Abstract

In the present paper we show the optoacoustic (OA) response of two solutions of gold nanorods dispersed in distilled water (0.8 mg/ml) and hosted in tissue-like phantoms by using small arrays of HPDLs at 870 and 905 nm as excitation sources. The HPDLs are coupled to a 7-to-1 optical fiber bundle with output diameter of 675 μm. Each solution of gold nanorods exhibits an absorption peak close to the operating wavelength, i.e. ~860 nm and ~900 nm, respectively, to optimize the generation of OA signals. The phantoms are made of agar, intralipid and hemoglobin to simulate a soft biological tissue with reduced properties of scattering. Three 3-mm diameter tubes done in the phantoms at different depths (0.9 cm, 1.8 cm, and 2.7 cm) have been filled with gold nanorods. In this way, OA signals with appreciable SNR are generated at different depths in the phantoms. The high OA response exhibited by gold nanorods suggests their application in OA spectroscopy as exogenous contrast agents to detect and monitor emerging diseases like metastasis and arteriosclerotic plaques.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

L. Leggio, S. Gawali, D. Gallego, S. Rodríguez, M. Sánchez, G. Carpintero, and H. Lamela, "Optoacoustic response of gold nanorods in soft phantoms using high-power diode laser assemblies at 870 and 905 nm: erratum," Biomed. Opt. Express 8, 4919-4920 (2017)
https://www.osapublishing.org/boe/abstract.cfm?uri=boe-8-11-4919

OSA Recommended Articles
Pulsed laser damage of gold nanorods in turbid media and its impact on multi-spectral photoacoustic imaging

Andrew M. Fales, William C. Vogt, Keith A. Wear, Ilko K. Ilev, and T. Joshua Pfefer
Biomed. Opt. Express 10(4) 1919-1934 (2019)

Multiplex photoacoustic molecular imaging using targeted silica-coated gold nanorods

Carolyn L. Bayer, Yun-Sheng Chen, Seungsoo Kim, Srivalleesha Mallidi, Konstantin Sokolov, and Stanislav Emelianov
Biomed. Opt. Express 2(7) 1828-1835 (2011)

Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm

Alexander S. Hannah, Donald VanderLaan, Yun-Sheng Chen, and Stanislav Y. Emelianov
Biomed. Opt. Express 5(9) 3042-3052 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. Sun, X. Chen, W. Chai, X. Fei, C. Fu, X. Yan, Y. Zhan, K. Chen, K. Shen, and F. Yan, “Breast cancer: diffusion Kurtosis MR imaging—diagnostic accuracy and correlation with clinical-pathologic factors,” RSNA Radiology 277(1), 46 (2015).
  2. M. Priya, B. S. S. Rao, S. Chandra, S. Ray, S. Mathew, A. Datta, S. G. Nayak, and K. K. Mahato, “Photoacoustic spectroscopy based investigatory approach to discriminate breast cancer from normal: a pilot study,” Proc. SPIE 9689, 968943 (2016).
  3. J. Raftery and M. Chorozoglou, “Possible net harms of breast cancer screening: updated modelling of Forrest report,” British Dental Journal 212(129), 8 (2012).
  4. P. N. T. Wells, “Ultrasonic imaging of the human body,” Rep. Prog. Phys. 62(5), 671–722 (1999).
    [Crossref]
  5. D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
    [Crossref] [PubMed]
  6. A. Herment, J. P. Guglielmi, P. Dumee, P. Peronneau, and P. Delouche, “Limitations of ultrasound imaging and image restoration,” Ultrasonics 25(5), 267–273 (1987).
    [Crossref] [PubMed]
  7. T. Kozacki, M. Kujawińska, and P. Kniażewski, “Investigation of limitations of optical diffraction tomography,” Opto-Electron. Rev. 15(2), 102–109 (2007).
    [Crossref]
  8. T. A. Filimonova, D. S. Volkov, M. A. Proskurnin, and I. M. Pelivanov, “Optoacoustic spectroscopy for real-time monitoring of strongly light-absorbing solutions in applications to analytical chemistry,” Photoacoustics 1(3-4), 54–61 (2013).
    [Crossref] [PubMed]
  9. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [Crossref] [PubMed]
  10. L. V. Wang, “Photoacoustic tomography: high-resolution imaging of optical contrast in vivo at new depths,” IEEE LEOS Annual Meeting Conference Proceedings 343 (2009).
    [Crossref]
  11. J. Xia, J. Yao, and L. V. Wang, “Photoacoustic tomography: principles and advances,” Electromagn Waves (Camb) 147, 1–22 (2014).
    [Crossref] [PubMed]
  12. J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
    [Crossref] [PubMed]
  13. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [Crossref] [PubMed]
  14. D. W. Ball, “Photoacoustic spectroscopy,” Spectroscopy (Springf.) 21(9), 1975 (2006).
  15. C. Lutzweiler and D. Razansky, “Optoacoustic Imaging and Tomography: Reconstruction Approaches and Outstanding Challenges in Image Performance and Quantification,” Sensors (Basel) 13(6), 7345–7384 (2013).
    [Crossref] [PubMed]
  16. R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
    [Crossref] [PubMed]
  17. W. Li and X. Chen, “Gold nanoparticles for photoacoustic imaging,” Nanomedicine (Lond.) 10(2), 299–320 (2015).
    [Crossref] [PubMed]
  18. X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
    [Crossref]
  19. J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J.-S. Kim, S. K. Kim, M.-H. Cho, and T. Hyeon, “Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 45(46), 7754–7758 (2006).
    [Crossref] [PubMed]
  20. X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Applications of gold nanorods for cancer imaging and photothermal therapy,” Methods in Molecular Biology 624, 343–357 (2010).
  21. V.P. Zharov, E.I. Galanzha, E.V. Shashkov, J.W. Kim, N.G. Khlebtsov, and V.V. Tuchin, “Photoacoustic flow cytometry: Principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12(5), 051503 (2007).
  22. E. I. Galanzha, E. V. Shashkov, V. V. Tuchin, and V. P. Zharov, “In vivo multispectral, multiparameter, photoacoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes,” Cytometry A 73(10), 884–894 (2008).
    [Crossref] [PubMed]
  23. E. I. Galanzha, M. S. Kokoska, E. V. Shashkov, J. W. Kim, V. V. Tuchin, and V. P. Zharov, “In vivo fiber photoacoustic detection and photothermal purging of metastasis targeted by nanoparticles in sentinel lymph nodes at single cell level,” J. Biophotonics 2, 528–539 (2009).
    [Crossref] [PubMed]
  24. K. H. Song, C. Kim, C. M. Cobley, Y. Xia, and L. V. Wang, “Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model,” Nano Lett. 9(1), 183–188 (2009).
    [Crossref] [PubMed]
  25. K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
    [Crossref] [PubMed]
  26. R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21(3), 134–139 (2006).
    [Crossref] [PubMed]
  27. T. J. Allen and P. C. Beard, “Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging,” Opt. Lett. 31(23), 3462–3464 (2006).
    [Crossref] [PubMed]
  28. L.M. Zeng, G.D. Liu, D.W. Yang, and X.R. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett. 102(5), 053704 (2013).
  29. K. Daoudi, P. J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22(21), 26365–26374 (2014).
    [Crossref] [PubMed]
  30. V. Cunningham and H. Lamela, “Laser optoacoustic spectroscopy of gold nanorods within a highly scattering medium,” Opt. Lett. 35(20), 3387–3389 (2010).
    [Crossref] [PubMed]
  31. L. Leggio, D. C. Gallego, S. B. Gawali, E. Dadrasnia, M. Sánchez, S. Rodríguez, M. González, G. Carpintero, M. Osiński, and H. Lamela, “Optoacoustic response from graphene-based solutions embedded in optical phantoms by using 905-nm high-power diode-laser assemblies,” SPIE Proc. 9708, 97083M (12 pp.), (2016).
  32. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  33. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
    [Crossref]
  34. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]

