoom-in of the left one.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V PDX ( t )= X DC + X A cos( k[ Vsinωt+L(t) ] ) V PDY ( t )= Y DC + Y A cos( k[ Vsinωt+L(t) ]+Ψ(t) )
SX( t )=( V PDX ( t ) X DC )/ X A =cos( k[ Vsinωt+L(t) ] ) SY( t )=( V PDY ( t ) Y DC )/ Y A =cos( k[ Vsinωt+L(t) ]+Ψ(t) )
tan( k[ Vsinωt+L(t) ] )= SX( t )cos(Ψ(t))SY( t ) SX( t )sin(Ψ(t))
Ψ n = tan 1 ( SX( t n ) SY( t n ) ) | at t n whenS X 2 ( t n )+S Y 2 ( t n )=max

Metrics