2016 (1)

M. Priya, B. S. S. Rao, S. Chandra, S. Ray, S. Mathew, A. Datta, S. G. Nayak, and K. K. Mahato, “Photoacoustic spectroscopy based investigatory approach to discriminate breast cancer from normal: a pilot study,” Proc. SPIE 9689, 968943 (2016).

2015 (2)

K. Sun, X. Chen, W. Chai, X. Fei, C. Fu, X. Yan, Y. Zhan, K. Chen, K. Shen, and F. Yan, “Breast cancer: diffusion Kurtosis MR imaging—diagnostic accuracy and correlation with clinical-pathologic factors,” RSNA Radiology 277(1), 46 (2015).

W. Li and X. Chen, “Gold nanoparticles for photoacoustic imaging,” Nanomedicine (Lond.) 10(2), 299–320 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (6)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

L.M. Zeng, G.D. Liu, D.W. Yang, and X.R. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett. 102(5), 053704 (2013).

J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref] [PubMed]

C. Lutzweiler and D. Razansky, “Optoacoustic Imaging and Tomography: Reconstruction Approaches and Outstanding Challenges in Image Performance and Quantification,” Sensors (Basel) 13(6), 7345–7384 (2013).
[Crossref] [PubMed]

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref] [PubMed]

T. A. Filimonova, D. S. Volkov, M. A. Proskurnin, and I. M. Pelivanov, “Optoacoustic spectroscopy for real-time monitoring of strongly light-absorbing solutions in applications to analytical chemistry,” Photoacoustics 1(3-4), 54–61 (2013).
[Crossref] [PubMed]

2012 (2)

J. Raftery and M. Chorozoglou, “Possible net harms of breast cancer screening: updated modelling of Forrest report,” British Dental Journal 212(129), 8 (2012).

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

2010 (3)

V. Cunningham and H. Lamela, “Laser optoacoustic spectroscopy of gold nanorods within a highly scattering medium,” Opt. Lett. 35(20), 3387–3389 (2010).
[Crossref] [PubMed]

X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Applications of gold nanorods for cancer imaging and photothermal therapy,” Methods in Molecular Biology 624, 343–357 (2010).

X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
[Crossref]

2009 (4)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

E. I. Galanzha, M. S. Kokoska, E. V. Shashkov, J. W. Kim, V. V. Tuchin, and V. P. Zharov, “In vivo fiber photoacoustic detection and photothermal purging of metastasis targeted by nanoparticles in sentinel lymph nodes at single cell level,” J. Biophotonics 2, 528–539 (2009).
[Crossref] [PubMed]

K. H. Song, C. Kim, C. M. Cobley, Y. Xia, and L. V. Wang, “Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model,” Nano Lett. 9(1), 183–188 (2009).
[Crossref] [PubMed]

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
[Crossref] [PubMed]

2008 (2)

E. I. Galanzha, E. V. Shashkov, V. V. Tuchin, and V. P. Zharov, “In vivo multispectral, multiparameter, photoacoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes,” Cytometry A 73(10), 884–894 (2008).
[Crossref] [PubMed]

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

2007 (2)

T. Kozacki, M. Kujawińska, and P. Kniażewski, “Investigation of limitations of optical diffraction tomography,” Opto-Electron. Rev. 15(2), 102–109 (2007).
[Crossref]

V.P. Zharov, E.I. Galanzha, E.V. Shashkov, J.W. Kim, N.G. Khlebtsov, and V.V. Tuchin, “Photoacoustic flow cytometry: Principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12(5), 051503 (2007).

2006 (6)

R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21(3), 134–139 (2006).
[Crossref] [PubMed]

T. J. Allen and P. C. Beard, “Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging,” Opt. Lett. 31(23), 3462–3464 (2006).
[Crossref] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

D. W. Ball, “Photoacoustic spectroscopy,” Spectroscopy (Springf.) 21(9), 1975 (2006).

J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J.-S. Kim, S. K. Kim, M.-H. Cho, and T. Hyeon, “Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 45(46), 7754–7758 (2006).
[Crossref] [PubMed]

1999 (1)

P. N. T. Wells, “Ultrasonic imaging of the human body,” Rep. Prog. Phys. 62(5), 671–722 (1999).
[Crossref]

1987 (1)

A. Herment, J. P. Guglielmi, P. Dumee, P. Peronneau, and P. Delouche, “Limitations of ultrasound imaging and image restoration,” Ultrasonics 25(5), 267–273 (1987).
[Crossref] [PubMed]

Allen, T. J.

Athanasiou, T.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Ball, D. W.

D. W. Ball, “Photoacoustic spectroscopy,” Spectroscopy (Springf.) 21(9), 1975 (2006).

Beard, P. C.

Brands, P.

Chai, W.

K. Sun, X. Chen, W. Chai, X. Fei, C. Fu, X. Yan, Y. Zhan, K. Chen, K. Shen, and F. Yan, “Breast cancer: diffusion Kurtosis MR imaging—diagnostic accuracy and correlation with clinical-pathologic factors,” RSNA Radiology 277(1), 46 (2015).

Chandra, S.

M. Priya, B. S. S. Rao, S. Chandra, S. Ray, S. Mathew, A. Datta, S. G. Nayak, and K. K. Mahato, “Photoacoustic spectroscopy based investigatory approach to discriminate breast cancer from normal: a pilot study,” Proc. SPIE 9689, 968943 (2016).

Chen, K.

K. Sun, X. Chen, W. Chai, X. Fei, C. Fu, X. Yan, Y. Zhan, K. Chen, K. Shen, and F. Yan, “Breast cancer: diffusion Kurtosis MR imaging—diagnostic accuracy and correlation with clinical-pathologic factors,” RSNA Radiology 277(1), 46 (2015).

Chen, X.

K. Sun, X. Chen, W. Chai, X. Fei, C. Fu, X. Yan, Y. Zhan, K. Chen, K. Shen, and F. Yan, “Breast cancer: diffusion Kurtosis MR imaging—diagnostic accuracy and correlation with clinical-pathologic factors,” RSNA Radiology 277(1), 46 (2015).

W. Li and X. Chen, “Gold nanoparticles for photoacoustic imaging,” Nanomedicine (Lond.) 10(2), 299–320 (2015).
[Crossref] [PubMed]

Cho, M.-H.

J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J.-S. Kim, S. K. Kim, M.-H. Cho, and T. Hyeon, “Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 45(46), 7754–7758 (2006).
[Crossref] [PubMed]

Chorozoglou, M.

J. Raftery and M. Chorozoglou, “Possible net harms of breast cancer screening: updated modelling of Forrest report,” British Dental Journal 212(129), 8 (2012).

Cobley, C. M.

K. H. Song, C. Kim, C. M. Cobley, Y. Xia, and L. V. Wang, “Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model,” Nano Lett. 9(1), 183–188 (2009).
[Crossref] [PubMed]

Cunningham, V.

Daoudi, K.

Darzi, A.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Datta, A.

M. Priya, B. S. S. Rao, S. Chandra, S. Ray, S. Mathew, A. Datta, S. G. Nayak, and K. K. Mahato, “Photoacoustic spectroscopy based investigatory approach to discriminate breast cancer from normal: a pilot study,” Proc. SPIE 9689, 968943 (2016).

Del Rio, S. P.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref] [PubMed]

Delouche, P.

A. Herment, J. P. Guglielmi, P. Dumee, P. Peronneau, and P. Delouche, “Limitations of ultrasound imaging and image restoration,” Ultrasonics 25(5), 267–273 (1987).
[Crossref] [PubMed]

Dumee, P.

A. Herment, J. P. Guglielmi, P. Dumee, P. Peronneau, and P. Delouche, “Limitations of ultrasound imaging and image restoration,” Ultrasonics 25(5), 267–273 (1987).
[Crossref] [PubMed]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Applications of gold nanorods for cancer imaging and photothermal therapy,” Methods in Molecular Biology 624, 343–357 (2010).

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Applications of gold nanorods for cancer imaging and photothermal therapy,” Methods in Molecular Biology 624, 343–357 (2010).

X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
[Crossref]

Enfield, L. C.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Fei, X.

K. Sun, X. Chen, W. Chai, X. Fei, C. Fu, X. Yan, Y. Zhan, K. Chen, K. Shen, and F. Yan, “Breast cancer: diffusion Kurtosis MR imaging—diagnostic accuracy and correlation with clinical-pathologic factors,” RSNA Radiology 277(1), 46 (2015).

Filimonova, T. A.

T. A. Filimonova, D. S. Volkov, M. A. Proskurnin, and I. M. Pelivanov, “Optoacoustic spectroscopy for real-time monitoring of strongly light-absorbing solutions in applications to analytical chemistry,” Photoacoustics 1(3-4), 54–61 (2013).
[Crossref] [PubMed]

Fu, C.

K. Sun, X. Chen, W. Chai, X. Fei, C. Fu, X. Yan, Y. Zhan, K. Chen, K. Shen, and F. Yan, “Breast cancer: diffusion Kurtosis MR imaging—diagnostic accuracy and correlation with clinical-pathologic factors,” RSNA Radiology 277(1), 46 (2015).

Galanzha, E. I.

E. I. Galanzha, M. S. Kokoska, E. V. Shashkov, J. W. Kim, V. V. Tuchin, and V. P. Zharov, “In vivo fiber photoacoustic detection and photothermal purging of metastasis targeted by nanoparticles in sentinel lymph nodes at single cell level,” J. Biophotonics 2, 528–539 (2009).
[Crossref] [PubMed]

E. I. Galanzha, E. V. Shashkov, V. V. Tuchin, and V. P. Zharov, “In vivo multispectral, multiparameter, photoacoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes,” Cytometry A 73(10), 884–894 (2008).
[Crossref] [PubMed]

Galanzha, E.I.

V.P. Zharov, E.I. Galanzha, E.V. Shashkov, J.W. Kim, N.G. Khlebtsov, and V.V. Tuchin, “Photoacoustic flow cytometry: Principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12(5), 051503 (2007).

Gibson, A.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Guglielmi, J. P.

A. Herment, J. P. Guglielmi, P. Dumee, P. Peronneau, and P. Delouche, “Limitations of ultrasound imaging and image restoration,” Ultrasonics 25(5), 267–273 (1987).
[Crossref] [PubMed]

Hebden, J.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Herment, A.

A. Herment, J. P. Guglielmi, P. Dumee, P. Peronneau, and P. Delouche, “Limitations of ultrasound imaging and image restoration,” Ultrasonics 25(5), 267–273 (1987).
[Crossref] [PubMed]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Huang, X.

X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
[Crossref]

X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Applications of gold nanorods for cancer imaging and photothermal therapy,” Methods in Molecular Biology 624, 343–357 (2010).

Hyeon, T.

J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J.-S. Kim, S. K. Kim, M.-H. Cho, and T. Hyeon, “Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 45(46), 7754–7758 (2006).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Ji, X.R.

L.M. Zeng, G.D. Liu, D.W. Yang, and X.R. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett. 102(5), 053704 (2013).

Jin, S. M.

J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J.-S. Kim, S. K. Kim, M.-H. Cho, and T. Hyeon, “Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 45(46), 7754–7758 (2006).
[Crossref] [PubMed]

Khlebtsov, N.G.

V.P. Zharov, E.I. Galanzha, E.V. Shashkov, J.W. Kim, N.G. Khlebtsov, and V.V. Tuchin, “Photoacoustic flow cytometry: Principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12(5), 051503 (2007).

Kim, C.

K. H. Song, C. Kim, C. M. Cobley, Y. Xia, and L. V. Wang, “Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model,” Nano Lett. 9(1), 183–188 (2009).
[Crossref] [PubMed]

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
[Crossref] [PubMed]

Kim, J.

J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J.-S. Kim, S. K. Kim, M.-H. Cho, and T. Hyeon, “Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 45(46), 7754–7758 (2006).
[Crossref] [PubMed]

Kim, J. W.

E. I. Galanzha, M. S. Kokoska, E. V. Shashkov, J. W. Kim, V. V. Tuchin, and V. P. Zharov, “In vivo fiber photoacoustic detection and photothermal purging of metastasis targeted by nanoparticles in sentinel lymph nodes at single cell level,” J. Biophotonics 2, 528–539 (2009).
[Crossref] [PubMed]

Kim, J.-S.

J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J.-S. Kim, S. K. Kim, M.-H. Cho, and T. Hyeon, “Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 45(46), 7754–7758 (2006).
[Crossref] [PubMed]

Kim, J.W.

V.P. Zharov, E.I. Galanzha, E.V. Shashkov, J.W. Kim, N.G. Khlebtsov, and V.V. Tuchin, “Photoacoustic flow cytometry: Principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12(5), 051503 (2007).

Kim, S. K.

J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J.-S. Kim, S. K. Kim, M.-H. Cho, and T. Hyeon, “Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 45(46), 7754–7758 (2006).
[Crossref] [PubMed]

Kniazewski, P.

T. Kozacki, M. Kujawińska, and P. Kniażewski, “Investigation of limitations of optical diffraction tomography,” Opto-Electron. Rev. 15(2), 102–109 (2007).
[Crossref]

Kohl, A.

Kokoska, M. S.

E. I. Galanzha, M. S. Kokoska, E. V. Shashkov, J. W. Kim, V. V. Tuchin, and V. P. Zharov, “In vivo fiber photoacoustic detection and photothermal purging of metastasis targeted by nanoparticles in sentinel lymph nodes at single cell level,” J. Biophotonics 2, 528–539 (2009).
[Crossref] [PubMed]

Kolkman, R. G. M.

R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21(3), 134–139 (2006).
[Crossref] [PubMed]

Kozacki, T.

T. Kozacki, M. Kujawińska, and P. Kniażewski, “Investigation of limitations of optical diffraction tomography,” Opto-Electron. Rev. 15(2), 102–109 (2007).
[Crossref]

Kruger, R. A.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref] [PubMed]

Kujawinska, M.

T. Kozacki, M. Kujawińska, and P. Kniażewski, “Investigation of limitations of optical diffraction tomography,” Opto-Electron. Rev. 15(2), 102–109 (2007).
[Crossref]

Kuzmiak, C. M.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref] [PubMed]

Lam, R. B.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref] [PubMed]

Lamela, H.

Lee, I. S.

J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J.-S. Kim, S. K. Kim, M.-H. Cho, and T. Hyeon, “Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 45(46), 7754–7758 (2006).
[Crossref] [PubMed]

Lee, J. E.

J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J.-S. Kim, S. K. Kim, M.-H. Cho, and T. Hyeon, “Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 45(46), 7754–7758 (2006).
[Crossref] [PubMed]

Lee, J. H.

J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J.-S. Kim, S. K. Kim, M.-H. Cho, and T. Hyeon, “Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 45(46), 7754–7758 (2006).
[Crossref] [PubMed]

Leff, D. R.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Li, W.

W. Li and X. Chen, “Gold nanoparticles for photoacoustic imaging,” Nanomedicine (Lond.) 10(2), 299–320 (2015).
[Crossref] [PubMed]

Liu, G.D.

L.M. Zeng, G.D. Liu, D.W. Yang, and X.R. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett. 102(5), 053704 (2013).

Lutzweiler, C.

C. Lutzweiler and D. Razansky, “Optoacoustic Imaging and Tomography: Reconstruction Approaches and Outstanding Challenges in Image Performance and Quantification,” Sensors (Basel) 13(6), 7345–7384 (2013).
[Crossref] [PubMed]

Mahato, K. K.

M. Priya, B. S. S. Rao, S. Chandra, S. Ray, S. Mathew, A. Datta, S. G. Nayak, and K. K. Mahato, “Photoacoustic spectroscopy based investigatory approach to discriminate breast cancer from normal: a pilot study,” Proc. SPIE 9689, 968943 (2016).

Maslov, K.

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Mathew, S.

M. Priya, B. S. S. Rao, S. Chandra, S. Ray, S. Mathew, A. Datta, S. G. Nayak, and K. K. Mahato, “Photoacoustic spectroscopy based investigatory approach to discriminate breast cancer from normal: a pilot study,” Proc. SPIE 9689, 968943 (2016).

Nayak, S. G.

M. Priya, B. S. S. Rao, S. Chandra, S. Ray, S. Mathew, A. Datta, S. G. Nayak, and K. K. Mahato, “Photoacoustic spectroscopy based investigatory approach to discriminate breast cancer from normal: a pilot study,” Proc. SPIE 9689, 968943 (2016).

Park, S.

J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J.-S. Kim, S. K. Kim, M.-H. Cho, and T. Hyeon, “Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 45(46), 7754–7758 (2006).
[Crossref] [PubMed]

Patten, D. K.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Pelivanov, I. M.

T. A. Filimonova, D. S. Volkov, M. A. Proskurnin, and I. M. Pelivanov, “Optoacoustic spectroscopy for real-time monitoring of strongly light-absorbing solutions in applications to analytical chemistry,” Photoacoustics 1(3-4), 54–61 (2013).
[Crossref] [PubMed]

Peronneau, P.

A. Herment, J. P. Guglielmi, P. Dumee, P. Peronneau, and P. Delouche, “Limitations of ultrasound imaging and image restoration,” Ultrasonics 25(5), 267–273 (1987).
[Crossref] [PubMed]

Priya, M.

M. Priya, B. S. S. Rao, S. Chandra, S. Ray, S. Mathew, A. Datta, S. G. Nayak, and K. K. Mahato, “Photoacoustic spectroscopy based investigatory approach to discriminate breast cancer from normal: a pilot study,” Proc. SPIE 9689, 968943 (2016).

Proskurnin, M. A.

T. A. Filimonova, D. S. Volkov, M. A. Proskurnin, and I. M. Pelivanov, “Optoacoustic spectroscopy for real-time monitoring of strongly light-absorbing solutions in applications to analytical chemistry,” Photoacoustics 1(3-4), 54–61 (2013).
[Crossref] [PubMed]

Rabot, O.

Raftery, J.

J. Raftery and M. Chorozoglou, “Possible net harms of breast cancer screening: updated modelling of Forrest report,” British Dental Journal 212(129), 8 (2012).

Rao, B. S. S.

M. Priya, B. S. S. Rao, S. Chandra, S. Ray, S. Mathew, A. Datta, S. G. Nayak, and K. K. Mahato, “Photoacoustic spectroscopy based investigatory approach to discriminate breast cancer from normal: a pilot study,” Proc. SPIE 9689, 968943 (2016).

Ray, S.

M. Priya, B. S. S. Rao, S. Chandra, S. Ray, S. Mathew, A. Datta, S. G. Nayak, and K. K. Mahato, “Photoacoustic spectroscopy based investigatory approach to discriminate breast cancer from normal: a pilot study,” Proc. SPIE 9689, 968943 (2016).

Razansky, D.

C. Lutzweiler and D. Razansky, “Optoacoustic Imaging and Tomography: Reconstruction Approaches and Outstanding Challenges in Image Performance and Quantification,” Sensors (Basel) 13(6), 7345–7384 (2013).
[Crossref] [PubMed]

Reinecke, D. R.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref] [PubMed]

Shashkov, E. V.

E. I. Galanzha, M. S. Kokoska, E. V. Shashkov, J. W. Kim, V. V. Tuchin, and V. P. Zharov, “In vivo fiber photoacoustic detection and photothermal purging of metastasis targeted by nanoparticles in sentinel lymph nodes at single cell level,” J. Biophotonics 2, 528–539 (2009).
[Crossref] [PubMed]

E. I. Galanzha, E. V. Shashkov, V. V. Tuchin, and V. P. Zharov, “In vivo multispectral, multiparameter, photoacoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes,” Cytometry A 73(10), 884–894 (2008).
[Crossref] [PubMed]

Shashkov, E.V.

V.P. Zharov, E.I. Galanzha, E.V. Shashkov, J.W. Kim, N.G. Khlebtsov, and V.V. Tuchin, “Photoacoustic flow cytometry: Principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12(5), 051503 (2007).

Shen, K.

K. Sun, X. Chen, W. Chai, X. Fei, C. Fu, X. Yan, Y. Zhan, K. Chen, K. Shen, and F. Yan, “Breast cancer: diffusion Kurtosis MR imaging—diagnostic accuracy and correlation with clinical-pathologic factors,” RSNA Radiology 277(1), 46 (2015).

Song, K. H.

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
[Crossref] [PubMed]

K. H. Song, C. Kim, C. M. Cobley, Y. Xia, and L. V. Wang, “Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model,” Nano Lett. 9(1), 183–188 (2009).
[Crossref] [PubMed]

Steed, D.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref] [PubMed]

Steenbergen, W.

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Sun, K.

K. Sun, X. Chen, W. Chai, X. Fei, C. Fu, X. Yan, Y. Zhan, K. Chen, K. Shen, and F. Yan, “Breast cancer: diffusion Kurtosis MR imaging—diagnostic accuracy and correlation with clinical-pathologic factors,” RSNA Radiology 277(1), 46 (2015).

Tisserand, S.

Tuchin, V. V.

E. I. Galanzha, M. S. Kokoska, E. V. Shashkov, J. W. Kim, V. V. Tuchin, and V. P. Zharov, “In vivo fiber photoacoustic detection and photothermal purging of metastasis targeted by nanoparticles in sentinel lymph nodes at single cell level,” J. Biophotonics 2, 528–539 (2009).
[Crossref] [PubMed]

E. I. Galanzha, E. V. Shashkov, V. V. Tuchin, and V. P. Zharov, “In vivo multispectral, multiparameter, photoacoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes,” Cytometry A 73(10), 884–894 (2008).
[Crossref] [PubMed]

Tuchin, V.V.

V.P. Zharov, E.I. Galanzha, E.V. Shashkov, J.W. Kim, N.G. Khlebtsov, and V.V. Tuchin, “Photoacoustic flow cytometry: Principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12(5), 051503 (2007).

van den Berg, P. J.

van Leeuwen, T. G.

R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21(3), 134–139 (2006).
[Crossref] [PubMed]

Volkov, D. S.

T. A. Filimonova, D. S. Volkov, M. A. Proskurnin, and I. M. Pelivanov, “Optoacoustic spectroscopy for real-time monitoring of strongly light-absorbing solutions in applications to analytical chemistry,” Photoacoustics 1(3-4), 54–61 (2013).
[Crossref] [PubMed]

Wang, L. V.

J. Xia, J. Yao, and L. V. Wang, “Photoacoustic tomography: principles and advances,” Electromagn Waves (Camb) 147, 1–22 (2014).
[Crossref] [PubMed]

J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

K. H. Song, C. Kim, C. M. Cobley, Y. Xia, and L. V. Wang, “Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model,” Nano Lett. 9(1), 183–188 (2009).
[Crossref] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Warren, O. J.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Wells, P. N. T.

P. N. T. Wells, “Ultrasonic imaging of the human body,” Rep. Prog. Phys. 62(5), 671–722 (1999).
[Crossref]

Xia, J.

J. Xia, J. Yao, and L. V. Wang, “Photoacoustic tomography: principles and advances,” Electromagn Waves (Camb) 147, 1–22 (2014).
[Crossref] [PubMed]

Xia, Y.

K. H. Song, C. Kim, C. M. Cobley, Y. Xia, and L. V. Wang, “Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model,” Nano Lett. 9(1), 183–188 (2009).
[Crossref] [PubMed]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Yan, F.

K. Sun, X. Chen, W. Chai, X. Fei, C. Fu, X. Yan, Y. Zhan, K. Chen, K. Shen, and F. Yan, “Breast cancer: diffusion Kurtosis MR imaging—diagnostic accuracy and correlation with clinical-pathologic factors,” RSNA Radiology 277(1), 46 (2015).

Yan, X.

K. Sun, X. Chen, W. Chai, X. Fei, C. Fu, X. Yan, Y. Zhan, K. Chen, K. Shen, and F. Yan, “Breast cancer: diffusion Kurtosis MR imaging—diagnostic accuracy and correlation with clinical-pathologic factors,” RSNA Radiology 277(1), 46 (2015).

Yang, D.W.

L.M. Zeng, G.D. Liu, D.W. Yang, and X.R. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett. 102(5), 053704 (2013).

Yang, G. Z.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Yang, I.

J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J.-S. Kim, S. K. Kim, M.-H. Cho, and T. Hyeon, “Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 45(46), 7754–7758 (2006).
[Crossref] [PubMed]

Yao, J.

J. Xia, J. Yao, and L. V. Wang, “Photoacoustic tomography: principles and advances,” Electromagn Waves (Camb) 147, 1–22 (2014).
[Crossref] [PubMed]

J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref] [PubMed]

Zeng, L.M.

L.M. Zeng, G.D. Liu, D.W. Yang, and X.R. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett. 102(5), 053704 (2013).

Zhan, Y.

K. Sun, X. Chen, W. Chai, X. Fei, C. Fu, X. Yan, Y. Zhan, K. Chen, K. Shen, and F. Yan, “Breast cancer: diffusion Kurtosis MR imaging—diagnostic accuracy and correlation with clinical-pathologic factors,” RSNA Radiology 277(1), 46 (2015).

Zhang, H. F.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Zharov, V. P.

E. I. Galanzha, M. S. Kokoska, E. V. Shashkov, J. W. Kim, V. V. Tuchin, and V. P. Zharov, “In vivo fiber photoacoustic detection and photothermal purging of metastasis targeted by nanoparticles in sentinel lymph nodes at single cell level,” J. Biophotonics 2, 528–539 (2009).
[Crossref] [PubMed]

E. I. Galanzha, E. V. Shashkov, V. V. Tuchin, and V. P. Zharov, “In vivo multispectral, multiparameter, photoacoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes,” Cytometry A 73(10), 884–894 (2008).
[Crossref] [PubMed]

Zharov, V.P.

V.P. Zharov, E.I. Galanzha, E.V. Shashkov, J.W. Kim, N.G. Khlebtsov, and V.V. Tuchin, “Photoacoustic flow cytometry: Principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12(5), 051503 (2007).

Angew. Chem. Int. Ed. Engl. (1)

J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J.-S. Kim, S. K. Kim, M.-H. Cho, and T. Hyeon, “Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy,” Angew. Chem. Int. Ed. Engl. 45(46), 7754–7758 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

L.M. Zeng, G.D. Liu, D.W. Yang, and X.R. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett. 102(5), 053704 (2013).

Breast Cancer Res. Treat. (1)

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

British Dental Journal (1)

J. Raftery and M. Chorozoglou, “Possible net harms of breast cancer screening: updated modelling of Forrest report,” British Dental Journal 212(129), 8 (2012).

Cytometry A (1)

E. I. Galanzha, E. V. Shashkov, V. V. Tuchin, and V. P. Zharov, “In vivo multispectral, multiparameter, photoacoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes,” Cytometry A 73(10), 884–894 (2008).
[Crossref] [PubMed]

Electromagn Waves (Camb) (1)

J. Xia, J. Yao, and L. V. Wang, “Photoacoustic tomography: principles and advances,” Electromagn Waves (Camb) 147, 1–22 (2014).
[Crossref] [PubMed]

Eur. J. Radiol. (1)

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
[Crossref] [PubMed]

J. Adv. Res. (1)

X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
[Crossref]

J. Biomed. Opt. (1)

V.P. Zharov, E.I. Galanzha, E.V. Shashkov, J.W. Kim, N.G. Khlebtsov, and V.V. Tuchin, “Photoacoustic flow cytometry: Principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12(5), 051503 (2007).

J. Biophotonics (1)

E. I. Galanzha, M. S. Kokoska, E. V. Shashkov, J. W. Kim, V. V. Tuchin, and V. P. Zharov, “In vivo fiber photoacoustic detection and photothermal purging of metastasis targeted by nanoparticles in sentinel lymph nodes at single cell level,” J. Biophotonics 2, 528–539 (2009).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref] [PubMed]

Lasers Med. Sci. (1)

R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21(3), 134–139 (2006).
[Crossref] [PubMed]

Med. Phys. (1)

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref] [PubMed]

Methods in Molecular Biology (1)

X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Applications of gold nanorods for cancer imaging and photothermal therapy,” Methods in Molecular Biology 624, 343–357 (2010).

Nano Lett. (1)

K. H. Song, C. Kim, C. M. Cobley, Y. Xia, and L. V. Wang, “Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model,” Nano Lett. 9(1), 183–188 (2009).
[Crossref] [PubMed]

Nanomedicine (Lond.) (1)

W. Li and X. Chen, “Gold nanoparticles for photoacoustic imaging,” Nanomedicine (Lond.) 10(2), 299–320 (2015).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Nat. Photonics (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Opto-Electron. Rev. (1)

T. Kozacki, M. Kujawińska, and P. Kniażewski, “Investigation of limitations of optical diffraction tomography,” Opto-Electron. Rev. 15(2), 102–109 (2007).
[Crossref]

Photoacoustics (1)

T. A. Filimonova, D. S. Volkov, M. A. Proskurnin, and I. M. Pelivanov, “Optoacoustic spectroscopy for real-time monitoring of strongly light-absorbing solutions in applications to analytical chemistry,” Photoacoustics 1(3-4), 54–61 (2013).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Priya, B. S. S. Rao, S. Chandra, S. Ray, S. Mathew, A. Datta, S. G. Nayak, and K. K. Mahato, “Photoacoustic spectroscopy based investigatory approach to discriminate breast cancer from normal: a pilot study,” Proc. SPIE 9689, 968943 (2016).

Rep. Prog. Phys. (1)

P. N. T. Wells, “Ultrasonic imaging of the human body,” Rep. Prog. Phys. 62(5), 671–722 (1999).
[Crossref]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

RSNA Radiology (1)

K. Sun, X. Chen, W. Chai, X. Fei, C. Fu, X. Yan, Y. Zhan, K. Chen, K. Shen, and F. Yan, “Breast cancer: diffusion Kurtosis MR imaging—diagnostic accuracy and correlation with clinical-pathologic factors,” RSNA Radiology 277(1), 46 (2015).

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Sensors (Basel) (1)

C. Lutzweiler and D. Razansky, “Optoacoustic Imaging and Tomography: Reconstruction Approaches and Outstanding Challenges in Image Performance and Quantification,” Sensors (Basel) 13(6), 7345–7384 (2013).
[Crossref] [PubMed]

Spectroscopy (Springf.) (1)

D. W. Ball, “Photoacoustic spectroscopy,” Spectroscopy (Springf.) 21(9), 1975 (2006).

Ultrasonics (1)

A. Herment, J. P. Guglielmi, P. Dumee, P. Peronneau, and P. Delouche, “Limitations of ultrasound imaging and image restoration,” Ultrasonics 25(5), 267–273 (1987).
[Crossref] [PubMed]

Other (2)

L. V. Wang, “Photoacoustic tomography: high-resolution imaging of optical contrast in vivo at new depths,” IEEE LEOS Annual Meeting Conference Proceedings 343 (2009).
[Crossref]

L. Leggio, D. C. Gallego, S. B. Gawali, E. Dadrasnia, M. Sánchez, S. Rodríguez, M. González, G. Carpintero, M. Osiński, and H. Lamela, “Optoacoustic response from graphene-based solutions embedded in optical phantoms by using 905-nm high-power diode-laser assemblies,” SPIE Proc. 9708, 97083M (12 pp.), (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Absorbance spectra of two colloidal solutions of gold nanorods (O.D. = 20) with peak at: ~860 nm (in blue) and ~900 nm (in red). The solutions have been diluted with a factor of 20 before measurements.
Fig. 2
Fig. 2 A 675-μm-diameter fiber bundle composed of seven 200-μm-core-diameter optical fibers: (a) Top view; (b) Output end of the fiber bundle seen under a microscope.
Fig. 3
Fig. 3 Light emitted by each diode laser is coupled to a 200-μm optical fiber by collimating and focusing lenses in an xyz translator mount: (a) Front view; (b) Top view.
Fig. 4
Fig. 4 The beam emitted by the HPDL is coupled to an optical fiber using a three-axial translator to optimize the light transfer into the optical fiber.
Fig. 5
Fig. 5 (a) A secondary lens system used to focus the light beam into a spot; (b) Image of the light spot (3 mm2) in the focal plane.
Fig. 6
Fig. 6 Alignment between the light output, the phantom, and the piezoelectric transducer.
Fig. 7
Fig. 7 OA signals from gold nanorods inclusions of 3-mm diameter hosted in the phantoms. The signals are labeled with the letters A, B, C for each case: a) NP1 at 870 nm, b) NP2 at 905 nm.
Fig. 8
Fig. 8 Amplitude of the OA signals at 870 nm and 905 nm in function of the depth in the phantom.

Tables (9)

Tables Icon

Table 1 Main characteristics of the gold nanorods.

Tables Icon

Table 2 Characteristics of the 870-nm and 905-nm HPDLs.

Tables Icon

Table 3 Characteristics of the lens systems used in the OA setup with the corresponding magnifications.

Tables Icon

Table 4 Characteristics of optical pulses used for excitation of OA signals at 870 nm and 905 nm, respectively.

Tables Icon

Table 5 Geometrical characteristics of the phantoms used in the measurements.

Tables Icon

Table 6 Scattering coefficients of the phantoms at 870 nm and 905 nm. The values are 10-100 times less than in the biological tissues [34].

Tables Icon

Table 7 Optoacoustic signals from gold nanorods in each tube. The tubes are labeled with letters A, B, and C.

Tables Icon

Table 8 Maximum noise amplitude detected at 870 nm and 905 nm with gold nanorods hosted in phantoms.

Tables Icon

Table 9 Signal-to-noise ratio calculated for each OA signal.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

μ a b s ( c m 1 ) = 2.303   x   O D ,
μ s c a = 1 d ln ( P p h a n t o m P d i r e c t ) ,
S N R T = S N R S   x   N ,
S N R T ( d B ) = 20 l o g 10 ( S N R T ) = 20 l o g 10 ( O A   s i g n a l f l o o r   n o i s e ) .

Metrics